SKET 330

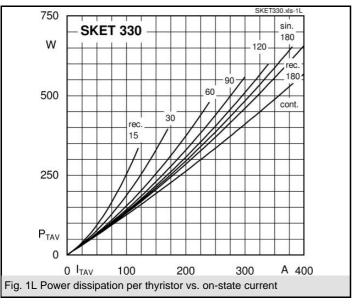
SEMIPACK® 4

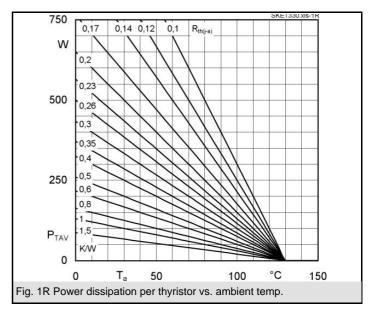
Thyristor Modules

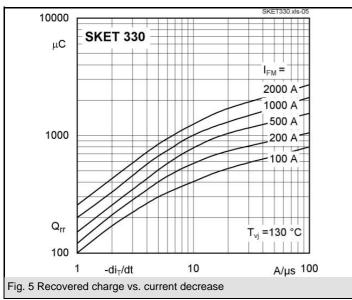
SKET 330

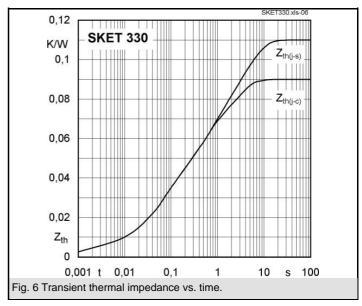
Features

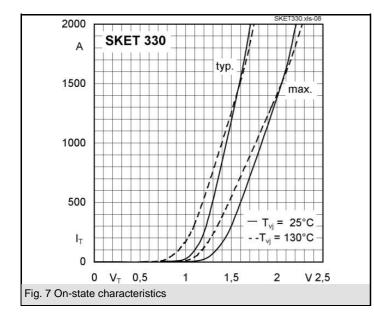
- Heat transfer through aluminium nitride ceramic isolated metal baseplate
- Precious metal pressure contacts for high reliability
- Thyristor with amplifying gate
- UL recognized, file no. E 63 532

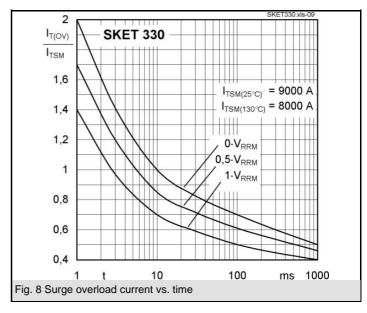

Typical Applications

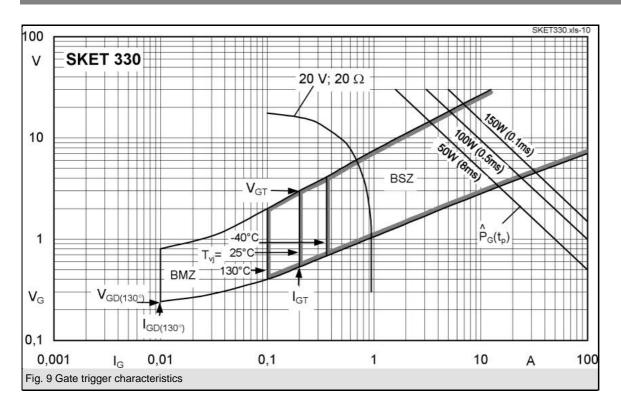

- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions
- 2) The screws must be lubricated

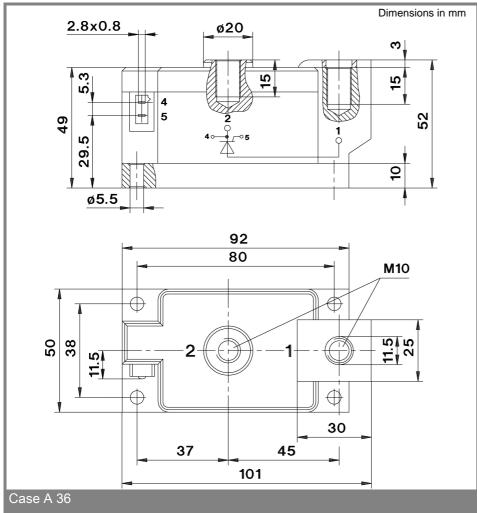

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 600 A (maximum value for continuous operation)	
V	V	I _{TAV} = 330 A (sin. 180; T _c = 78 °C)	
900	800	SKET 330/08E	
1300	1200	SKET 330/12E	
1500	1400	SKET 330/14E	
1700	1600	SKET 330/16E	
1900	1800	SKET 330/18E	
2100	2000	SKET 330/20E	
2300	2200	SKET 330/22E	


$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Symbol	Conditions	Values	Units
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I _{TAV}	sin. 180; T _c = 85 (100) °C;	295 (210)	Α
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		P16/300F; T _a = 35 °C; B2 / B6	530 / 665	Α
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{RMS}	P16/400F; T _a = 35 °C; W1 / W3	685 / 3 * 550	Α
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{TSM}	T _{vi} = 25 °C; 10 ms	9000	Α
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			8000	Α
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i²t	T _{vj} = 25 °C; 8,3 10 ms	405000	A²s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 ,	320000	A²s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			max. 2,05	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$V_{T(TO)}$	T _{vj} = 130 °C	max. 1,2	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$T_{vj} = 130 ^{\circ}C$	max. 0,55	mΩ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$I_{DD}; I_{RD}$	T_{vj} = 130 °C; V_{RD} = V_{RRM} , V_{DD} = V_{DRM}	max. 120	mA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(di/dt) _{cr}		max. 125	A/µs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(dv/dt) _{cr}	T _{vi} = 130 °C	max. 1000	V/µs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t_q	$T_{vj} = 130 ^{\circ}\text{C}$	150 200	μs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	150 / 500	mA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 9	500 / 2000	mA
$\begin{array}{llllllllllllllllllllllllllllllllllll$	V _{GT}		min. 3	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_{GT}		min. 200	mA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V_{GD}	1 9	max. 0,25	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 10	mA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R _{th(j-c)}	cont.	0,09	K/W
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{th(j-c)}$	sin. 180	0,095	K/W
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_{th(j-c)}$	rec. 120	· ·	K/W
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	K/W
Visol a. c. 50 Hz; r.m.s.; 1s / 1 min. 3600 / 3000 V~ Ms to heatsink 5 ± 15 %1) Nm Mt to terminal 17 ± 15 %2) Nm a 5 * 9,81 m/s m approx. 940 g	,		- 40 + 130	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T_{stg}		- 40 + 130	°C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V _{isol}	a. c. 50 Hz; r.m.s.; 1s / 1 min.		V~
a 5 * 9,81 m/s m approx. 940 g	M_s	to heatsink		Nm
m approx. 940 g	•	to terminal		Nm
	а		5 * 9,81	m/s²
Case A 36	m	approx.		g
	Case		A 36	









This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.