

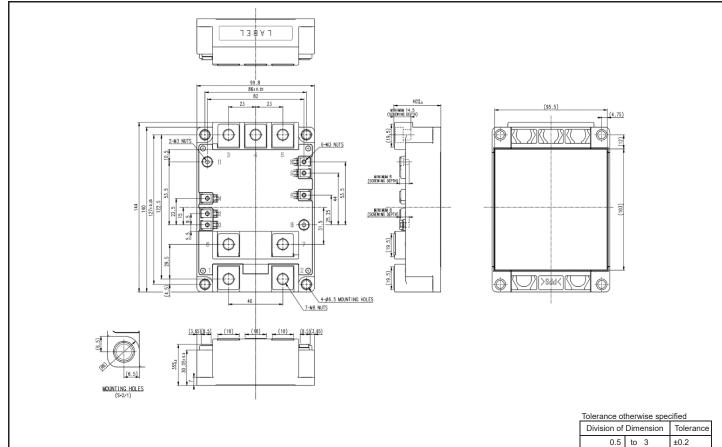
<IGBT Modules>

CM800DW-24T

HIGH POWER SWITCHING USE INSULATED TYPE

- Dual switch (Half-bridge)
- Copper base plate (Nickel-plating)
- Ni-plating signal terminals
- •RoHS Directive compliant
- •UL Recognized under UL1557, File No. E323585

APPLICATION


AC motor control, Photovoltaic (PV) inverter, Power supply etc,

OPTION (Below options are available.)

- •PC-TIM (Phase Change Thermal Interface Material) pre-apply
- •V_{CEsat} selection for parallel connection

OUTLINE DRAWING & INTERNAL CONNECTION

Dimension in mm

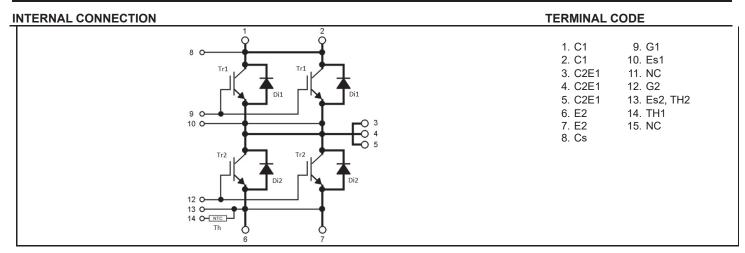
over 3 to 6

over 6 to 30

over 30 to 120

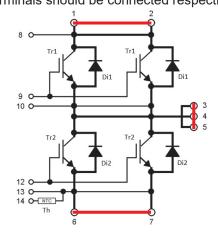
over 120 to 400

±0.3


±0.5

±0.8

+12


HIGH POWER SWITCHING USE

INSULATED TYPE

NOTE

Terminal 1 and 2, Terminal 3,4 and 5, Terminal 6 and 7, These terminals should be connected respectively when it is used.

HIGH POWER SWITCHING USE

INSULATED TYPE

Symbol	Item	Conditions	Rating	Unit
V _{CES}	Collector-emitter voltage	G-E short-circuited	1200	V
V _{GES}	Gate-emitter voltage	C-E short-circuited	±20	V
Ic	Callantan accomment	DC, T _C =(102) °C (Note.2, 4)	800	Δ.
I _{CRM}	Collector current	Pulse, Repetitive (Note.3)	1600	A
P _{tot}	Total power dissipation	T _C =25 °C (Note.2,4)	3485	W
I _E (Note.4)	Craitter current	DC (Note.2)	800	۸
I _{ERM} (Note.4)	Emitter current	Pulse, Repetitive (Note.3)	1600	A
Visol	Isolation voltage	Terminals to base plate, RMS, f=60 Hz, AC 1 min	4000	V
T _{vjmax}	Maximum junction temperature	Instantaneous event (overload) (Note9)	175	°C
T _{Cmax}	Maximum case temperature	(Note.4,9)	125	°C
T _{vjop}	Operating junction temperature	Continuous operation (Note9)	-40 ~ +150	°C
T _{sta}	Storage temperature	-	-40 ~ +125	

