Device and Communication Manual

For Cement Library V1.1 a SoCollaborative Library based on DPL

07/2011

www.schneider-electric.com

Schneider Gelectric The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2011 Schneider Electric. All rights reserved.

Table of Contents

	Safety Information	13
Devit I	About the Book	17
Part I	Device Components	19
Chapter 1	Introduction	21
	Introduction	21
Chapter 2	General Overview of Device Resources	23
2.1	Resources for Devices	24
	DPU Functional Blocks for Devices.	25
	DPU Component Library for Devices	26
	DPC for Devices	27
2.2		28
	ATV Profile Description	29
	TesysT Profile Description	30
	PM Profile Description.	31
2.3	Commonly Used Tabs.	32
Oberster 0	Commonly Used Tabs.	32
Chapter 3		35
	Functional Blocks (DFB) Interface.	36
	Set-Point Management	39
Oberster (40 41
Chapter 4	• • • •	
4.1	Description	42
	Functional Description	43 44
4.2	FBD Representation	44
4.2	Inputs	45 46
	ATV31Dev Specific Inputs	48
	Input Detail - Inputs.	40
	Input Detail - TimeControl	51
	Input Detail - Range	53
	Input Detail - SetPoint	54

4.3	Outputs	55
	Generic Outputs Description	56
	ATV31Dev Specific Outputs	58
	Output Detail - OutputData	59
	Output Detail - WarningCode	60
	Output Detail - Resetting	61
	Output Detail - Status.	62
4.4	Inputs/Outputs	65
	Generic Inputs/Outputs Description	66
	Inputs/Outputs Detail - ATV_ST.	67
	Inputs/Outputs Detail - ATV_CFG	69
4.5	Operator Screen	71
	General	71
4.6	Error Management.	72
	Detected Error Code	73
	Detected Error Code Description	74
4.7	SCoD Representation and Parameter Description	76
	SCoD Representation and Parameter Description	76
4.8	HMI Representation.	79
	ATV31 Drive - Representation in the HMI	79
		-
Chapter 5	AIV/IbI - CANODEN AIV Drive (CAIVBIN and	
Chapter 5	ATV7161 - CANopen ATV Drive (CATV61M and	85
•	CATV71M SCoDs)	85
5.1 Chapter 5	CATV71M SCoDs)	86
•	CATV71M SCoDs) Description Functional Description	86 87
5.1	CATV71M SCoDs) Description Functional Description FBD Representation	86 87 88
•	CATV71M SCoDs) Description Functional Description FBD Representation Inputs	86 87 88 89
5.1	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description.	86 87 88 89 90
5.1	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs.	86 87 88 89 90 92
5.1	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs. Outputs	86 87 88 89 90 92 94
5.1	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs. Outputs Generic Outputs Description	86 87 88 90 90 92 94 95
5.1 5.2 5.3	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs. Outputs Generic Outputs Description ATV7161Dev Specific Outputs	86 87 88 90 92 94 95 97
5.1	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs. Outputs Generic Outputs Description ATV7161Dev Specific Outputs Inputs/Outputs.	86 87 88 90 92 94 95 97 98
5.1 5.2 5.3 5.4	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs. Outputs Generic Outputs Description ATV7161Dev Specific Outputs Inputs/Outputs Generic Inputs/Outputs Description.	86 87 88 90 92 94 95 97 98 98
5.1 5.2 5.3	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs Outputs Generic Outputs Description ATV7161Dev Specific Outputs Inputs/Outputs Generic Inputs/Outputs Description. Operator Screen	86 87 88 90 92 94 95 97 98 98 98
5.1 5.2 5.3 5.4 5.5	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs Outputs Generic Outputs Description ATV7161Dev Specific Outputs Inputs/Outputs Generic Inputs/Outputs Description Operator Screen General	86 87 88 90 92 94 95 97 98 98 98 99
5.1 5.2 5.3 5.4	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs Outputs Generic Outputs Description ATV7161Dev Specific Outputs Inputs/Outputs Generic Inputs/Outputs Description Operator Screen General Error Management.	86 87 88 90 92 94 95 97 98 98 98 99 99
5.1 5.2 5.3 5.4 5.5 5.6	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs Outputs Generic Outputs Description ATV7161Dev Specific Outputs Inputs/Outputs Generic Inputs/Outputs Description Operator Screen General Error Management Detected Error Code	86 87 88 90 92 94 95 97 98 98 99 99 100 100
5.1 5.2 5.3 5.4 5.5	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs Outputs Generic Outputs Description ATV7161Dev Specific Outputs Inputs/Outputs Generic Inputs/Outputs Description Operator Screen General Error Management Detected Error Code SCoD Representation and Parameter Description	86 87 88 90 92 94 95 97 98 99 99 99 100 100
5.1 5.2 5.3 5.4 5.5 5.6 5.6 5.7	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs Outputs Generic Outputs Description ATV7161Dev Specific Outputs Inputs/Outputs Generic Inputs/Outputs Description Operator Screen General Error Management Detected Error Code SCoD Representation and Parameter Description	86 87 88 90 92 94 95 97 98 98 99 99 100 100 101
5.1 5.2 5.3 5.4 5.5 5.6	CATV71M SCoDs) Description Functional Description FBD Representation Inputs Generic Inputs Description. ATV7161Dev Specific Inputs Outputs Generic Outputs Description ATV7161Dev Specific Outputs Inputs/Outputs Generic Inputs/Outputs Description Operator Screen General Error Management Detected Error Code SCoD Representation and Parameter Description	86 87 88 90 92 94 95 97 98 99 99 99 100 100

Chapter 6	TESYST - CANopen Tesys T Motor Management
	(CTESYST SCoD) 107
6.1	Description
	Functional Description
	FBD Representation
6.2	Inputs
	Generic Inputs Description
	Specific TesysTDev Inputs
	Input Detail - OutputsMap 116
	Input Detail - InputData
	Input Detail - TimeControl
6.3	Outputs
0.0	Generic Outputs Description
	Specific TesysTDev Outputs
	Output Detail - Warningcode
	Output Detail - Resetting
	Output Detail - Status
	Output Detail - StatusExt
	Output Detail - IOMap
	Output Detail - OutputData 13 13 13
6.4	Inputs/Outputs
0.4	Generic Inputs/Outputs Description
6.5	Inputs/Outputs Detail - TESYST_CFG
0.0	Operator Screen
0.0	General
6.6	Error Management
0.7	Detected Error Code Description
6.7	SCoD Representation and Parameter Description
	SCoD Representation and Parameter Description
6.8	HMI Representation
.	TESYST - Representation in the HMI
Chapter 7	MBEM6400 - Modbus Energy Meter 6400 149
7.1	Description
	MBEM6400 - Description 15
	FBD Representation 152
7.2	Inputs 150
	Inputs Description
	Input Detail - InputValue 155
7.3	Outputs
	MBEM6400 - Description
	Output Detail - EM_MEA

7.4	Inputs/Outputs	159
	MBEM6400 - Description	160
	Inputs/Outputs Detail - EM64 ST DDT	161
	Inputs/Outputs Detail - EM64 CFG DDT	162
7.5	SCoD Representation and Parameter Description	163
	MBEM6400 - Representation as SCoD in UAG	163
7.6	HMI Representation	165
	MBEM6400 - Representation in the HMI.	165
Chapter 8	MBEM7300 - Modbus Energy Meter 7300	171
. 8.1	Description	172
	Functional Description	173
	FBD Representation	174
8.2		175
	Inputs Description	175
8.3	Outputs	176
	Outputs Description	177
	Output Detail - StatisticConnector	179
	Output Detail - EM MEA	180
8.4	Inputs/Outputs	182
-	Inputs/Outputs Description.	183
	Inputs/Outputs Detail - EM ST	184
	Inputs/Outputs Detail - EM CFG	185
8.5	Error Management.	186
	Detected Error Code	186
8.6	SCoD Representation and Parameter Description	187
	SCoD Representation and Parameter Description	187
8.7	HMI Representation	191
	MBEM7300 - Representation in the HMI	191
Chapter 9	MBATV - Modbus ATV Drive (MBATV31, MBATV61, and	
	MBATV71 SCoDs)	195
9.1	Description	196
5.1	Functional Description	190
	FBD Representation	198
9.2		199
5.2	Generic Inputs Description.	200
	MBATVDev Specific Inputs	200
	Input Detail - StatisticsSelector	202
9.3		203
9.0	Generic Outputs Description	204
	MBATVDev Specific Output.	203
	Output Detail - StatisticConnector	207
9.4	Inputs/Outputs	208
3.4	Generic Inputs/Outputs Description	209
9.5	Operator Screen	209
5.5	General	210
		210

9.6	Error Management	211
	Detected Error Code	211
9.7	SCoD Representation and Parameter Description	212
	SCoD Representation and Parameter Description	212
9.8	HMI Representation	215
	MBATV- Representation in the HMI	215
Chapter 10	MBPM710, MBPM800 - Modbus PM710, PM800	
-	(MBPM710, MBPM800 SCoDs)	217
10.1	Description	218
	Functional Description	219
	FBD Representation	220
10.2		222
	Inputs	223
	Input Detail - StatisticsSelector	224
10.3	Outputs	225
	Outputs Table Description.	226
	Output Detail - WarningCode	227
	Output Detail - Resetting	228
	Output Detail - StatisticConnector	229
	Output Detail - PM_MEA	230
10.4	Inputs/Outputs	232
	Inputs/Outputs	233
	Inputs/Outputs Detail - PM_ST	234
	Inputs/Outputs Detail - PM_CFG.	236
10.5	Operator Screen	238
	General	238
10.6	Error Management	239
107	Detected Error Code Description	239
10.7	SCoD Representation and Parameter Description	240
10.0	SCoD Representation and Parameter Description	240 244
10.8	HMI Representation MBPM710, MBPM800 - Representation in the HMI	244 244
Chapter 11	· · ·	244
Chapter II	MBTESYST - Modbus Tesys T Motor Management	047
	(MBTESYST SCoD)	247
11.1	Description	248
	MBTESYSTDev - Functional Description	249
~	FBD Representation	250
11.2	Inputs	251
	Generic Inputs Description	252
	Specific MBTESYSTDev Inputs	254
	Input Detail - StatisticsSelector	255

11.3	Outputs	256
	Generic Outputs Description	257
	Specific MBTESYSTDevOutputs	259
	Output Detail - StatisticConnector	260
	Output Detail - TESYST_MEAEXT	261
	Output Detail - TESYST_MEAEV40	262
11.4	Inputs/Outputs	263
	Generic Inputs/Outputs Description	264
	Specific MBTESYSTDev Inputs/Outputs	265
11.5	Operator Screen	266
	General	266
11.6	Error Management	267
	Detected Error Code	267
11.7	SCoD Representation and Parameter Description	268
	SCoD Representation and Parameter Description	268
11.8	HMI Representation	271
	MBTESYST- Representation in the HMI	271
Chapter 12	ATV7161 - Ethernet ATV61, ATV71 (EATV61 and EATV71	
•	SCoDs)	273
12.1	Description	275
12.1	Functional Description	275
	FBD Representation	270
12.2	Inputs	278
12.2	Generic Inputs Description.	278
	ATV7161Dev Specific Inputs	2/9
	Input Detail - OutputsMap	283
	Input Detail - OutputsMap	283
12.3		285
12.5	Generic Outputs Description	285
	ATV7161Dev Specific Outputs	288
	Output Detail - InputsMap	289
	Output Detail - InputsMapExt.	209
	Output Detail - ATV_IO	290
	Output Detail - ATV_IO	291
12.4		292
12.4	Inputs/Outputs	293
12.5	Operator Screen	293
12.5	General	294
12.6		294 295
12.0		295
10.7	Detected Error Code	295 296
12.7	SCoD Representation and Parameter Description	
10.0	SCoD Representation and Parameter Description	296
12.8	HMI Representation	299
	Ethernet ATV61, ATV71 - Representation in the HMI	299

