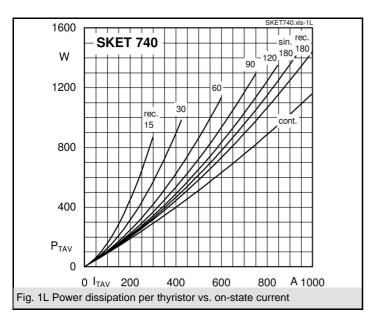
SKET 740

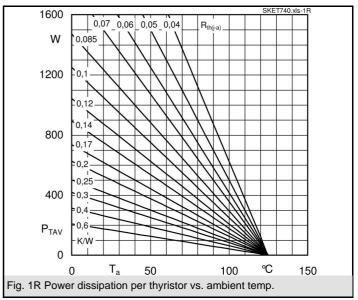
Thyristor Modules

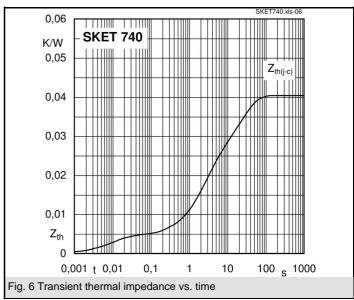
SKET 740

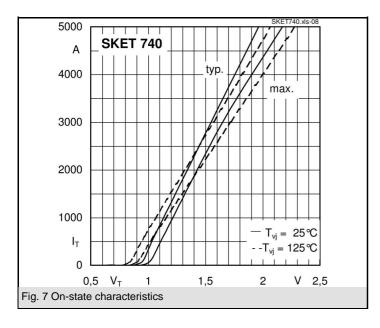
Features

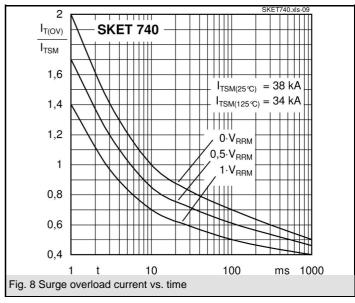
- Precious metal pressure contacts for high reliability
- Thyristor with amplifying gate
- UL recognized, file no. E 63 532

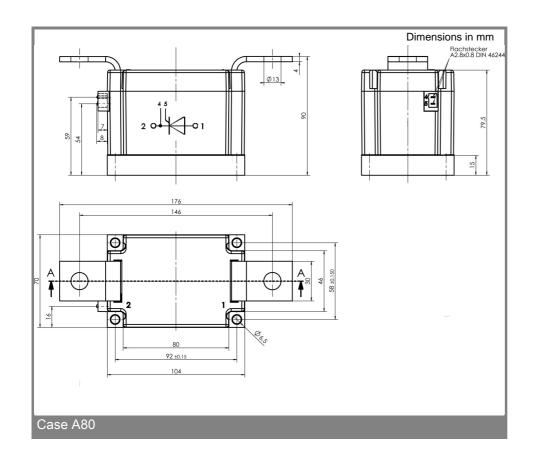

Typical Applications*


- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Softstart application
- 1) calculated with characteristic values
- 2) characteristic values
- T_{vjmax} up to 130°C is allowable for overload conditions, max. time periode for the overload condition is 20s


V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 1500 A (maximum value for continuous operation)		
V	V	I _{TAV} = 740 A (sin. 180; T _c = 82 °C)		
1900	1800	SKET 740/18G H4		
2300	2200	SKET 740/22G H4		


Symbol	Conditions	Values	Units
I_{TAV}	sin. 180; T _c = 85 (100) °C;	700 (490)	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	36000	Α
	T _{vi} = 125 °C; 10 ms	31000	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	6480000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	4805000	A²s
V_{T}	T _{vi} = 25 °C; I _T = 3000 A	max. 1,65	V
$V_{T(typ.)}^{2)}$	$T_{vj} = 25 ^{\circ}\text{C}; I_{T} = 3000 \text{A}$	1,55	V
$V_{T(TO)}$	T _{vi} = 125 °C	max. 0,88	V
r _T	T _{vi} = 125 °C	max. 0,28	$m\Omega$
V _{T(TO)(typ.)} ²⁾	$T_{v_i}^{r_j} = 125 ^{\circ}\text{C}$	0,82	V
r _{T(typ.)} ²⁾	T _{vj} = 125 °C	0,25	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 150	mA
t _{gd}	T_{vj} = 25 °C; I_{G} = 1 A; di_{G}/dt = 1 A/ μ s	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 200	A/µs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 2000	V/µs
t _q	$T_{vi}^{s} = 125 ^{\circ}\text{C}$	200	μs
I _H	T_{vi} = 25 °C; typ. / max.	1000 / 2000	mA
IL	$T_{vj} = 25 ^{\circ}\text{C}; R_G = 33 \Omega; \text{typ. / max.}$	1500 / 2500	mA
V_{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 300	mA
V_{GD}	$T_{vi} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 10	mA
R _{th(j-c)}	cont.	0,0405	K/W
R _{th(j-c)}	sin. 180	0,042	K/W
R _{th(j-c)}	rec. 120	0,043	K/W
R _{th(c-s)}		0,01	K/W
T _{vi}		- 40 + 125 ³⁾	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1s / 1 min.	4800 / 4000	V~
V_{isol}		745 / 520	V~
M_s	to heatsink	6 ± 15 %	Nm
M_t	to terminal	18 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	2150	g
Case		A80	





^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.