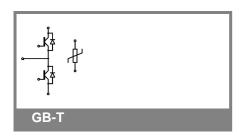


IGBT Module

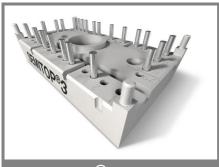
SK50GB12T4T

Target Data


Features

- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

Typical Applications*


Remarks

• V_{CE,sat} , V_F = chip level value

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT						
V_{CES}	T _j = 25 °C		1200	V		
I _C	T _j = 175 °C	T _s = 25 °C	71	Α		
		T _s = 70 °C	56	Α		
I _{CRM}	I _{CRM} = 3 x I _{Cnom}		150	Α		
$V_{\rm GES}$			± 20	V		
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; VCES < 1200 V	T _j = 150 °C	10	μs		
Inverse D	iode					
I _F	,	T _s = 25 °C	50	Α		
	,	T _s = 70 °C	40	Α		
I _{FRM}	I _{FRM} = 3 x I _{Fnom}		150	Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	265	Α		
Module						
I _{t(RMS)}				Α		
T_{vj}			-40 + 175	°C		
T _{stg}			-40 +1 25	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_s =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT	•		•				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.7 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,01	mA	
		T _j = 125 °C T _i = 25 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,1	1,3	V	
		T _j = 150 °C		1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		15		mΩ	
		T _j = 150°C		25		mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev} .		1,85	2,05	V	
		$T_j = 150^{\circ}C_{chiplev}$		2,25	2,45	V	
C _{ies}		•		2,77		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,2		nF	
C _{res}				0,16		nF	
Q_G	V _{GE} =-7V+15V			375		nC	
R _{Gint}	T _j = 25 °C			4		Ω	
t _{d(on)}				63		ns	
l t _r	$R_{Gon} = 32 \Omega$	$V_{CC} = 600V$		65		ns	
E _{on}	di/dt = 920 A/µs	I _C = 50A		8,3		mJ	
^L d(off)	$R_{Goff} = 32 \Omega$	T _j = 150 °C		521		ns	
t _f	di/dt = 920 A/µs	V _{GE} = ±15 V		80		ns	
E _{off}				5		mJ	
$R_{th(j-s)}$	per IGBT			0,9		K/W	

SEMITOP® 3

IGBT Module

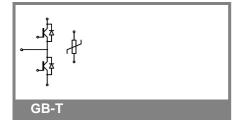
SK50GB12T4T

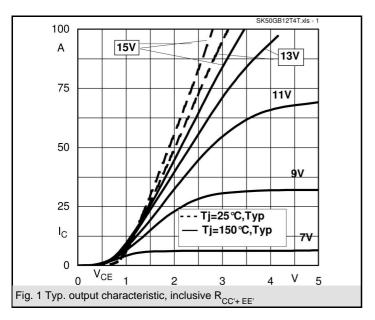
Target Data

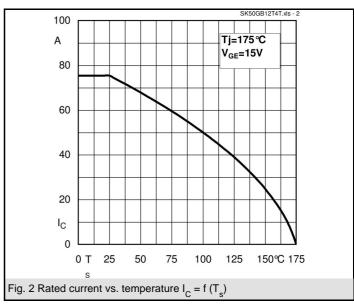
Features

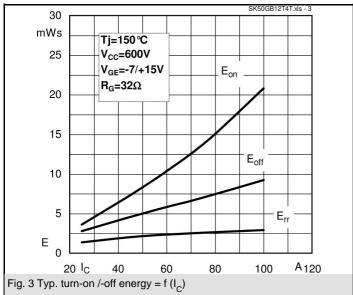
- · One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

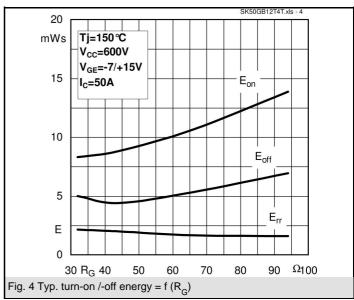
Typical Applications*


Remarks


• V_{CE,sat} , V_F = chip level value


Characteristics								
Symbol	Conditions	İ	min.	typ.	max.	Units		
Inverse D	Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev} .		2,2	2,55	V		
		T _j = 150 °C _{chiplev.}		2,18	2,5	V		
V_{F0}		T _j = 25 °C		1,3	1,5	V		
		T _j = 150 °C		0,9	1,1	V		
r _F		T _j = 25 °C		19	21	mΩ		
		T _j = 150 °C		26	28	mΩ		
I _{RRM}	I _F = 50 A	T _j = 150 °C		30		Α		
Q_{rr}	di/dt = 920 A/µs	,		7,2		μC		
E _{rr}	V _{CC} = 600V			2,15		mJ		
R _{th(j-s)D}	per diode			1,24		K/W		
M _s	to heat sink				2,5	Nm		
w				30		g		
Temperature sensor								
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