Part II	Communication Components	303
Chapter 13	General Overview of Communication Resources	305
	Technological Blocks for Communications	306
	Component Library for Communications	308
Chapter 14		309
	Logical Architecture – Communications	310
	Communication Process Diagram	311
	What is a Communication Scanner?	312
	What is a Communication Client?	314
	What is a Port Function?	315
Chapter 15	CANopen Communication	317
• 15.1	CScanner: CANopen Scanner	318
	Description	319
	Inputs	320
	Outputs	323
	Inputs/Outputs	324
	Representation as SCoD in UAG	325
15.2	CClient: CANOpen Client	328
	Description	329
	Inputs	330
	Outputs	332
	Inputs/Outputs	334
	Representation as SCoD in UAG	335
15.3	CPortP: CANopen Port Premium	337
	Description	338
	Inputs	339
		340
	Inputs/Outputs.	342
15.4	Representation as SCoD in UAG	344 346
15.4	CPortM: CANopen Port Modicon	340
	Inputs	347
	Outputs	349
	Inputs/Outputs.	350
	Representation as SCoD in UAG	351
Chapter 16	ModBus Communication	353
16.1	MBScanner: ModBus Scanner	354
1011		355
	Inputs	356
	Outputs	357
	Inputs/Outputs.	358
	Representation as SCoD in UAG	359

16.2	MBClientBs: ModBus Client Basic	361
	Description	362
	Inputs	363
	Outputs	364
	Inputs/Outputs	365
	Representation as SCoD in UAG.	366
16.3	MBPortM: ModBus Port Modicon 340	368
	Description	369
	Inputs	370
	Outputs	371
	Inputs/Outputs	372
	Representation as SCoD in UAG.	373
16.4	MBPortP: ModBus Port Premium	375
	Description	376
	Inputs	377
	Outputs	378
	Inputs/Outputs	379
	Representation as SCoD in UAG.	380
Chapter 17	Tools	383
•	Statistics - Description	384
	Statistic - Inputs	385
	Statistic - Outputs.	386
	Statistics - Representation as SCoD in UAG.	387
Chapter 18	Ethernet Communication	389
•		
18.1	EScanner: Ethernet Scanner.	390
		391
	Inputs	392
	Outputs	394
	Inputs/Outputs	395
	Representation as SCoD in UAG.	396
18.2	EClient: Ethernet Client	398
	Description	399
	Inputs	400
	Outputs	401
	Inputs/Outputs	402
	Representation as SCoD in UAG.	403
18.3	EGtwMB: Serial Modbus-Ethernet Gateway	405
	EGtwMB - Description	406
	Inputs	407
	Outputs	408
	Inputs/Outputs	410
	Representation as SCoD in UAG.	412

18.4	EPortM: Ethernet Port Modicon.	414
	Description	415
	Inputs	416
	Outputs	417
	Inputs/Outputs	418
	Representation as SCoD in UAG	419
18.5	EPortP: Ethernet Port with Premium PLC	421
	Description	422
	Inputs	423
	Outputs	424
	Inputs/Outputs	425
	Representation as SCoD in UAG	426
18.6	EPortQ: Ethernet Port Quantum	428
	Description	429
	Inputs	430
	Outputs	431
	Inputs/Outputs.	432
	Representation as SCoD in UAG	433
A		
Chapter 19	Communications Technologies	435
Chapter 19 19.1	Ethernet Technology	436
•	Ethernet Technology	436 437
-	Ethernet Technology Communications Technologies - Ethernet Addressing Example for the M340 Platform Communications	436 437 439
-	Ethernet Technology Communications Technologies - Ethernet Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform	436 437 439 440
19.1	Ethernet Technology Communications Technologies - Ethernet Communications Technologies - Ethernet Communications Technologies - Ethernet Addressing Example for the M340 Platform Communications Addressing Example for the TSX Premium Platform Communications Addressing Example for the Quantum Platform Communications	436 437 439 440 442
-	Ethernet Technology Communications Technologies - Ethernet Communications Technologies - Ethernet Communications Technologies - Ethernet Addressing Example for the M340 Platform Communications Addressing Example for the TSX Premium Platform Communications Addressing Example for the Quantum Platform Communications Addressing Example for the Quantum Platform Communications Gateway Technology Communications	436 437 439 440 442 443
19.1	Ethernet Technology Communications Technologies - Ethernet Communications Technologies - Ethernet Communications Technologies - Ethernet Addressing Example for the M340 Platform Communications Technology Addressing Example for the Quantum Platform Communications Technologies - Gateway	436 437 439 440 442 443 444
19.1	Ethernet Technology Communications Technologies - Ethernet Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform Communications Technology Communications Technologies - Gateway Communications Technologies - Gateway Addressing Example for the M340 Platform Communications Technologies - Gateway	436 437 439 440 442 443 444 444
19.1	Ethernet Technology Communications Technologies - Ethernet Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform Gateway Technology Communications Technologies - Gateway Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the M340 Platform	436 437 439 440 442 443 444 446 448
19.1 19.2	Ethernet Technology Communications Technologies - Ethernet Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform Communications Technologies - Gateway Communications Technologies - Gateway Communications Technologies - Gateway Addressing Example for the M340 Platform Addressing Example for the M340 Platform Addressing Example for the M340 Platform Addressing Example for the M340 Platform	436 437 439 440 442 443 444 446 448 451
19.1	Ethernet Technology Communications Technologies - Ethernet Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform Gateway Technology Communications Technologies - Gateway Addressing Example for the M340 Platform Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform Addressing Example for the Quantum Platform CANOpen Technology	436 437 439 440 442 443 444 446 448 451 454
19.1 19.2	Ethernet Technology Communications Technologies - Ethernet Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform Gateway Technology Communications Technologies - Gateway Addressing Example for the M340 Platform Addressing Example for the M340 Platform Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform CANOpen Technology Communications Technologies - CANOpen	436 437 439 440 442 443 444 446 448 451 454 455
19.1 19.2 19.3	Ethernet Technology Communications Technologies - Ethernet Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform Gateway Technology Communications Technologies - Gateway Addressing Example for the M340 Platform Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform CANOpen Technology Communications Technologies - CANOpen TSX Premium Platform Example.	436 437 439 440 442 443 444 446 448 451 454 455 456
19.1 19.2	Ethernet Technology Communications Technologies - Ethernet Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform Gateway Technology Communications Technologies - Gateway Addressing Example for the M340 Platform Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform CANOpen Technology Communications Technologies - CANOpen TSX Premium Platform Example. MODBUS Technology.	436 437 439 440 442 443 444 446 448 451 454 455 456 458
19.1 19.2 19.3	Ethernet Technology Communications Technologies - Ethernet Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform Gateway Technology Communications Technologies - Gateway Addressing Example for the M340 Platform Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform CANOpen Technology Communications Technologies - CANOpen TSX Premium Platform Example. MODBUS Technology. Communications Technologies - MODBUS	436 437 439 440 442 443 444 446 448 451 454 455 456 458 459
19.1 19.2 19.3	Ethernet Technology Communications Technologies - Ethernet Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform Gateway Technology Communications Technologies - Gateway Addressing Example for the M340 Platform Addressing Example for the M340 Platform Addressing Example for the TSX Premium Platform Addressing Example for the TSX Premium Platform Addressing Example for the Quantum Platform CANOpen Technology Communications Technologies - CANOpen TSX Premium Platform Example. MODBUS Technology.	436 437 439 440 442 443 444 446 448 451 454 455 456 458

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING indicates a potentially hazardous situation which, if not avoided, **can** result in death or serious injury.

CAUTION indicates a potentially hazardous situation which, if not avoided, **can** result in minor or moderate injury.

CAUTION

CAUTION, used without the safety alert symbol, indicates a potentially hazardous situation which, if not avoided, **can result in** equipment damage.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

BEFORE YOU BEGIN

Do not use this product on machinery lacking effective point-of-operation guarding. Lack of effective point-of-operation guarding on a machine can result in serious injury to the operator of that machine.

UNGUARDED MACHINERY CAN CAUSE SERIOUS INJURY

- Do not use this software and related automation equipment on equipment which does not have point-of-operation protection.
- Do not reach into machinery during operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

This automation equipment and related software is used to control a variety of industrial processes. The type or model of automation equipment suitable for each application will vary depending on factors such as the control function required, degree of protection required, production methods, unusual conditions, government regulations, etc. In some applications, more than one processor may be required, as when backup redundancy is needed.

Only the user can be aware of all the conditions and factors present during setup, operation, and maintenance of the machine; therefore, only the user can determine the automation equipment and the related safeties and interlocks which can be properly used. When selecting automation and control equipment and related software for a particular application, the user should refer to the applicable local and national standards and regulations. The National Safety Council's Accident Prevention Manual (nationally recognized in the United States of America) also provides much useful information.

In some applications, such as packaging machinery, additional operator protection such as point-of-operation guarding must be provided. This is necessary if the operator's hands and other parts of the body are free to enter the pinch points or other hazardous areas and serious injury can occur. Software products alone cannot protect an operator from injury. For this reason the software cannot be substituted for or take the place of point-of-operation protection.

Ensure that appropriate safeties and mechanical/electrical interlocks related to point-of-operation protection have been installed and are operational before placing the equipment into service. All interlocks and safeties related to point-of-operation protection must be coordinated with the related automation equipment and software programming.

NOTE: Coordination of safeties and mechanical/electrical interlocks for point-ofoperation protection is outside the scope of the Function Block Library, System User Guide, or other implementation referenced in this documentation.

START-UP AND TEST

Before using electrical control and automation equipment for regular operation after installation, the system should be given a start-up test by qualified personnel to verify correct operation of the equipment. It is important that arrangements for such a check be made and that enough time is allowed to perform complete and satisfactory testing.

EQUIPMENT OPERATION HAZARD

- Verify that all installation and set up procedures have been completed.
- Before operational tests are performed, remove all blocks or other temporary holding means used for shipment from all component devices.
- Remove tools, meters, and debris from equipment.

Failure to follow these instructions can result in injury or equipment damage.

Follow all start-up tests recommended in the equipment documentation. Store all equipment documentation for future references.

Software testing must be done in both simulated and real environments.

Verify that the completed system is free from all short circuits and grounds, except those grounds installed according to local regulations (according to the National Electrical Code in the U.S.A, for instance). If high-potential voltage testing is necessary, follow recommendations in equipment documentation to prevent accidental equipment damage.

Before energizing equipment:

- Remove tools, meters, and debris from equipment.
- Close the equipment enclosure door.
- Remove ground from incoming power lines.
- Perform all start-up tests recommended by the manufacturer.

OPERATION AND ADJUSTMENTS

The following precautions are from the NEMA Standards Publication ICS 7.1-1995 (English version prevails):

- Regardless of the care exercised in the design and manufacture of equipment or in the selection and ratings of components, there are hazards that can be encountered if such equipment is improperly operated.
- It is sometimes possible to misadjust the equipment and thus produce unsatisfactory or unsafe operation. Always use the manufacturer's instructions as a guide for functional adjustments. Personnel who have access to these adjustments should be familiar with the equipment manufacturer's instructions and the machinery used with the electrical equipment.
- Only those operational adjustments actually required by the operator should be accessible to the operator. Access to other controls should be restricted to prevent unauthorized changes in operating characteristics.

About the Book

At a Glance

Document Scope

This document provides information on operating a project developed with Unity Application Generator (UAG) and the Device and Communication components which is based on the Device and Process Library (DPL).

This document is not intended to cover any development procedures and internal functionality details.

The Device and Communication components are intended for end users and system integrators.