ELECTRICAL CHARACTERISTICS (Tvj=25 °C, unless otherwise specified)

Symbol	Item	Conditions		Limits			Unit	
Cymbol	item.			Min.	Тур.	Max.		
I _{CES}	Collector-emitter cut-off current	V _{CE} =V _{CES} , G-E short-circuited		-	-	1.0	mA	
I _{GES}	Gate-emitter leakage current	V _{GE} =V _{GES} , C-E short-circuited		-	-	0.5	μΑ	
$V_{GE(th)}$	Gate-emitter threshold voltage	I _C =80 mA, V _{CE} =10 V		5.4	6	6.6	V	
		I_C =800 A $^{(Note.5)}$,	T _{vj} = 25 °C	-	1.55	1.90		
		V _{GE} =15 V,	T _{vj} =125 °C	-	1.75	-	V	
\	Collector emitter esturation voltage	(Terminal)	T _{vj} =150 °C	-	1.80	-		
V _{CEsat}	Collector-emitter saturation voltage	I_C =800 A $^{(Note.5)}$,	T _{vj} = 25 °C	-	1.50	1.75		
		V _{GE} =15 V,	T _{vj} =125 °C	-	1.70	-	V	
		(Chip)	T _{vj} =150 °C	-	1.75	-		
Cies	Input capacitance		•	-	-	194	nF	
Coes	Output capacitance	V _{CE} =10 V, V _{GE} =0V		-	-	5.5		
Cres	Reverse transfer capacitance			-	-	2.4	1	
Q _G	Gate charge	V _{CC} =600 V, I _C =800 A, V _{GE} =15 V		-	6.0	-	μC	
t _{d(on)}	Turn-on delay time		-	-	800			
t _r	Rise time	V _{CC} =600 V, I _E =800 A, V _{GE} =±15 V,		-	-		200	
t _{d(off)}	Turn-off delay time	R _G =1.6 Ω, Inductive load	·	-	-	1200	ns	
t _f	Fall time		·	-	-	400	1	
		I _E =800 A (Note.5) ,	T _{vj} = 25 °C	-	1.65	2.00	V	
		G-E short-circuited,	T _{vj} =125 °C	-	1.65	-		
(Note 4)		(Terminal)	T _{vj} =150 °C	-	1.65	-		
V _{EC} (Note.4)	Emitter-collector voltage	I _E =800 A (Note.5),	T _{vj} = 25 °C	-	1.60	1.95		
		G-E short-circuited,	T _{vj} =125 °C	-	1.60	-	V	
		(Chip)	T _{vj} =150 °C	-	1.60	-		
t _{rr} (Note.4)	Reverse recovery time	V _{CC} =600 V, I _E =800 A, V _{GE} =±15 V,	•	-	-	400	ns	
Q _{rr} (Note.4)	Reverse recovery charge	R _G =1.6 Ω, Inductive load		-	62.4	-	μC	
E _{on}	Turn-on switching energy per pulse	V _{CC} =600V, I _C =I _E =800A,		-	72	-		
E _{off}	Turn-off switching energy per pulse	$V_{CC}=600V$, $I_{C}=I_{E}=800A$, $V_{GE}=\pm15V$, $R_{G}=1.6\Omega$, $T_{vi}=150^{\circ}$ C,		-	94	-	mJ	
E _{rr} (Note.4)	Reverse recovery energy per pulse	Inductive loard		-	57	-	1	
		Main terminals-chip						
R _{CC'+EE'}	Internal lead resistance	T _C =25 °C (Note.4)		-	0.25	-	mΩ	

HIGH POWER SWITCHING USE

INSULATED TYPE

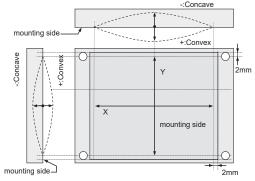
NTC THERMISTOR PART

Cymhal	Symbol Item Conditions	Conditions	Limits			I Imia
Symbol		Min.	Тур.	Max.	Unit	
R ₂₅	Zero-power resistance	T _C =25 °C (Note4)	4.85	5.00	5.15	kΩ
ΔR/R	Deviation of resistance	R ₁₀₀ =493 Ω, T _C =100 °C (Note4)	-7.3	-	+7.8	%
B _(25/50)	B-constant	Approximate by equation (Note6)	-	3375	-	K
P ₂₅	Power dissipation	T _C =25 °C (Note4)	-	-	10	mW

