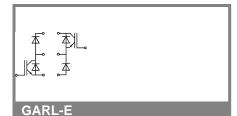


SEMITOP® 3

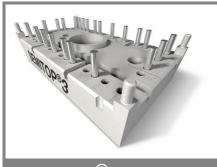
IGBT Module

SK55GARL065E


Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence


Typical Applications*

- Switching (not for linear use
- Switched mode power supplies
- UPS
- Double PFC
- Multilevel inverter

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise sp					
Symbol	Conditions			Values	Units
IGBT	•		•		
V_{CES}	T _j = 25 °C T _j = 125 °C			600	V
I _C	T _j = 125 °C	T _s = 25 °C		54	Α
		T_s = 80 °C		40	Α
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			120	Α
V _{GES}				± 20	V
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		10	μs
Inverse	Diode				
I_{F}	T _j = 150 °C	T_s = 25 °C		36	Α
		$T_s = 80 ^{\circ}C$		24	Α
I_{FRM}	I _{FRM} = 2 x I _{Fnom}				Α
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		200	А
Freewhe	eling Diode				
I _F	T _j = 150 °C	T_s = 25 °C		64	Α
		T_s = 80 °C		48	Α
I _{FRM}	I _{FRM} = 2 x I _{Fnom}				Α
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		440	А
Module	·				
$I_{t(RMS)}$					Α
T _{vj}				-40 + 150	°C
T _{stg}				-40 + 125	°C
V _{isol}	AC, 1 min.			2500	V

Characteristics		T_s = 25 °C, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{\text{GE(th)}}$	$V_{GE} = V_{CE}$, $I_{C} = 1.4$ mA		3	4	5	V	
I _{CES}	V _{GE} = 600 V, V _{CE} = V _{CES}	T _j = 25 °C			0,0044	mA	
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}$	T _j = 25 °C			240	nA	
V _{CE0}		T _j = 25 °C		1,2	1,3	V	
		T _j = 125 °C		1,1	0,9	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C			12	mΩ	
		T _j = 125°C			22	$m\Omega$	
V _{CE(sat)}	I _{Cnom} = 60 A, V _{GE} = 15 V			1,7	2	V	
		$T_j = 125^{\circ}C_{chiplev}$		2,2	2,2	V	
C _{ies}				3,2		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF	
C _{res}				0,18		nF	
Q_G	V _{GE} =0 20 V			375		nC	
t _{d(on)}				60	80	ns	
t _r	R_{Gon} = 16 Ω	V _{CC} = 300V		30	40	ns	
E _{on}		I _C = 40A		1,1		mJ	
t _{d(off)}	R_{Goff} = 16 Ω	T _j = 125 °C		220	280	ns	
t _f		V _{GE} = ±15V		20	26	ns	
E_{off}				0,76		mJ	
$R_{th(j-s)}$	per IGBT				0,85	K/W	

SEMITOP® 3

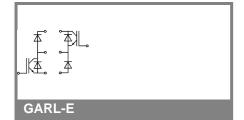
IGBT Module

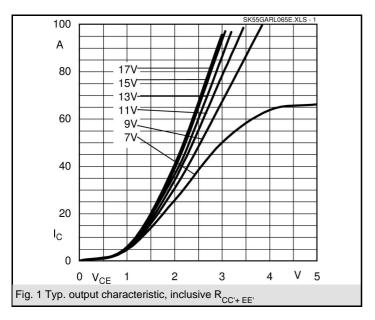
SK55GARL065E

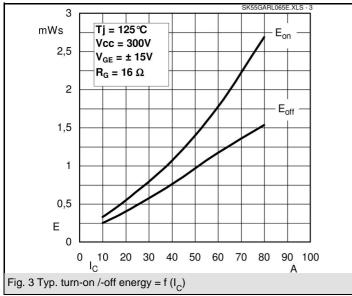
Preliminary Data

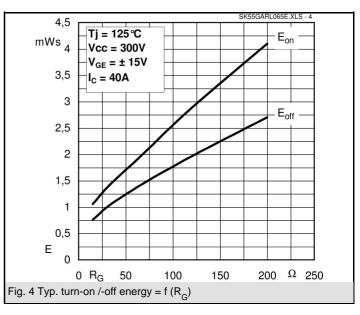
Features

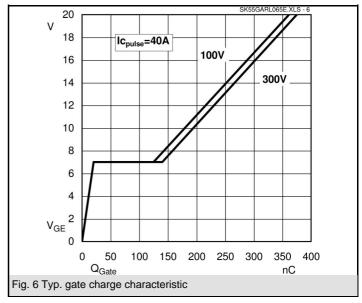
- · Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence

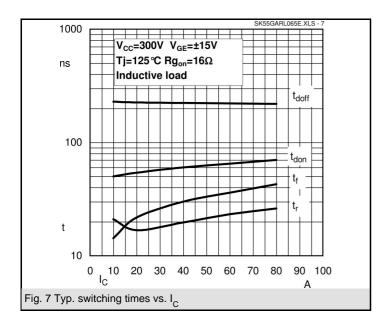

Typical Applications*

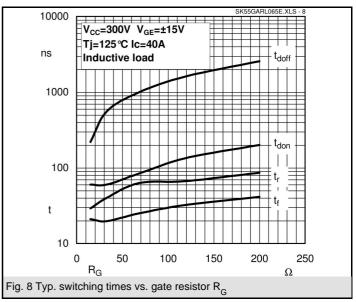

- · Switching (not for linear use
- Switched mode power supplies
- UPS
- Double PFC
- Multilevel inverter

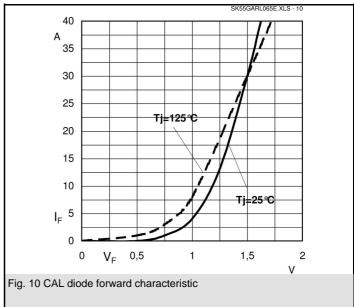

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V			1,45	1,7	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,4	1,75	V		
V_{F0}		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 125 °C		22	32	mΩ		
I _{RRM}	I _F = 50 A	T _j = 125 °C		57		Α		
Q_{rr}	di/dt = -2400 A/µs			4,6		μC		
E _{rr}	V _{CC} =300V			0,9		mJ		
$R_{th(j-s)D}$	per diode				1,7	K/W		
Freewheeling diode								
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,45	1,7	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,4	1,75	V		
V_{F0}		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 125 °C		11	16	V		
I _{RRM}	I _F = 50 A	T _i = 125 °C		30		Α		
Q_{rr}	di/dt = -800 A/µs	•		3,6		μC		
E _{rr}	V _R =300V			0,95		mJ		
$R_{th(j-s)D}$	per diode				1,1	K/W		
M_s	to heat sink		2,25		2,5	Nm		
w				30		g		

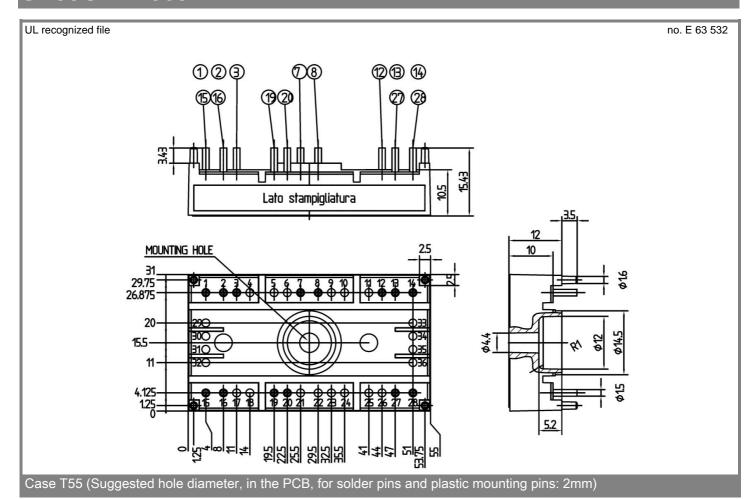

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

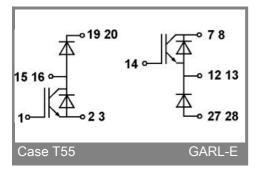

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











4 29-05-2007 SCT © by SEMIKRON

5 29-05-2007 SCT © by SEMIKRON