Users of the Device and Communication components must have very good knowledge in the employment of:

- Unity Application Generator V3.2 or V3.3
- Unity Pro V4.1 S, M, L, XL, and 5.0
- Vijeo Citect V7.1

Validity Note

This manual is valid for the listed versions of the following products:

- Unity Application Generator V3.2 or V3.3
- Unity Pro V4.1 S, M, L, XL, and 5.0
- Vijeo Citect V7.1

Related Documents

Title of Documentation	Reference Number
Unity Application Generator 3.3 Basic User Manual	33002830
Unity Application Generator 3.3 Extended User Manual	33003669
Unity Application Generator Quick Start Guide	33003222
SCoD Editor 3.3 User Manual	33002608

UAG Process Application Library for Vijeo Citect V2.0, User Manual Level 1	33004234
UAG Process Application Library for Vijeo Citect V2.0, User Manual Level 2	EIO000000011

You can download these technical publications and other technical information from our website at www.schneider-electric.com.

Product Related Information

WARNING

UNINTENDED EQUIPMENT OPERATION

The application of this product requires expertise in the design and programming of control systems. Only persons with such expertise should be allowed to program, install, alter, and apply this product.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

A WARNING

UNINTENDED EQUIPMENT OPERATION

All examples in this manual are given for information only. Before being used in an industrial application, they must be suitably adapted to the specific functions and safety requirements of the application concerned.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

User Comments

We welcome your comments about this document. You can reach us by e-mail at techcomm@schneider-electric.com.

Device Components

Overview

This part describes the Device function blocks.

What's in this Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
1	Introduction	21
2	General Overview of Device Resources	23
3	General Concepts	35
4	ATV31 - CANopen ATV31 Drive (CATV31M SCoD)	41
5	ATV7161 - CANopen ATV Drive (CATV61M and CATV71M SCoDs)	85
6	TESYST - CANopen Tesys T Motor Management (CTESYST SCoD)	107
7	MBEM6400 - Modbus Energy Meter 6400	149
8	MBEM7300 - Modbus Energy Meter 7300	171
9	MBATV - Modbus ATV Drive (MBATV31, MBATV61, and MBATV71 SCoDs)	195
10	MBPM710, MBPM800 - Modbus PM710, PM800 (MBPM710, MBPM800 SCoDs)	217
11	MBTESYST - Modbus Tesys T Motor Management (MBTESYST SCoD)	247
12	ATV7161 - Ethernet ATV61, ATV71 (EATV61 and EATV71 SCoDs)	273

Introduction

1

Introduction

Overview

The DPL control system provides resources or components that are specifically designed to automate the control of Schneider Electric devices like variable speed drives, starters, power meters, etc.

The control resources (included in the DPL platform for Unity (DPU)) and monitoring resources (included in the DPL platform for Vijeo Citect (DPC)) provide the most commonly required functions, facilitating the development of control systems for devices and reducing the risk of detected errors.

Unity functional blocks (DFB) are provided at the control level, and dynamic representations (Genies) and Faceplates (implemented through windows with SuperGenies syntax) are provided at the monitoring level.

To automate and simplify the implementation of device control systems, these resources can be used together with the tools provided for generating code massively and for synchronizing the control and monitoring subsystems.

This document includes a detailed list of the functional blocks belonging to the Cement Library that refers to the Device Library.

The Communications library can be used to supplement control systems with extra data monitoring. These libraries can be used for Ethernet, CANopen and Modbus communications.

General Overview of Device Resources

Overview

This chapter describes the general overview of device resources and profile descriptions of the control blocks.

What's in this Chapter?

This chapter contains the following sections:

Section	Торіс	Page
2.1	Resources for Devices	24
2.2	Profile Descriptions	28
2.3	Commonly Used Tabs	32

2.1 Resources for Devices

Overview

This section describes the general overview of resources.

What's in this Section?

This section contains the following topics:

Торіс	Page
DPU Functional Blocks for Devices	25
DPU Component Library for Devices	
DPC for Devices	27

DPU Functional Blocks for Devices

General

The functional blocks described in this document, and which have been designed specifically for device control automation, are listed below.

Components have been classified into profiles, according to their respective device range, in order to standardize information and make this information easier to use.

ATV Profile Variable Speed Drives (*see page 29*) **TesysT Profile** Motor Control (*see page 30*) **PM Profile** Power Meters (*see page 31*)

DPU Component Library for Devices

Overview

The functional blocks listed in the previous section are DPU components that implement device control with the CANopen, serial Modbus, and Ethernet communication buses for the most common Schneider Electric devices.

The DPU components are grouped in the DPU Device Library with SCoD Editor.

DPU Components

The DPU components in the DPU Device Library include the following resources for the automatic generation of Unity projects:

- Variables
- Control logic
- Operator Screens

The component categories included in the DPU Device Library are as follows:

- Devices on Modbus networks
- Devices on CANopen networks
- Devices on Ethernet networks

DPC for Devices

Genie

The genie names are as follows:

- ATV
- PM
- TESYST
- EM6400
- EM7300

Faceplates

Pop-up windows with SuperGenies syntax: Device

2.2 Profile Descriptions

Overview

This chapter describes the profile descriptions of the different control blocks.

What's in this Section?

This section contains the following topics:

Торіс	
ATV Profile Description	29
TesysT Profile Description	30
PM Profile Description	31

ATV Profile Description

Overview

The objective of these functions is to manage ALTIVAR variable speed drives (ATV31, ATV61 and ATV71) in a communication based manner.

ATV Profile DFB List

Depending on the communication technologies, the different ATV Profile blocks manage different ALTIVAR variable speed drives as described:

- ATV7161Dev: This is the control block for ATV61 and ATV71 variable speed drives:
 - on an Ethernet network Refer to ATV7161Dev - Ethernet Communication (see page 273).
 - on a CANopen network Refer to ATV7161Dev - CANopen Communication (see page 85).
- **ATV31Dev:** This is the control block for ATV31 variable speed drives on CANopen networks.

Refer to ATV31Dev - CANopen Communication (see page 41).

MBATVDev: This is the control block for ATV31, ATV61 and ATV71 variable speed drives on Modbus network.

Refer to MBATVDev - Modbus Communication (see page 195).

These functional blocks are DPU components that implement device control with CANopen, serial Modbus, and Modbus TCP/IP (Ethernet) standard communication buses for the most common Schneider Electric devices.

ATV Profile Functional Description

This table describes the main functions of the ATV Profile control blocks:

Function	Description
Control	Selects the direction of rotation (forward, reverse).
Speed	Enables the speed set-point of the device.
Device Error	Monitors the errors occured in the device.
Remote Resetting	This enables device resets by monitoring unit [HMI].
Control or Monitoring	Enables either controlling or monitoring the device. Selecting Control enables the use of either the controller or the wired speed driver inputs or outputs to control either the direction of rotation or the speed set-point. The Control or Monitoring functions allows the control and set point to be controlled separately.
Owner	Use the Owner to select the control system (operator or program) that is responsible for setting the control.

TesysT Profile Description

Overview

The TesysT Profile block is a part of the device control block family.

The objective of these functions is to manage the TesysT family of motor control devices in a communications-based manner.

TesysT Profile DFB List

Depending on the communication technologies, the TesysT Profile manages the TesysT devices with the following DFB:

TesysTDev: This is the control block for the TesysT controller on an CANopen communication (*see page 107*).

MBTESYSTDev: This is the control block for the TesysT controller on a Modbus Communication network *(see page 247)*.

These functional blocks are DPLU components that implement device control with serial Modbus and Modbus TCP/IP (Ethernet) standard communication buses for the most common Schneider Electric devices.

TesysT Profile Functional Description

This table shows the functional description of the TesysT Profile control block:

Function	Description
Control	Device Operation.
Direction	Forward/reverse direction of rotation.
Speed	This function enables the change of speed (fast or slow), if you are working with a 2-speed motor start (double winding).
Device Failure	This function monitors the detection of errors that are associated with a device.
Remote Resetting	This function enables the resetting of the device by control and monitor unit.
Control	This function enables to control or monitor the device.
Owner	The module manages which control system level (Operator or programmer) Program is the owner; therefore, it is responsible for setting the control.

PM Profile Description

Overview

The PM profile block is a part of the device control block family.

The objective of these functions is to manage the PowerLogic Series Power Meters in a communications-based manner.

PM Profile Functional Description

This table sdescribes the functions of the PM Profile:

Function	Description
Remote Resetting	Enables to reset the device
Monitoring	Allows the most important parameter devices to be monitored

2.3 Commonly Used Tabs

Commonly Used Tabs

Overview

This provides information about the commonly used tabs and sub-tabs. These tabs are commonly available as popups in most of the function blocks.

Information Tab

III Equi_EM6400
Object Info
Area Kiln
Asset ID Xyz
Library Info
Library Cement Library
Version 1.0
Note
Kiln Temperature Sensor Error
Do not change Feedback delay

Each sub-tab has 3 sub-sections:

- Object Info
- Library Info
- Note

The following table describes the sub-section **Object Info**:

Item	Description
Area	Displays the area to which the object belongs. This is defined during the instantiation of the block and cannot be edited in the popup.
Asset ID	Displays the asset ID of the object. This is defined during the instantiation of the block and cannot be edited in the popup.

The following table describes the sub-section Library Info:

Item	Description
Library	Displays the library name. This is a static text.
Version	Displays the library version. This is a static text.

The following table describes the sub-section Note:

Symbol	Description
\checkmark	The operator can write 2 short notes. It can be acknowledged by clicking the button available before the text. This acknowledgement erases the note.

General Concepts

3

Overview

This chapter describes the general concepts of the device control block family.

What's in this Chapter?

This chapter contains the following topics:

Торіс	
Functional Blocks (DFB) Interface	
Set-Point Management	
Monitoring	40

Functional Blocks (DFB) Interface

General

The Unity function blocks for Devices provide an interface that allows the blocks to be configured, monitored, and controlled both from the monitoring subsystem and from the control subsystem itself.

The following interfaces are provided:

- Basic configuration
- Control
- States and Monitoring
- Variables for communications with devices

Basic Configuration

Public variables belonging to the DFBs for static, known data in engineering time (e.g., range for an input channel, communication variable refreshing).

Control

DFB input and output pins. Enables to issue commands from other program blocks or parts, and provides the block status in order to allow the implementation of switching operations (e.g., device controlled from HMI/SCADA, ExtControlled), detected communications interruptions, alarms (e.g., thermal trip alarm), etc.

States and Monitoring

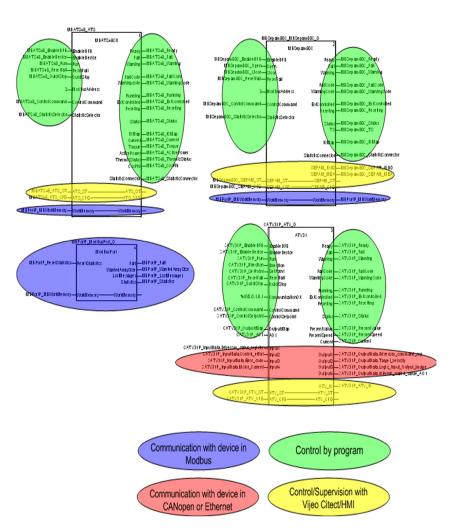
Depending on their type, the blocks have several input/output pins that must be connected to variables used to maintain either the pins states or data, and which also enables to manage commands and parameters received from the monitoring subsystem.

- Status and control (identified by the _ST suffix): These variables are used to maintain the status and control used from the monitoring subsystems first level (dynamic symbols on the synoptics). This is an input/output variable.
- Configuration and information (identified with the _CFG suffix): These variables are used to hold second-level information for configuring device control or information parameters (alarms, detected error codes, etc.). This information is normally accessible from the monitoring subsystems Faceplates.

This is an input/output variable.

Status and control (identified by means of the _ST suffix): This information is normally accessible from the monitoring subsystems Faceplates for digital or analog values.

This is an output variable and is available depending on the device information and on the communications system used (Modbus, CANopen, or Ethernet).


Variables for Communications with Devices

In the event that components are used with CANopen or Ethernet communications, the blocks feature an input DDT (input data) and an output DDT (output data) for carrying out communications with the physical device.

These variables have to be allocated (%MWX) on the memory zone reserved for communications to allow the device controls to function properly.