THERMAL RESISTANCE CHARACTERISTICS

Symbol	Item	Conditions		Unit		
		Conditions	Min.	Тур.	Max.	Offic
$R_{th(j-c)Q}$	Thermal resistance	Junction to case, per IGBT switch (Note.4)	-	-	43	K/kW
$R_{th(j-c)D}$	Thermal resistance	Junction to case, per FWDi switch (Note.4)	-	-	68	K/KVV
R _{th(c-s)}	Contact thermal resistance	Case to heat sink, per 1 module, Thermal grease applied (Note 4,7,9)	-	10	-	K/kW

MECHANICAL CHARACTERISTICS


Symbol	Item	Conditions			Unit		
Symbol	item			Min.	Тур.	Max.	Offic
M _t	Mounting torque	Main terminals	M 8 screw	7.0	10.5	14.0	
Ms		Mounting to heat sink	M 6 screw	3.5	4.0	4.5	N·m
M _t	1	Auxiliary terminals	M 3 screw	0.4	0.5	0.6	
٦	Creepage distance	Terminal to terminal		17	-	-	mm
d _s		Terminal to base plate		30	-	-	mm
۵	Clearance	Terminal to terminal		8.5	-	-	mm
d _a		Terminal to base plate		28	-	-	mm
e _c	Flatness of base plate	On the centerline of X, Y (Note.8)		0	-	+200	μm
m	Mass	-		-	860	-	g

- *: This product is compliant with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) directive 2011/65/EU and (EU)2015/863.
- Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free-wheeling diode (FWD).
 - 2. Junction temperature ($T_{\nu j}$) should not increase beyond $T_{\nu j m \, a \, x}$ rating.
 - 3. Pulse width and repetition rate should be such that the device junction temperature (Tvj) dose not exceed Tvjmax rating.
 - 4. Case temperature (T_C) and heat sink temperature (T_S) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location.
 - 5. Pulse width and repetition rate should be such as to cause negligible temperature rise. Refer to the figure of test circuit.
 - 6. $B(25/50) \ln{(\frac{R_{25}}{R_{50}})} / (\frac{1}{T_{25}} \frac{1}{T_{50}})$

R₂₅: resistance at absolute temperature T₂₅ [K]; T₂₅=25 [°C]+273.15=298.15 [K]

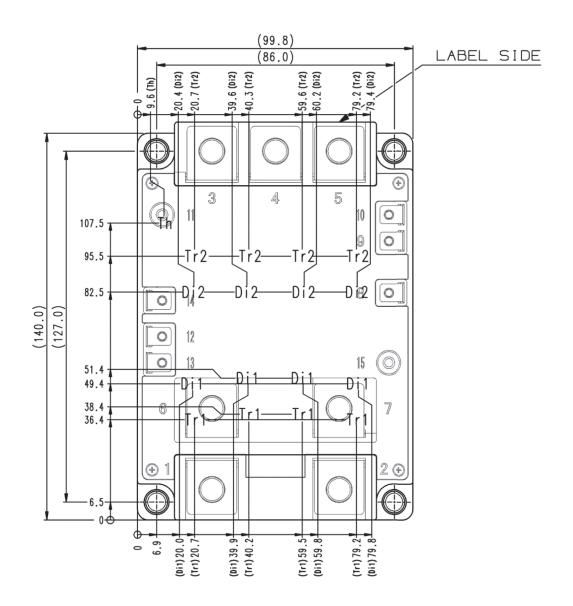
 R_{50} : resistance at absolute temperature T_{50} [K]; T_{50} =50 [°C]+273.15=323.15 [K]

- 7. Reference value. Thermally conductive grease of thermal conductivity λ =0.9 W/(m·K) and thickness D(C-S)=50 μ m.
- 8. The base plate (mounting side) flatness measurement points (X,Y) are shown in the following figure.

