
SKDH 145

SEMIPONTTM 5

Half Controlled 3-phase Bridge Rectifier

SKDH 145

Target Data

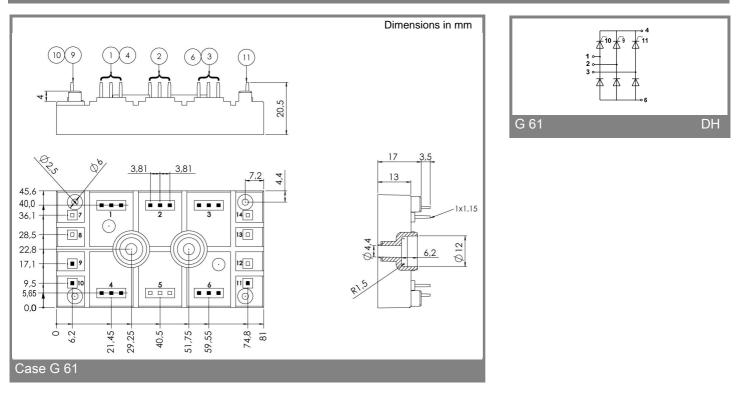
Features

- Compact design
- Two screws mounting
- Heat transfer and isolation through direct copper board (low R _{th})
- Low resistance in steady-state and high reliability
- High surge currents
- UL -recognized, file no. E 63 532

Typical Applications

- For DC drives with a fixed direction of rotation
- Controlled field rectifier for DC motors
- · Controlled battery charger

V _{RSM} V	V _{RRM} , V _{DRM} V	$I_D = 140 \text{ A (full conduction)}$ (T _s = 80 °C)
1300	1200	SKDH 145/12
1700	1600	SKDH 145/16


Symbol	Conditions	Values	Units
I _D	T _s = 80 °C	110	А
I _{TSM} , I _{FSM}	T _{vi} = 25 °C; 10 ms		Α
	T _{vj} = 125 °C; 10 ms	1250	А
i²t	T _{vj} = 25 °C; 8,3 10 ms		A²s
	T _{vj} = 125 °C; 8,3 10 ms	7800	A²s
V _T , V _F	T _{vj} = 25 °C; I _T , I _F =150A	max. 1,6	V
V _{T(TO)} / VF(TO)	T _{vj} = 125 °C;	0,9	V
r _T	T _{vj} = 125 °C	5	mΩ
I _{DD} ; I _{RD}	T_{vj} = 125 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 20	mA
t _{gd}	$T_{vj} = °C; I_G = A; di_G/dt = A/\mu s$		μs
t _{gr}	$V_{\rm D} = \cdot V_{\rm DRM}$		μs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 500	V/µs
(di/dt) _{cr}	T _{vj} = 125 °C; f = 5060 Hz	max. 50	A/µs
t _q	$T_{vj} = 125 \ ^{\circ}C; typ.$	150	μs
I _Н	$T_{vj} = 25 \text{ °C; typ. / max.}$	- / 250	mA
I _L	T_{vj} = 25 °C; R_G = 33 Ω	- / 600	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 \text{ °C}; \text{ d.c.}$	min. 150	mA
V_{GD}	T _{vj} = 125 °C; d.c.	max. 0,25	V
I_{GD}	T _{vj} = 125 °C; d.c.	max. 6	mA
			K/W
_			K/W
R _{th(j-s)}	per thiristor / diode	0,63	K/W
T _{vi}		- 40 + 125	°C
T _{stg}		- 40 + 125	°C
T _{solder}	terminals	260	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	to heatsink	2,5	Nm
M _t			Nm
m	approx.	75	g
Case	SEMIPONT 5	G 61	

SKDH

© by SEMIKRON

SKDH 145

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.