For Modbus communications, a "Modbus Port" that serializes requests issued to bus devices (messaging) must be used.

Graphical View

Set-Point Management

Description

The device control blocks manage the set-points coming from the following sources, according to the Owner:

Operator (Operator/Local set-point): Commands received from the monitoring subsystem (Vijeo Citect/HMI).

These commands are received at the functional blocks through the •••_ST and •••_CFG structures.

The owner variable is implemented in the devices with •••-_ST.CFGW.1, and must be set to 1 for Operator-based control.

Program: Commands generated from the control program (Unity).

These commands are received at the functional blocks through the DFB input and output pins.

The owner variable is implemented in the devices with •••-_ST.CFGW.1, and must be set to 0 for Operator-based control.

To avoid unwanted transitions in the set-point, the local set-points (Operator or Program) are continuously set to match the selected set-point.

The functional block Owner (Operator or Program) must not be modified from the control subsystem with the program in the PLC.

This will ensure that the only commands issued towards the block are generated from the monitoring subsystem.

NOTE: In the DPC device dynamic symbols (Genies) currently available as part of the DPL resource for Vijeo Citect, only the ResetFail block reset is implemented if control is carried out in "Operator" mode. To carry out additional control actions (e.g., Run, QuickStop, Open, etc.), it is possible to implement a control configuration by using the control blocks available from the Process or Device libraries.

Monitoring

Description

Functional blocks in the Device library have a monitoring mode (ControlCommand) that enables a device to be monitored in a communications-based manner, independently of the control inputs state.

This way, the control block only performs read operations on the device, updating the blocks output variables without sending any set-points.

This operating mode can be used if switching operations are carried out locally on the device with a physical screw terminal.

NOTE: If the block is in monitoring mode (ControlCommand set to FALSE), it will only be possible to reset a detected communications interruption through the program or HMI/SCADA. Set the ControlCommand variable to TRUE, if the device is to be configured to be completely controlled and monitored by the PLC in a communications-based manner.

ATV31 - CANopen ATV31 Drive (CATV31M SCoD)

Overview

This chapter describes the DFB for the control block for varaible speed drives on a CANopen network, represented by CATV31M SCoD.

What's in this Chapter?

Section	Торіс	Page
4.1	Description	42
4.2	Inputs	45
4.3	Outputs	55
4.4	Inputs/Outputs	65
4.5	Operator Screen	
4.6	Error Management	
4.7	SCoD Representation and Parameter Description	
4.8	HMI Representation	79

This chapter contains the following sections:

4.1 Description

Overview

This section describes the ATV31Dev DFB.

What's in this Section?

This section contains the following topics:

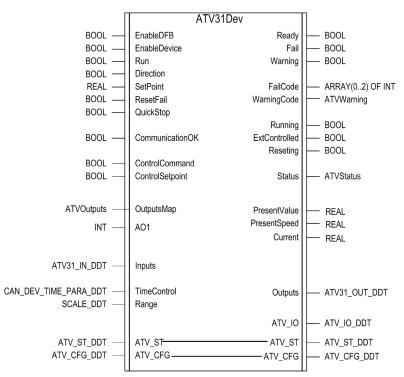
Торіс	Page
Functional Description	43
FBD Representation	44

Functional Description

General

ATV31Dev is a control block for the ATV 31 on a CANopen network.

The ATV31Dev block is implemented as listed below:


Software	Implemented as
Unity Pro	DFB ATV31Dev
Vijeo Citect	DPC_Devices
UAG	SCoD CATV31M

The main function blocks are described in the ATV Profile Functional Description *(see page 29).*

FBD Representation

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

4.2 Inputs

Overview

This section describes the inputs of the ATV31Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Inputs Description	46
ATV31Dev Specific Inputs	48
Input Detail - Inputs	49
Input Detail - TimeControl	51
Input Detail - Range	53
Input Detail - SetPoint	54

Generic Inputs Description

Overview

This table is the same for all ATV Profiles.

Inputs Description Table

This table describes the generic inputs of the ATV Profile FBD:

Input	Туре	Description	
EnableDFB	BOOL	This input enables the normal execution of the control block. EnableDFB = 0. The entire DFB is restarted (statuses, output values, counters, etc. are lost) and all output values are set to 0 or FALSE. EnableDFB = 1. This input enables communications with devices for their operation. Public variable values are loaded during the first enabling cycle.	
EnableDevice	BOOL	This input variable is true only if EnableDFB is true. To control the speed of the drive, it must be enabled.	
Run	BOOL	This input makes the motor run in the direction selected with the Direction variable.	
Direction	BOOL	This input activates the direction of motor rotation: 1 = forward 0 = reverse NOTE: Setpoint assumes positive values. Changes in the	
		direction of rotation cannot be made with Setpoint sign.	
Setpoint	REAL	This is the speed set-point <i>(see page 54)</i> requested from the speed of the drive. It can only have positive, real values.	
ResetFail	BOOL	Existing detected errors are reset on the rising edge of this signal. Both communications and detected device errors can be reset. If the detected error is a device error, it sends a reset command to the device if ControlCommand = TRUE. This figure shows the input ResetFail:	
QuickStop	BOOL	This input enables a quick stops the drive speed. This variable is state-based. If there is a QuickStop, the Run bit has to be reset to resume operation.	

Input	Туре	Description
ControlCommand	BOOL	This input indicates if the starter is controlled from an external source. If ControlCommand=TRUE the device is controlled from an external source. The generation of follow-up alarms is disabled. If ControlCommand=FALSE, the block only performs read operations on the device status, the transmission of device control or reset commands is not possible. NOTE: This input does not configure the starter; it only defines the DFB operating mode.
ControlSetPoint	BOOL	This input indicates if the speed of the drive is controlled from an external source. (e.g., from the console or a potentiometer)

A WARNING

UNEXPECTED MOTOR START

Reset the Run variable before resuming operation.

The Run input must be inactive while the device is being enabled or while a detected error is being reset.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTICE

UNEXPECTED BEHAVIOUR

The ControlCommand input value must coincide with the speed driver configuration.

Failure to follow these instructions can result in equipment damage.

ATV31Dev Specific Inputs

Inputs Description Table

This table describes the specific inputs of the ATV31Dev control block:

Input	Туре	Description
CommunicationOK	BOOL	A bit is used to indicate whether or not the node is present on the bus.
OutputsMap	ATVOutputs	The OutputsMap <i>(see page 283)</i> holds a data structure used to control the speed driver outputs.
AO1	INT	Controls the value of the AO1 analog output. This value can be found on all devices on CANopen and Ethernet networks. The speed of the drive analog output can only be controlled with this input variable. It cannot be controlled from HMI or SCADA.
Inputs	ATV31_IN_DDT	Inputs (see page 49) holds a data array structure that contains data obtained from the device. The drive can be controlled with this input variable.
TimeControl	CAN_DEV_TIME_ PARA_DDT	TimeControl <i>(see page 51)</i> is a parameter for device control.
Range	SCALE_DDT	Range <i>(see page 53)</i> is a definition for inverter (Raw and engineering range).

Input Detail - Inputs

Description

This function is a data array structure with data obtained from the device. The speed of the drive can be controlled with this input variable.

It is reserved for the DFB and cannot be used directly.

Allocate the structure (%MWx) to help ensure correct operation of the control block. Refer to Communication Technologies *(see page 435)*.

Depending on the drive speed and the communication technology, the structure varies follows:

ATV31_IN_DDT: CANopen for the ATV31.

ATV7161_IN_DDT: CANopen and Ethernet for the ATV71 and ATV61.

ATV_STB_IN_DDT: All speed of the drives on Advantys STB.

ATV31_IN_DDT Structure Description

This table shows the ATV31_IN_DDT structure:

Name	Туре	Description
InputData [0]	INT	Status Word (ETA)
InputData [1]	INT	Control Effort (rpm)
InputData [2]	INT	Last detected error code
InputData [3]	INT	Current

ATV7161_IN_DDT Structure Description

This table shows the ATV7161_IN_DDT structure:

Name	Туре	Description
InputData [0]	INT	Status Word (ETA)
InputData [1]	INT	Control Effort (rpm)
InputData [2]	INT	Last detected error code
InputData [3]	INT	Current
InputData [4]	INT	Current Torque
InputData [5]	INT	IL1I (digital inputs)
InputData [6]	INT	AI2 (analog input 1)
InputData [7]	INT	AI2 (analog input 2)

ATV_STB_IN_DDT Structure Description

This table shows the ATV_STB_IN_DDT structure:

Name	Туре	Description
InputData [0]	INT	Status Word (ETA)
InputData [1]	INT	Control Effort (rpm)

Input Detail - TimeControl

Description

The TimeControl variable is the time parameter for device control.

The type of this input is different according to the communication technology:

- CAN_DEV_TIME_PARA_DDT with CANopen/Advantys/Ethernet.
- MB_DEV_TIME_PARA_DDT with Modbus.

CAN_DEV_TIME_PARA_DDT Structure Description

This table describes the CAN_DEV_TIME_PARA_DDT structure:

Name	Туре	Description
CommandCtrlWindow	TIME	Control time for operations. This is the time that the block waits for operations to be carried out by the device. If a command is sent and executed within the time indicated by this variable, a "follow-up alarm" is issued. The commands controlled are: • EnableDevice • Run
		A ResetFail is not interpreted as an alarm. Instead, the detected error continues and has to be reset using the Resetting output. (This is the time for the device waits to execute orders).
ScanTime	TIME	 ScanTime enables the configuration of the time during which signals are kept active an ability to ensure that the monitoring subsystem will acquire the data for alarms

MB_DEV_TIME_PARA_DDT Structure Description

This table describes the MB_DEV_TIME_PARA_DDT structure:

Name	Туре	Description
CommandCtrlWindow	TIME	Control time for operations. This is the time that the block waits for operations to be carried out by the device. If a command is sent and executed within the time indicated by this variable, a "follow-up alarm" is issued. The commands controlled are: • EnableDevice • Run
		A ResetFail is not interpreted as an alarm. Instead, the detected error continues and has to be reset using the Resetting output (this is the time for the device waits to execute orders).
ScanTime	TIME	Enables configuring the time that the alarm signals are kept active. The monitoring subsystem acquires data for alarms.
Refresh	TIME	Time to refresh the cyclic data.

Input Detail - Range

Description

Range definition for speed driven motors (raw and engineering range).

SCALE_DDT Structure Description

This table describes the SCALE_DDT structure:

Name	Туре	Description
HighRangeRpm	INT	High range of input signal in rpm
LowRangeRpm	INT	Low range of input signal in rpm
HighRangeEngUnit	REAL	High range for the measurement in engineering units
LowRangeEngUnit	REAL	Low range for the measurement in engineering units

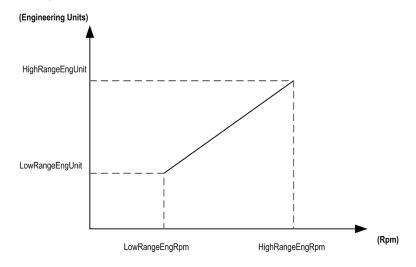
NOTE:

The following rules must be true:

- 0 <= LowRangeRpm < HighRangeRpm0
- 0 <= LowRangeEngUnit < HighRangeEngUnit

Input Detail - SetPoint

Description


The speed set-point requested from the speed driver accepts only positive values.

It is measured in engineering units, which can be configured with the members of the input pin 'Range'.

- HighRangeRpm
- LowRangeRpm
- HighRangeEngUnit
- LowRangeEngUnit

This variable must be within the correct range. The DFB makes the conversion between engineering units and drive speed RPMs.

This figure shows the input SetPoint:

4.3 Outputs

Overview

This section describes the outputs of ATV31Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Outputs Description	56
ATV31Dev Specific Outputs	
Output Detail - OutputData	
Output Detail - WarningCode	
Output Detail - Resetting	
Output Detail - Status	

Generic Outputs Description

Overview

This table is the same for all ATV Profile.