9. Long term performance related to thermal conductive grease (including but not limited to aspects such as the increase of thermal resistance due to pumping out, etc.) should be verified under user's specific application conditions. Each temperature condition (T_{vj max}, T_{vj op}, T_{C max}) must be maintained below the maximum rated temperature throughout consideration of the temperature rise even for long term usage.

RECOMMENDED OPERATING CONDITIONS

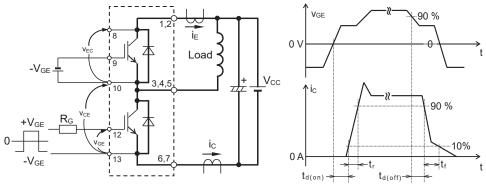
HIGH POWER SWITCHING USE

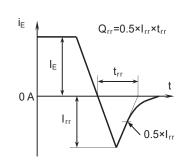

INSULATED TYPE

Symbol	Item	Conditions	Limits			Unit
Symbol		Conditions	Min.	Тур.	Max.	UIIIL
V _{CC}	DC supply voltage	Applied across C1-E2 terminals	-	600	850	V
V_{GEon}	Gate-emitter drive voltage	Applied across G1-Es1/ G2-Es2 terminals	13.5	15.0	16.5	V
R _G	External gate resistance	Per switch	1.6	-	10	Ω

Optimum operating conditions should be selected with careful confirmation for no occurrence of any maximum rating violation

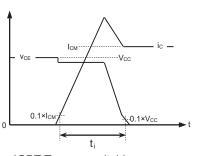
CHIP LOCATION (Top view)

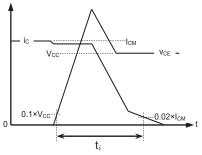

Dimension in mm, tolerance: ±1 mm

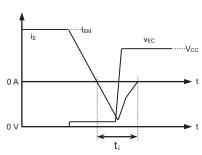


Tr1/Tr2: IGBT, Di1/Di2: FWD, Th: NTC thermistor

⁽T_{VI}, V_{CES}, etc.) or any unexpected malfunction (arm-short-through, oscillation, etc.) at the actual application conditions.

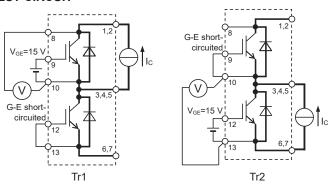

TEST CIRCUIT AND WAVEFORMS

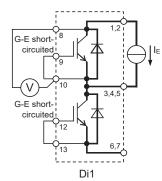


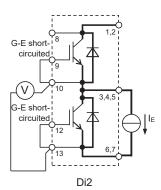


Switching characteristics test circuit and waveforms

trr, Qrr characteristics test waveform


IGBT Turn-on switching energy

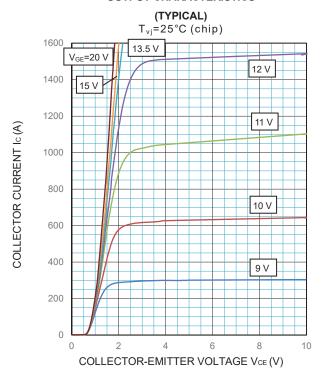

IGBT Turn-off switching energy


FWD Reverse recovery energy

Switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)