Outputs Description Table

This table describes the outputs of the ATVProfile FBD:

Output	Туре	Description
Ready	BOOL	This output indicates if the device is enabled and free of detected errors. The device is ready to carry out or is carrying out a run or stop command. If QuickStop is enabled, this output is reset to 0. This variable is TRUE as long as there is no detected communications error and the device is in status 5 of the DSP402.
Fail	BOOL	This output indicates a detected error in the control block (parameter configuration, cannot be reset), detected error in the device, or a detected communications error. To reset the detected error, the ResetFail input has to be activated. The last detected error code is in FailCode.
Warning	BOOL	This output indicates if an alarm has been activated for the device. It does not affect the blocks operation and does not need to be reset. The signal remains active until the cause for the alarm disappears. The output is set to 0 only when the alarm is acknowledge.
FailCode	ARRAY	This output indicates the detection of an error. When this output is activated, this variable contains the code for the current detected error. If this output is not activated, this variable contains the last detected error. The detected error source is specified by a 3-level structure.
WarningCode	ATVWarning	The WarningCode <i>(see page 60)</i> output is a data structure that contains information about the alarm currently on the speed of the drive.
Running	BOOL	This output indicates that the speed of the drive is running and has an output frequency. NOTE: If SetPoint is 0 and Run is active, the Running signal is activated.

Output	Туре	Description
ExtControlled	BOOL	Indicates if the drive is controlled from an external source (a console, a push-button panel or a monitoring system) to the system (1) or not (0). It provides information for programming.
Resetting	BOOL	The Resetting <i>(see page 61)</i> output indicates whether or not a reset is being carried out.
Status	ATVStatus	The Status (see page 62) output holds a structure with the information that the module extracts from the drives status variable.
PresentValue	REAL	Indicates the current rotation speed in EU (Engineering Units).
PresentSpeed	REAL	Indicates the current motor rotation speed in rpm.
NOTE: The variables can not be read from the device when there is a detected communications error. The variables keep their last value.		

ATV31Dev Specific Outputs

Outputs Description Table

This table describes the outputs of the ATV31Dev FBD:

Output	Туре	Description
Current	REAL	Current motor current in %. This value can be found on all drives on CANopen networks and ATV71 and ATV61 drives on Ethernet networks.
OutputData	ATV31_OUT_DDT	OutputData <i>(see page 59)</i> holds a data array structure that contains data sent to the device. The drive can be controlled with this output variable.
ATV_IO	ATV_IO_DDT	ATV_IO (see page 291) is a device data structure that holds information for performing monitoring. The information is used by the operator screen and can be read from HMI or SCADA.

Output Detail - OutputData

Description

This function is a data array structure (ATV_STB_OUT_DDT) with data sent to the device. The speed of the drive can be controlled with this output variable.

It is reserved for the DFB and cannot be used directly.

ATV_STB_OUT_DDT Structure Description

This table describes the ATV_STB_OUT_DDT structure:

Name	Туре	Description
OutputData [0]	INT	CWD (Control Word)
OutputData [1]	INT	Speed set-point
OutputData [2]	INT	OL1R (ATV digital outputs)
OutputData [3]	INT	AO1 (Analog output 1)

Output Detail - WarningCode

Description

This output is a data structure (ATVWarning) that contains information on the alarm currently on the speed of the drive.

ATVWarning Structure Description

This table shows the ATVWarning structure with TRUE values:

Name	Туре	Description	
Device	BOOL	Alarm present on device.	
Order	BOOL	Follow-up alarm. The device is not responding to the control command (Run, QuickStop, etc.) within the time specified in CommandCtrlWindow.	
ForcedLocalMode	BOOL	CommandCtriwindow. Device status is ForcedLocalMode because it has been forced locally. Control is though the wires attached to the screw terminals.	

Output Detail - Resetting

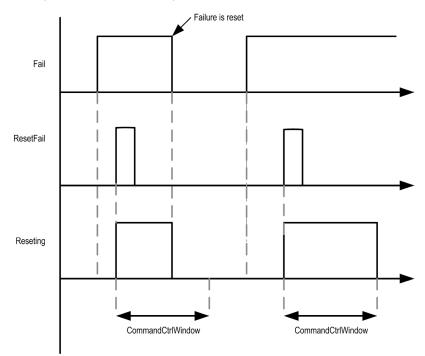
Description

This output indicates whether or not a reset has been carried out.

The CommandCtrlWindow variable indicates the maximum time for resetting the detected error.

When a device or communications reset is carried out with ResetFail, the DFB tries to reset the detected error within the time period defined in CommandCtrlWindow.

If the detected error is reset:


• The Fail and Resetting output variables are reset (they are set to FALSE).

If the detected error is not reset:

- The Resetting variable is set to FALSE.
- The Fail variable is held as TRUE.

ResetFail is edge-based.

This figure shows the Resetting output:

Output Detail - Status

Description

This output is a data structure (ATVStatus) that contains information that the module extracts from the speed drivers status variable.

ATVStatus Structure Description

This table shows the ATVStatus structure with TRUE values:

Name	Туре	Description
ReadyToSwitchOn	BOOL	Ready to Switch ON (DRIVECOM [ETA.0])
SwitchedOn	BOOL	Switched ON ([ETA.1])
OperationEnabled	BOOL	Operation Enabled ([ETA.2])
Malfunction	BOOL	Detected device error ([ETA.3])
VoltageEnabled	BOOL	Voltage on device terminals ([ETA.4])
QuickStop	BOOL	Quick stop activated ([ETA.5])
SwitchOnDisabled	BOOL	Switch on Disabled ([ETA.6])
Alarm	BOOL	Alarm present on device ([ETA.7])
ForcedLocalMode	BOOL	Forced local mode ([ETA.9])
ReferenceReached	BOOL	Speed set-point has been reached ([ETA.10])
ReferenceExceeded	BOOL	Speed set-point outside limits ([ETA.11])
StompImposed	BOOL	Stop forced by remote control STOP key ([ETA.14])
ForwardReverseRotation	BOOL	Running direction (1=forward, 0=reverse) ([ETA.15])
State	INT	Numerical code of the speed drivers state
Info	INT	Code with information on statuses and required actions

State Integer Values Description

This table shows the State integer values:

Variable Value	Status
-2	Detected DFB error
-1	Not initialized, waiting for data
0	Disabled
2	Switch on Disabled (NST state)

Variable Value	Status
3	Ready to Switch On (NST state)
4	Switched On (NST state)
5	Operation Enabled (RDY status)
6	QuickStop (FST status)
8	Non-operational Device (FLT status)

Info Integer Values Description

This table shows the Info integer values:

Variable Value	Status
1	Detected error in parameter configuration
11	MISSING EnableDFB
12	Detected communications error
10	Waiting for device information
13	ETA value is 0
14	REMOVE Local forcing should be 0
21	MISSING EnableDevice
23	REMOVE Run should be 0
24	REMOVE ResetFail. Reset again
3	WAITING ReadyToSwitchOn
2	WAITING SwitchOnDisable
4	WAITING SwitchOn
5	WAITING OperationEnabled
6	WAITING QuickStopActive
55	WAITING speed-driver operation (Run)
51	Speed of the drive stopped
58	Speed set-point is 0
59	Speed outside limits
56	WAITING speed driver speed
52	Speed of the drive running with speed 0
53	Speed driver running
57	WAITING speed driver stop
54	Speed of the drive at rated running

Variable Value	Status
61	REMOVE QuickStop should be 0
62	QuickStop is activated
81	MISSING ResetFail, Detected speed driver error
82	DO speed driver reset
99	Unexpected state

4.4 Inputs/Outputs

Overview

This section describes the Inputs/Outputs of the ATV31Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	
Generic Inputs/Outputs Description	66
Inputs/Outputs Detail - ATV_ST	67
Inputs/Outputs Detail - ATV_CFG	69

Generic Inputs/Outputs Description

Overview

This table is the same for all ATV Profiles.

Inputs/Outputs Description Table

This table describes the inputs/outputs of the ATV Profile FBD:

Name	Туре	Description
ATV_ST	ATV_ST_DDT	The ATV_ST (<i>see page 67</i>) device data structure contains the minimum information required for performing control and monitoring. The information is used by the operator screen and can be read from HMI or SCADA.
ATV_CFG	ATV_CFG_DDT	The ATV_CFG (<i>see page 69</i>) device data structure contains the information used by the operator screen and can be read/write from HMI or SCADA.

Inputs/Outputs Detail - ATV_ST

Description

The device data structure (ATV_ST_DDT) contains the minimum information required for performing control and monitoring.

This information is used by the operator screen and is read/write for HMI or SCADA.

ATV_ST_DDT Structure Description

This table shows the ATV_ST_DDT structure:

Name	Туре	Description
STW	WORD	Device status
CFGW	WORD	Device control
PresentValue	REAL	Current speed value
SetPoint	REAL	Set-point value

STW Word Description

Access to the data in this bit word is read-only.

This table shows the STW Word description:

Bit	Description
0	Unknown technological module status. No variable refreshing.
1	Not Ready
2	Technological module running
3	Detected device error
4	Alarm on device or DFB (follow-up or screw terminal control)
5	Detected communications interruption
6	ResetFail required
7	ExtControlled
8	Running
9	EnableDFB
15	Direction of Rotation

CFGW Word Description

CFGW provides the means necessary to control the device.

Owner Value	Control is from
0	Supervision subsystem or from the operator screen
1	Supervision subsystem, the DFB input variables values are used for reading from HMI or SCADA

This table shows the CFGW Word Description:

Bit	Description
0	ResetFail
1	Owner
3	Direction
4	QuickStop
5	EnableDevice
6	Run
7	ControlCommand
8	ControlSetpoint
	•

NOTE: The Owner bit enables control of the block from the •••_ST_DDT Inputs / Outputs structure, while ignoring the block input signals. It enables control from a monitoring system (HMI, SCADA, operator screen) in the manual mode without using the programmed switching operation.

Inputs/Outputs Detail - ATV_CFG

Description

This function is a data structure (ATV_CFG_DDT) that contains device information. The information is used by the operator screen and can be read from HMI or SCADA.

ATV_CFG_DDT Structure Description

This table shows the ATV_CFG_DDT structure:

Name	Туре	Description
DataStatus	WORD	Information on the Device status
Info	WORD	Device information
State	INT	Speed of the drive status code
FailCode 0	INT	Code of last Level 0 detected error
FailCode 1	INT	Code of last Level 1 detected error
FailCode 2	INT	Code of last Level 2 detected error

DataStatus Word Description

DataStatus Word provides the device status and information on the status output structure.

This table shows the DataStatus Word description:

Bit	Status
0	ReadyToSwitchOn
1	SwitchedOn
2	OperationEnabled
3	Malfunction
4	VoltageEnabled
5	QuickStop
6	SwitchedOnDisabled
7	Alarm
8	ForcedLocalMode
9	ReferenceReached
10	ReferenceExceeded
11	StompImposed
12	ForwardReverseRotation

Info Word Description

This table shows the Info Word Description:

Name	Туре	Description
State	INT	Status code information of the drive. Its value is Status.state.
FailCode 0	INT	Indicates which detected error has occurred (FailCode[0]).
FailCode 1	INT	Indicates which detected error has occurred (FailCode[1]).
FailCode 2	INT	Indicates which detected error has occurred (FailCode[2]).

4.5 Operator Screen

General

Description

The component includes an operator screen that enables interaction with the communication interface blocks.

The operator screen data controls a monitoring system:

- ATV_ST_DDT and ATV_CFG_DDT Inputs/Outputs structures.
- ATV_IO_DDT and ATV_IOEXT_DDT depending on the component Output structures.

4.6 Error Management

Overview

This section describes the Error Management of ATV31Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	
Detected Error Code	73
Detected Error Code Description	74

Detected Error Code

Description

The detected error codes the device can return are read from the FailCode output variable.

The detected error codes are the same as for the ATVDevError Management *(see page 74)*.

Detected Error Code Description

Overview

The detected error codes the device can return are read from the FailCode output variable.

Parameter Configuration Detected Error Codes

This detected error indicates that a public variable for parameter configuration has a value that is not allowed.

To reload new values, an edge is required on the EnableDFB variable that cannot be reset:

- FailCode[0]: 16#0003
- FailCode[1]: 16#0000
- FailCode[2]: 16#0004

The Failcode[0] variable can have the following codes:

Error Code	Symbol	Meaning		
16#0000	nOF	No detected error		
16#1000	CrF, OLF, SOF	Detected Error in capacitor pre-charge Motor overload Overspeed		
16#2310	OCF	Over current		
16#2320	SCF	Short circuit impedance Power stage detected error		
16#2330	SCF	Motor ground detected error		
16#2340	SCF	Short-circuit between motor phases		
16#3110	OCF	Supply over voltage detected error		
16#3120	USF	Low bus voltage		
16#3130	PHF	Phase dropout detected error		
16#3310	ObF, OPF	Over voltage on DC bus Motor phase dropout		
16#4210	OHF	Drive overheating		
16#5520	EEF	EEPROM memory detected error		
16#6100	InF	Internal detected error		
16#6300	CFF, CFI	Incorrect (parameter) configuration or invalid parameters		
16#7300	LFF	420 mA AI3 input detected error		
16#7510	SLF	Modbus detected error		
16#8100	COF	CANopen detected error		

Error Code	Symbol	Meaning	
16#9000	EPF	External detected error	
16#FF00	tnF	Auto-tuning detected error	
16#FF01	blF	Detected error in brake control unit	

The device interruption can be reset as long as ControlCommand=TRUE. Otherwise, it can be reset the speed of the drive or through the screw terminal with the appropriate parameter configuration.

Modbus Communications Detected Error

For Modbus communications, this code is used to indicate that communications have not been established. This code can be reset.

- FailCode[0]: 16#0002
- FailCode[1]: 16#0000
- FailCode[2]: 16#0004

Once Modbus communications have been established, check "Modbus Client" error codes for FailCode[0] and [1]. All components make a distinction between read and write requests:

- FailCode[2]: 16#0001 Read
- FailCode[2]: 16#0002 Write

Error Code Example

For a detected error, the code is:

- FailCode[1]: 16#0000
- FailCode[2]: 16#0005

NOTE: The error codes of the devices are available for all speed drivers except for those that communicate through the Advantys STB island.

4.7 SCoD Representation and Parameter Description

SCoD Representation and Parameter Description

Overview

The usage of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (except that an underscore in the pin name is skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before PLC restart.

SCoD Representation

SCoD Interface	Туре		CATV31M		Туре	SCoD Interface
	Π		ATV31Dev]	
Variable (PLC)	BOOL —	EnableDFB		Ready	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	EnableDevice		Fail	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	Run		Warning	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	Direction		_		
Variable (PLC)	REAL	SetPoint		FailCode	ARRAY[02] OF INT	Variable (PLC)
Variable (PLC)	BOOL —	ResetFail		WarningCode	- ATVWarning	Variable (PLC)
Variable (PLC)	BOOL —	QuickStop				
Variable (PLC)				Running	- BOOL	Variable (PLC)
Initial Value	BOOL —	CommunicationOK		ExtControlled	- BOOL	Variable (PLC)
				Reseting	- BOOL	Variable (PLC)
Variable (PLC)	BOOL —	ControlCommand				
Variable (PLC)	BOOL —	ControlSetpoint		Status	- ATVStatus	Variable (PLC)
Variable (PLC)	ATVOutputs —	OutputsMap				
Variable (PLC)	INT —	AO1		PresentValue	- REAL	Variable (PLC)
				PresentSpeed	- REAL	Variable (PLC)
				Current	- REAL	Variable (PLC)
Variable (IO_PLC)	ATV31_IN_DDT —	Inputs				
				Outputs	ATV31_OUT_DDT	Variable (IO_PLC)
()	CAN_DEV_TIME_PARA_DDT	TimeControl				
Variable (PLC)	SCALE_DDT	Range				
				ATV_IO	ATV_IO_DDT	Variable (PLC_HMI)
Variable (PLC_HMI)	ATV ST DDT	ATV ST			ATV ST DDT	Variable (PLC HMI)
Variable (PLC_HMI)	ATV_CFG_DDT	ATV_CFG		- ATV_CFG	ATV CFG DDT	Variable (PLC HMI)

This figure represents the CATV31M SCoD:

Parameter Tab

This figure shows the CATV31M SCoD parameter tab:

Parent: CODev (Equipment Module) Basic Parameters	
ScanTime:	CommandCtrfWindow:
T#3s	T#5s
AREA:	
0	
Low raw speed inverter:	High raw speed inverter:
0	1500
Low eng. speed inverter:	High eng. speed inverter:
0.0	1500.0

The following table describes the properties:

Property	Туре	Description
ScanTime	TIME	Minimum time to maintain detecetd error signals
CommandControlWindow	TIME	The time waited before executing orders
AREA	BYTE	Area to which the object that you wish to instantiate belongs. Enables to control access to the functions provided by this object.
Low raw Speed Inverter	INT	Low range value measured in raw units
High raw Speed Inverter	INT	High range value measured in raw units
Low eng. Speed Inverter	REAL	Low range value measured in engineering units
High eng. Speed Inverter	REAL	High range value measured in engineering units

4.8 HMI Representation

ATV31 Drive - Representation in the HMI

CANOpen ATV31 (Genie)

The CANOpen ATV31 block is represented in the HMI by the following genie.

Genie Elements

Symbol	Meaning
ATV 30	Opens the CANOpen ATV31 popup. Displays the device name, that is, ATV and PV value.
Eq_CATV	The instance name of the CANOpen ATV31 block is only visible by selecting the Hide/Unhide button in the template.
ATV 30	When there is an unacknowledged note, the ! symbol is displayed in the genie.
ATV 30	When there is an active and unacknowledged alarm or communication failure, then outer rectangle flashes in red.
ATV 30	When there is an active and unacknowledged alarm or communication failure, then outer rectangle is steady red.

Popup

The CANOpen ATV31 block popup has the following tabs:

- Operator tab
- Analog tab
- Digital tab
- Information tab

Operator Tab

Running
Reset Alarm
Current Operation
Device Enable active
Run Order active
Run Forward active
Reset Command active
QuickStop Order active
Control Orders from System active
SetPoint Control from System active
Parameters
PV 30.0
sp (11)

This tab has 3 sub-sections:

- Status
- Reset Alarm
- Current Operation
- Parameters

The sub-section Status displays the current status.

The possible displays are listed as follows:

- Unknown Status
- Not Ready
- Running
- Communication Failure
- Failure
- Warning

The following table describes the sub-section Reset Alarm:

Item	Description
Reset Alarm	Resets alarm.

The following table describes the sub-section Current Operation:

Item	Description		
Device Enable active	Displays the text in green color when the operation is active.		
Run Order active	Displays the text in white color when the operation is not active.		
Run Forward active			
Reset Command active			
QuickStop Order active			
Control Orders from System active			
SetPoint Control from System active			

The following table describes the sub-section Parameters:

Item	Description	
PV	Displays the present value.	
SP	Displays the set point value.	

The sub-section **Parameters** also shows the picture of ATV.

Analog Tab

🞬 Equi_ATV31	X
	12
Current Values	
Motor Current Speed	30.00 EU
Speed Set point	40.00 EU
Device Information	
Device Information	0
Status Code of drive	0
e.	

This tab has 2 sub-tabs:

- 1
- 2

Each sub-tab has 2 sub-sections:

- Current Values
- Device Information

The title of these sections are configurable in the *cem_devices.dbf* file. The analog parameters and their values are displayed in these sub-sections.

Digital Tab

🖀 Equi_ATV31	2
	1 2 3
Device Status	
Ready to Switch On	
Switched ON	
Operations Enabled	
There is an error in the device	
Tension in the device terminal	
Fast stop activated	
Switch On Disabled	
There is an error in the device	
Local Mode Forced	
Speed Set point reached	
Speed Set point is outside the limit	
Stop is done by remote control STOP button	
Direction of motion 1 = Forward, 0 = Reverse	
-	
-	
-	

This tab has 3 sub-tabs:

- 1
- 2
- 3

Each sub-tab has a sub-section, which shows the device status. The digital parameter descriptions are displayed in this sub-section.

When the status is not active, the text is displayed in white color. When the status is active, the text is displayed in green color. The text is configurable in the *cem_devices.dbf* file.

Information Tab

For description about **Information** tab, refer to Commonly Used Tabs *(see page 32).*

ATV7161 - CANopen ATV Drive (CATV61M and CATV71M SCoDs)

Overview

This chapter describes the DFB for the control blocks for variable speed drives on a CANopen network, represented by CATV61M and CATV71M SCoDs.

What's in this Chapter?

Section	Торіс	Page
5.1	Description	86
5.2	Inputs	89
5.3	Outputs	94
5.4	Inputs/Outputs	98
5.5	Operator Screen	99
5.6	Error Management	100
5.7	SCoD Representation and Parameter Description	101
5.8	HMI Representation	104

This chapter contains the following sections:

5

5.1 Description

Overview

This section describes the ATV7161Dev DFB.

What's in this Section?

This section contains the following topics:

Торіс	Page
Functional Description	87
FBD Representation	88

Functional Description

General

The ATV7161Dev profile is the control block for the CATV71 and CATV61 on an Advantys I/O island.

The ATV7161Dev block is implemented as listed below:

Software	Implemented as
Unity Pro	FBD ATV7161Dev
Vijeo Citect	DPC_Devices
UAG	Depending on the speed drive: • SCoD CATV61 • SCoD CATV71

The main function blocks are described in the ATV Profile Functional Description *(see page 29).*

FBD Representation

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

Г	ATV71	61Dev	Г
BOOL —	EnableDFB		BOOL
	EnableDFB	Ready Fail	
BOOL —			- BOOL
BOOL —	Run	Warning	BOOL
BOOL —	Direction		
REAL —	SetPoint	FailCode	ARRAY [02] OF INT
BOOL —	ResetFail	WarningCode	ATVWarning
BOOL —	QuickStop		
		Running	- BOOL
BOOL —	CommunicationOK	ExtControlled	- BOOL
		Reseting	- BOOL
BOOL —	ControlCommand		
BOOL	ControlSetpoint	Status	— ATVStatus
ATVOutputs —	OutputsMap	InputMap	- ATVInputs
ATVOutputsExt —	OutputsMapExt	InputMapExt	ATVInputExt
INT —	AO1	PresentValue	- REAL
INT —	AO2	PresentSpeed	- REAL
		Current	- REAL
ATV7161_IN_DDT	Inputs	Torque	- REAL
		Al1	
CAN_DEV_TIME_PARA_DDT	TimeControl	Al2	
SCALE_DDT	Range		
	•		
		Outputs	— ATV7161_OUT_DDT
		ATV_IO	ATV_IO_DDT
		_	
	ATV ST	ATV_IOEXT	ATV_IOEXT_DDT
ATV_ST_DDT	-	ATV_ST	ATV_ST_DDT
ATV_CFG_DDT —	ATV_CFG	ATV_CFG	ATV_CFG_DDT
L			

5.2 Inputs

Overview

This section describes the inputs of the ATV7161Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Inputs Description	90
ATV7161Dev Specific Inputs	92

Generic Inputs Description

Overview

This table is the same for all ATV Profiles.