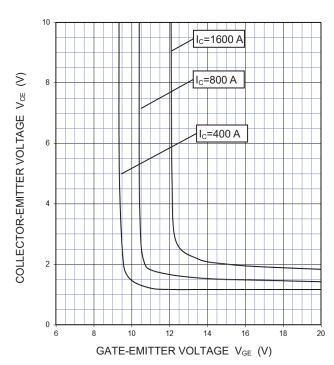
TEST CIRCUIT

V_{CEsat} characteristics test circuit

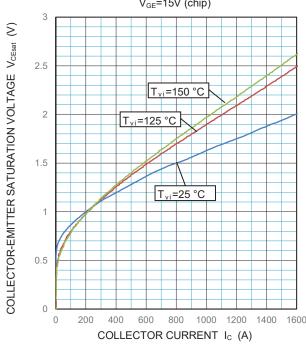

V_{EC} characteristics test circuit

HIGH POWER SWITCHING USE **INSULATED TYPE**

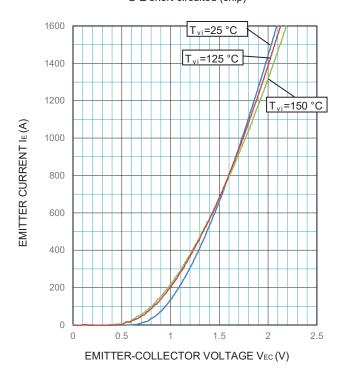
PERFORMANCE CURVES


INVERTER PART

OUTPUT CHARACTERISTICS


COLLECTOR-EMITTER VOLTAGE CHARACTERISTICS (TYPICAL)

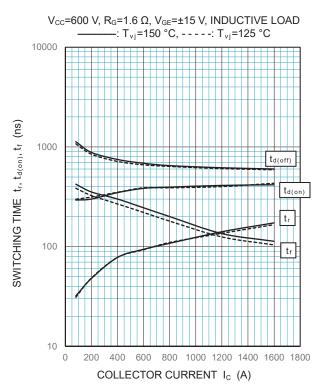
T_{vj}=25°C (chip)


COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

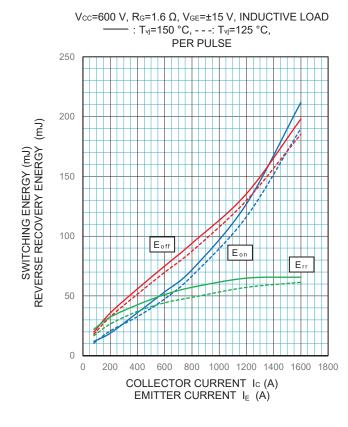
V_{GE}=15V (chip)

FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL)

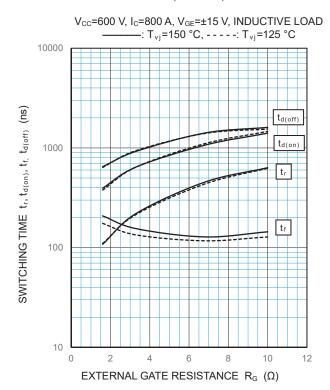
G-E short-circuited (chip)