Inputs Description Table

This table describes the generic inputs of the ATV Profile FBD:

Input	Туре	Description
EnableDFB	BOOL	This input enables the normal execution of the control block. EnableDFB = 0. The entire DFB is restarted (statuses, output values, counters, etc. are lost) and all output values are set to 0 or FALSE. EnableDFB = 1. This input enables communications with devices for their operation. Public variable values are loaded during the first enabling cycle.
EnableDevice	BOOL	This input variable is true only if EnableDFB is true. To control the speed of the drive, it must be enabled.
Run	BOOL	This input makes the motor run in the direction selected with the Direction variable.
Direction	BOOL	This input activates the direction of motor rotation: 1 = forward 0 = reverse NOTE: Setpoint assumes positive values. Changes in the direction of rotation cannot be made with Setpoint sign.
Setpoint	REAL	This is the speed set-point <i>(see page 54)</i> requested from the speed of the drive. It can only have positive, real values.
ResetFail	BOOL	Existing detected errors are reset on the rising edge of this signal. Both communications and detected device errors can be reset. If the detected error is a device error, it sends a reset command to the device if ControlCommand = TRUE. This figure shows the input ResetFail:
QuickStop	BOOL	This input enables a quick stops the drive speed. This variable is state-based. If there is a QuickStop, the Run bit has to be reset to resume operation.

Input	Туре	Description
ControlCommand	BOOL	This input indicates if the starter is controlled from an external source. If ControlCommand=TRUE the device is controlled from an external source. The generation of follow-up alarms is disabled. If ControlCommand=FALSE, the block only performs read operations on the device status, the transmission of device control or reset commands is not possible. NOTE: This input does not configure the starter; it only defines the DFB operating mode.
ControlSetPoint	BOOL	This input indicates if the speed of the drive is controlled from an external source. (e.g., from the console or a potentiometer)

WARNING

UNEXPECTED MOTOR START

Reset the Run variable before resuming operation.

The Run input must be inactive while the device is being enabled or while a detected error is being reset.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTICE

UNEXPECTED BEHAVIOUR

The ControlCommand input value must coincide with the speed driver configuration.

Failure to follow these instructions can result in equipment damage.

ATV7161Dev Specific Inputs

Inputs Description Table

The below table describes the inputs of the ATV7161Dev FBD:

Input	Туре	Description
CommunicationOK	BOOL	A bit is used to indicate whether or not the node is present on the bus.
AO1	INT	Controls the value of the AO1 analog output. This value can be found on all devices on CANopen and Ethernet networks. The speed driver analog output can only be controlled with this input variable. It cannot be controlled from HMI/SCADA.
AO2	INT	This input Controls the value of the AO2 analog output. This value can be found on ATV71 and ATV61 on CANopen and Ethernet networks. The speed driver analog output can only be controlled with this input variable. It cannot be controlled from HMI/SCADA.
OuputsMap	ATVOutputs	OutputsMap <i>(see page 283)</i> holds a data structure used to control the speed driver outputs. Information available on CANopen and Ethernet. The speed driver outputs can only be controlled with this input variable. They cannot be controlled from HMI/SCADA.
OuputsMapExt	ATVOutputsExt	OutputsMapExt <i>(see page 284)</i> holds a data structure used to control the drive outputs for ATV71 and ATV61 extended cards on CANopen and Ethernet networks. The drive outputs can only be controlled with this input variable.(They cannot be controlled from HMI/SCADA).
Inputs	ATV7161_IN_DDT	Inputs (see page 49) holds a data array structure that contains data obtained from the device. The drive can be controlled with this input variable. The input is reserved for the DFB and cannot be used directly. Allocate the structure (%MWx) to allow correct operation of the control block.

Input	Туре	Description
TimeControl	CAN_DEV_ TIME_PARA_DDT	TimeControl <i>(see page 51)</i> is a parameter for device control.
Range	SCALE_DDT	Range <i>(see page 53)</i> definition for inverter (Raw and engineering range).

5.3 Outputs

Overview

This section describes the outputs of the ATV7161Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Outputs Description	95
ATV7161Dev Specific Outputs	97

Generic Outputs Description

Overview

This table is the same for all ATV Profiles.

Outputs Description Table

This table describes the outputs of the ATVProfile FBD:

Output	Туре	Description
Ready	BOOL	This output indicates if the device is enabled and free of detected errors. The device is ready to carry out or is carrying out a run or stop command. If QuickStop is enabled, this output is reset to 0. This variable is TRUE as long as there is no detected communications error and the device is in status 5 of the DSP402.
Fail	BOOL	This output indicates a detected error in the control block (parameter configuration, cannot be reset), detected error in the device, or a detected communications error. To reset the detected error, the ResetFail input has to be activated. The last detected error code is in FailCode.
Warning	BOOL	This output indicates if an alarm has been activated for the device. It does not affect the blocks operation and does not need to be reset. The signal remains active until the cause for the alarm disappears. The output is set to 0 only when the alarm is acknowledge.
FailCode	ARRAY	This output indicates the detection of an error. When this output is activated, this variable contains the code for the current detected error. If this output is not activated, this variable contains the last detected error. The detected error source is specified by a 3-level structure.
WarningCode	ATVWarning	The WarningCode <i>(see page 60)</i> output is a data structure that contains information about the alarm currently on the speed of the drive.
Running	BOOL	This output indicates that the speed of the drive is running and has an output frequency. NOTE: If SetPoint is 0 and Run is active, the Running signal is activated.

Output	Туре	Description
ExtControlled	BOOL	Indicates if the drive is controlled from an external source (a console, a push-button panel or a monitoring system) to the system (1) or not (0). It provides information for programming.
Resetting	BOOL	The Resetting <i>(see page 61)</i> output indicates whether or not a reset is being carried out.
Status	ATVStatus	The Status <i>(see page 62)</i> output holds a structure with the information that the module extracts from the drives status variable.
PresentValue	REAL	Indicates the current rotation speed in EU (Engineering Units).
PresentSpeed	REAL	Indicates the current motor rotation speed in rpm.
NOTE: The variables can not be read from the device when there is a detected communications error. The variables keep their last value.		

ATV7161Dev Specific Outputs

Outputs Description Table

This table describes the general outputs of the ATV7161Dev FBD.

Output	Туре	Description
InputsMap	ATVInputs	The OutputsMap <i>(see page 289)</i> holds a data structure that contains information on the state of the drive inputs CANopen and Ethernet communications.
InputsMapExt	ATVInputsExt	TheOutputMapExt (see page 290) holds a data structure that contains information on the state of the drive inputs for ATV71 and ATV61 extended cards on CANopen and Ethernet networks.
ATV_IO	ATV_IO_DDT	The ATV_IO <i>(see page 291)</i> device data structure holds information for performing monitoring. The information is used by operator screen and can be read from HMI or SCADA
ATV_IOEXT	ATV_IOEXT_DDT	The ATV_IOEXT <i>(see page 292)</i> output holds a data structure that contains information for performing monitoring. The information is used by operator screen and can be read from HMI or SCADA.
Current	REAL	Current motor current in %. This value can be found on all drives on CANopen networks, and ATV71 and ATV61 on Ethernet networks.
Torque	INT	Current motor torque in 0.1A increments.
Al1	INT	Value of the AI1 analog device input. This value can be found on all devices on CANopen networks, and ATV71 and ATV61 on Ethernet networks.
AI2	INT	Value of the Al2 analog device input. This value can be found on ATV71, ATV61 on CANopen and Ethernet networks.
OutputData	ATV6171_OUT_DDT	OutputData (see page 59) holds a data array structure with contains data sent to the device. The drive can be controlled with this output variable. This output is reserved for the DFB and cannot be used directly. Allocate the structure (%MWx) in order to ensure the control blocks correct operation.

5.4 Inputs/Outputs

Generic Inputs/Outputs Description

Overview

This table is the same for all ATV Profile.

Inputs/Outputs Description Table

This table describes the inputs/outputs of the ATV Profile FBD:

Name	Туре	Description
ATV_ST	ATV_ST_DDT	The ATV_ST (see page 67) device data structure contains the minimum information required for performing control and monitoring. The information is used by the operator screen and can be read from HMI or SCADA.
ATV_CFG	ATV_CFG_DDT	The ATV_CFG <i>(see page 69)</i> device data structure contains the information used by the operator screen and can be read/write from HMI or SCADA.

5.5 Operator Screen

General

Description

The component includes an operator screen that allows interaction with the communication interface blocks.

- ATV_ST_DDT and ATV_CFG_DDT Inputs/Outputs structures.
- ATV_IO_DDT and ATV_IOEXT_DDT Output structures.

5.6 Error Management

Detected Error Code

Description

The detected error codes the device can return are read from the FailCode output variable. The detected error codes are the same as for the ATVDev Error Management *(see page 74)*.

5.7 SCoD Representation and Parameter Description

SCoD Representation and Parameter Description

Overview

The usage of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (except that an underscore in the pin name is skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before PLC restart.

SCoD Representation

SCoD Interface	Туре	CATV61M, CATV	/71M	Туре	SCoD Interface
	Γ	ATV7161De	v]	
Variable (PLC)	BOOL —	EnableDFB	Ready	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	EnableDevice	Fail	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	Run	Warning	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	Direction	-		
Variable (PLC)	REAL	SetPoint	FailCode	ARRAY[02] OF INT	Variable (PLC)
Variable (PLC)	BOOL —	ResetFail	WarningCode	ATVWarning	Variable (PLC)
Variable (PLC)	BOOL —	QuickStop	-		· · ·
			Running	BOOL	Variable (PLC)
Initial Value	BOOL —	CommunicationOK	ExtControlled	BOOL	Variable (PLC)
			Reseting	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	ControlCommand			
Variable (PLC)	BOOL	ControlSetpoint	Status	ATVStatus	Variable (PLC)
Variable (PLC)	ATVOutputs —	OutputsMap	InputMap	ATVInputs	Variable (PLC)
Variable (PLC)	ATVOutputsExt —	OutputsMapExt	InputMapExt	ATVInputExt	Variable (PLC)
Variable (PLC)	INT —	AO1	PresentValue	- REAL	Variable (PLC)
Variable (PLC)	INT —	AO2	PresentSpeed	- REAL	Variable (PLC)
			Current	- REAL	Variable (PLC)
Variable (IO_PLC)	ATV7161_IN_DDT	Inputs	Torque	- REAL	Variable (PLC)
			Al1		Variable (PLC)
Variable (PLC)	CAN_DEV_TIME	TimeControl	Al2		Variable (PLC)
Veriable (DLO)	PARA_DDT	Denes			
Variable (PLC)	SCALE_DDT	Range	Outputs	ATV7161 OUT DDT	Variable (IO_PLC)
			ouputo		
			ATV_IO	ATV_IO_DDT	Variable (PLC_HMI)
			ATV_IOEXT	ATV_IOEXT_DDT	Variable (PLC_HMI)
Variable (PLC_HMI)	ATV_ST_DDT	ATV_ST	ATV_ST	ATV_ST_DDT	Variable (PLC_HMI)
Variable (PLC_HMI)	ATV_CFG_DDT —	ATV_CFG	ATV_CFG	ATV_CFG_DDT	Variable (PLC_HMI)
	L				

This figure represents the CATV61 and CATV71 SCoDs:

Parameter Tab

This figure shows the CATV61 and CATV71 SCoDs parameter tab:

Properties Control Module	×
Parent: CODev (Equipment Module)	
Basic Parameters	
ScanTime:	CommandCtrlWindow:
T#3s	T#5s
AREA:	
0	
Low raw speed inverter:	High raw speed inverter:
0	1500
Low eng. speed inverter:	High eng. speed inverter:
0.0	1500.0
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description	
ScanTime	TIME	Minimum time to maintain detected error signals	
CommandControlWindow	TIME	The time waited before executing orders	
AREA	BYTE	Area to which the object that you wish to instantiate belongs. Enables to control access to the functions provided by this object.	
Low raw Speed Inverter	INT	Low range value measured in raw units	
High raw Speed Inverter	INT	High range value measured in raw units	
Low eng. Speed Inverter	REAL	Low range value measured in engineering units	
High eng. Speed Inverter	REAL	High range value measured in engineering units	

5.8 HMI Representation

ATV7161 Drive - Representation in the HMI

CANOpen ATV (Genie)

The CANOpen ATV block is represented in the HMI by the following genie.