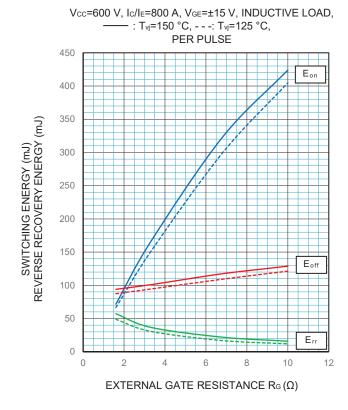


HIGH POWER SWITCHING USE INSULATED TYPE


PERFORMANCE CURVES

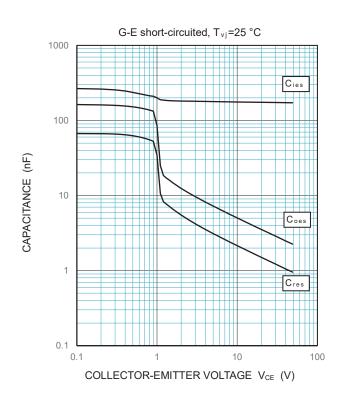
INVERTER PART


HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

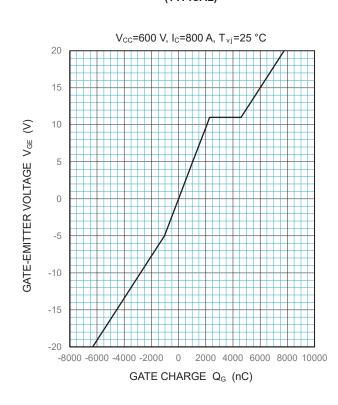

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

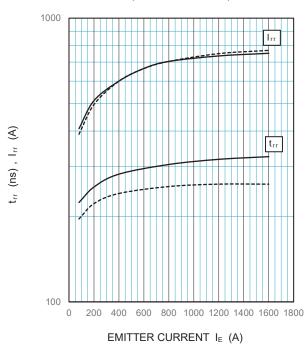


HIGH POWER SWITCHING USE **INSULATED TYPE**

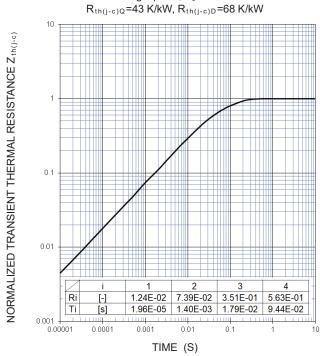

PERFORMANCE CURVES

INVERTER PART

CAPACITANCE CHARACTERISTICS (TYPICAL)

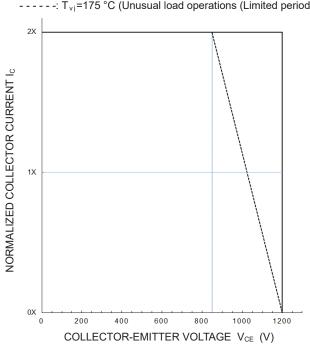


GATE CHARGE CHARACTERISTICS (TYPICAL)

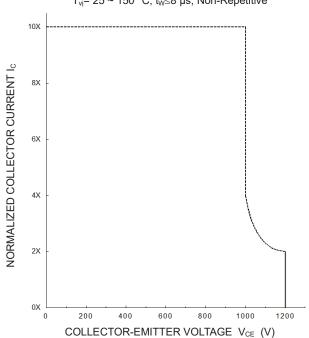

FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL)

 V_{CC} =600 V, R_G =1.6 Ω , V_{GE} =±15 V, INDUCTIVE LOAD -: T_{vj}=150 °C, - - - -: T_{vj}=125 °C

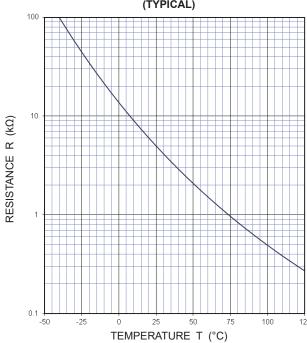
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM)


Single pulse, T_C=25 °C $R_{th(j-c)Q}$ =43 K/kW, $R_{th(j-c)D}$ =68 K/kW

PERFORMANCE CURVES


TURN-OFF SWITCHING SAFE OPERATIONG AREA (REVERSE BIAS SAFE OPERATING AREA) (MAXIMUM)

 $\begin{array}{l} V_{\text{CC}}{\le}850~\text{V},~V_{\text{GE}}{=}\pm15~\text{V},~R_{\text{G(off)}}{=}1.6{\sim}10~\Omega,\\ -----:T_{\nu_{\text{j}}}{=}25{\sim}150~^{\circ}\text{C (Normal load operations (Continuous)}\\ -----:T_{\nu_{\text{j}}}{=}175~^{\circ}\text{C (Unusual load operations (Limited period)} \end{array}$


SHORT-CIRCUIT SAFE OPERATING AREA (MAXIMUM)

 $V_{\text{CC}}{\le}800 \text{ V, } V_{\text{GE}}{=}\pm15 \text{ V,}$ $T_{\text{vi}}{=}~25 \sim 150 \text{ °C, } t_{\text{W}}{\le}8 \text{ µs, Non-Repetitive}$

NTC thermistor part

Note: The characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.

HIGH POWER SWITCHING USE INSULATED TYPE

Important Notice

The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer's compliance with any applicable legal requirement, norms and standards.

Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Power Cycle, Thermal Cycle or others, or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor.

The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer's technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer's research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it's applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a power supply and semiconductor products to prevent secondary damage. Please also pay attention to the application note and the related technical information.

HIGH POWER SWITCHING USE INSULATED TYPE

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi Electric Semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for the latest product information before purchasing a product listed herein.
- The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
- Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Electric Semiconductor home page (https://www.MitsubishiElectric.com/semiconductors/).
- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for further details on these materials or the products contained therein.

Generally the listed company name and the brand name are the trademarks or registered trademarks of the respective companies.

© Mitsubishi Electric Corporation