Genie Elements

Symbol	Meaning
ATV 30	Opens the CANOpen ATV popup. Displays the device name, that is, ATV and PV value.
Eq_CATV	The instance name of the CANOpen ATV block is only visible by selecting the Hide/Unhide button in the template.
ATV 30	When there is an unacknowledged note, the ! symbol is displayed in the genie.
ATV 30	When there is an active and unacknowledged alarm or communication failure, then outer rectangle flashes in red.
ATV 30	When there is an active and acknowledged alarm or communication failure, then outer rectangle is steady red.

Popup

The CANOpen ATV block popup has the following tabs:

- Operator tab
- Analog tab
- Digital tab
- Information tab

Operator Tab

🞬 Equi_ATV71 🛛 🔀			
Running			
Reset Alarm			
Current Operation			
Device Enable active			
Run Order active			
Run Forward active			
Reset Command active			
QuickStop Order active			
Control Orders from System active			
SetPoint Control from System active			
Parameters			
PV 30.0			
SP 40.0			
Current 11A			
Torque 2Nm			

This tab has 3 sub-sections:

- Status
- Reset Alarm
- Current Operation
- Parameters

The sub-section Status displays the current status.

The possible displays are listed as follows:

- Unknown Status
- Not Ready
- Running
- Communication Failure
- Failure
- Warning

The following table describes the sub-section Reset Alarm:

Item	Description
Reset Alarm	Resets alarm.

The following table describes the sub-section	Current Operation:
---	--------------------

Item	Description
Device Enable active	Displays the text in green color when the operation is active.
Run Order active	Displays the text in white color when the operation is not active.
Run Forward active	
Reset Command active	
QuickStop Order active	
Control Orders from System active	
SetPoint Control from System active	

The following table describes the sub-section Parameters:

Item	Description	
PV	Displays the present value (speed/EU).	
SP	Displays the set point value.	
Current	Displays the value of current.	
Torque	Displays the value of torque.	

The sub-section **Parameters** also shows the picture of ATV.

Analog Tab

For detailed description, refer to Analog Tab (see page 82).

Digital Tab

For detailed description, refer to Digital Tab (see page 83).

Information Tab

For description about **Information** tab, refer to Commonly Used Tabs *(see page 32)*.

TESYST - CANopen Tesys T Motor Management (CTESYST SCoD)

Overview

This chapter describes the DFB for the control block for the Tesys T motor controller on CANopen network, represented by CTESYST SCoD.

MISAPPLICATION OF MODULES

The modules in this section do not reflect any specific installation. Before adopting these modules for use in a specific application, the engineer must:

- · conduct a safety analysis for the application and equipment installed
- verify that all modules are appropriate for the equipment or function in the installation
- supply appropriate parameters, particularly for limits
- · check that all sensors and actuators are compatible with the modules selected
- thoroughly test all functions during verification and commissioning
- provide independent paths for critical control functions (emergency stop, overlimit conditions etc.) according to the safety analysis and applicable codes and regulations.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

What's in this Chapter?

This chapter contains the following sections:

Section	Торіс	Page
6.1	Description	109
6.2	Inputs	112
6.3	Outputs	121
6.4	Inputs/Outputs	132
6.5	Operator Screen	138

Section	Торіс	Page
6.6	Error Management	139
6.7	SCoD Representation and Parameter Description	141
6.8	HMI Representation	143

6.1 Description

Overview

This section describes the TesysTDev DFB.

What's in this Section?

This section contains the following topics:

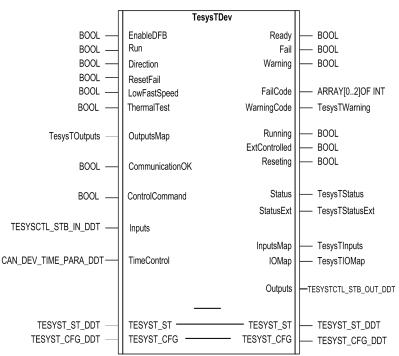
Торіс	Page
Functional Description	110
FBD Representation	111

Functional Description

General

TesysTDev block is the control block for TesysT controller on an Advantys STB I/O island and CANopen communications.

The TesysTDev block is implemented as listed below:


Software	Implemented as
Unity Pro	DFB TesysTDev
Vijeo Citect	DPC_Devices
UAG	Depending on the communication technology:SCoD ASTESYST for Advantys.SCoD CTESYST for CANopen.

The main function blocks are described in the TesysT Profile Functional Description *(see page 30).*

FBD Representation

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

6.2 Inputs

Overview

This section describes the inputs of the TesysTDev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Inputs Description	113
Specific TesysTDev Inputs	115
Input Detail - OutputsMap	116
Input Detail - InputData	117
Input Detail - TimeControl	119

Generic Inputs Description

Overview

This table is the same for all TesysT Profiles.

Inputs Description Table

This table describes the inputs of the TesysT Profile FBD:

Input	Туре	Description
EnableDFB	BOOL	This input enables the normal execution of the control block. EnableDFB = 0. The entire DFB is restarted (statuses, output values, counters, etc. are lost) and all output values are set to 0 or FALSE. EnableDFB = 1. This input enables communications with devices for their operation. Public variable values are loaded during the first enabling cycle.
Run	BOOL	This input makes the motor run in the direction selected with the Direction variable.
Direction	BOOL	This input activates the direction of motor rotation: 1 = forward 0 = reverse NOTE: Setpoint assumes positive values. Changes in the direction of rotation cannot be
ResetFail	BOOL	made with Setpoint sign. Existing detected errors are reset on a rising edge of this signal. Both Communications and detected device errors can be reset. If the detected error is a device error, it sends a reset command to the device if ControlCommand = TRUE. This figure shows the input ResetFail: Fail AND (NOT Reseting)
LowFastSpeed	BOOL	Slow/fast speed of rotation. For 2-speed motor start configurations. Check the TesysT user manual.
ThermalTest	BOOL	This bit is used to check the forced thermal detected error input on the Tesys T.

Input	Туре	Description
OutputsMap	TesysUOutputsMap	OutputsMap <i>(see page 116)</i> holds a structure used to control the Tesys outputs. If one of the variables is not available, the comment will indicate that the information cannot be accessed.
ControlCommand	BOOL	This input indicates if the starter is controlled from an external source. If ControlCommand=TRUE the device is controlled from an external source. The generation of follow-up alarms is disabled. If ControlCommand=FALSE, the block only performs read operations on the device status, the transmission of device control or reset commands is not possible. NOTE: This input does not configure the starter; it only defines the DFB operating mode.
TimeControl	CAN_DEV_TIME_ PARA_DDT	TimeControl <i>(see page 119)</i> is a parameter for device control.

A WARNING

UNEXPECTED MOTOR START

Reset the Run variable before resuming operation.

The Run input must be inactive while the device is being enabled or while a detected error is being reset.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTICE

UNEXPECTED BEHAVIOUR

The ControlCommand input value must coincide with the speed driver configuration.

Failure to follow these instructions can result in equipment damage.

Specific TesysTDev Inputs

Inputs Description Table

This table describes the inputs of the TesysTDev FBD:

Input	Туре	Description
CommunicationOK	BOOL	A bit is used to indicate whether or not the node is present on the bus.
InputData	TesysTCTL_STB_ IN_DDT TesysT_IN_DDT	InputData <i>(see page 117)</i> holds a data array structure that contains data obtained from the device. The TesysT can be controlled with this input variable. The input is reserved for the DFB and cannot be used directly.

Input Detail - OutputsMap

Description

This function holds a data structure (TesysTOutputsMap) used to control actuator outputs.

These outputs hold an image of this structure values.

TesysTOutputsMap Structure Description

This table shows the TesysTOutputsMap structure:

Name	Туре	Description
Output1	BOOL	Controls the state of the output1
Output2	BOOL	Controls the state of the output2
Output3	BOOL	Controls the state of the output3
Output4	BOOL	Controls the state of the output4

Input Detail - InputData

Description

This function holds a data array structure that contains data obtained from the device.

The TesysT controller can be controlled with this input variable.

The function is reserved for the DFB and cannot be used directly.

Allocate the structure (%MWx) to allow the correct operation of the control block. Refer to Communication Components *(see page 303)*.

Depending on the device and the communications used, one of the following structures is used.

TESYSTCTL_IN_DDTT Information available on CANopen for Controllers. **TESYST_IN_DDT** Information available on Advanced STB for Controllers.

TESYST_IN_DDT Structure Description

Information available on Advanced STB for Controllers:

Name	Туре	Description
InputData [0]	INT	Status register 1
InputData [1]	INT	Status register 2
InputData [2]	INT	Logic input status
InputData [3]	INT	Logic Output status
InputData [4]	INT	Warning register
InputData [5]	INT	Detected Fault code
InputData [6]	INT	Average Current
InputData [7]	INT	Thermal Capacity
InputData [8	INT	FLC Ground current
InputData [9]	INT	Current Phase
InputData [10]	INT	Frequency
InputData [11	INT	Starts Count

TESYSTCTL_STB_IN_DDT Structure Description

Information available on CANopen for Controllers:

Name	Туре	Description
InputData [0]	INT	Status register 1
InputData [1]	INT	Status register 2
InputData [2]	INT	Logic input status
InputData [3]	INT	Logic output status

Input Detail - TimeControl

Description

The TimeControl variable is the time parameter for device control.

The input type varies in accordance with the communication technology:

- CAN_DEV_TIME_PARA_DDT with CANopen/Advantys/Ethernet.
- MB_DEV_TIME_PARA_DDT with Modbus.

CAN_DEV_TIME_PARA_DDT Structure Description

This table shows the CAN_DEV_TIME_PARA_DDT structure:

Name	Туре	Description
CommandCtrlWindow	TIME	Control time for operations. This is the time that the block waits for operations to be carried out by the device. A "follow-up alarm" is issued, if a command is sent and executed within the time indicated by this variable. The commands controlled are: • EnableDevice • Run
		In the event of a ResetFail, this is not interpreted as an alarm. Instead, the detected error continues and has to be reset the Resetting output (the time the device waits before executing orders).
ScanTime	TIME	Enables to configure the time that the alarm signals are kept active. The monitoring subsystem will acquire the data for alarms automatically.

MB_DEV_TIME_PARA_DDT Structure Description

This table shows the MB_DEV_TIME_PARA_DDT structure:

Name	Туре	Description
CommandCtrlWindow	TIME	Control time for operations. This is the time that the block waits for operations to be carried out by the device. A "follow-up alarm" is issued, if a command is sent and executed within the time indicated by this variable. The commands controlled are: • EnableDevice • Run
		In the event of a ResetFail, this is not interpreted as an alarm. Instead, the error continues and has to be reset the Resetting output (the time the device waits before executing orders).
ScanTime	TIME	Enables to configure the time that the alarm signals are kept active. The monitoring subsystem will acquire the data for alarms automatically.
Refresh	TIME	Time to refresh the cyclic data.

6.3 Outputs

Overview

This section describes the outputs of the TesysTDev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Outputs Description	122
Specific TesysTDev Outputs	124
Output Detail - Warningcode	125
Output Detail - Resetting	126
Output Detail - Status	127
Output Detail - StatusExt	129
Output Detail - IOMap	130
Output Detail - OutputData	131

Generic Outputs Description

Overview

This table is the same for all TesysT Profiles.

Outputs Description Table

This table describes the Outputs of the TesysT Profile FBD:

Output	Туре	Description	
Ready	BOOL	This output indicates if the device is enabled and free of errors. The device is ready to carry out or is carrying out any run or stop command. If QuickStop is enabled, this output is reset to 0.	
Fail	BOOL	This output indicates an detected error in the control block (Parameter configuration, cannot be reset) or detected error in the device, or a detected communications error. In order to reset the detected error, the ResetFail input has to be activated. The last detected error code is shown on FailCode.	
Warning	BOOL	This output indicates if an alarm has been activated for the device. It does not affect the blocks operation and does not need to be reset. The signal remains active until the cause for the alarm disappears.	
FailCode	ARRAY	This output indicates the detection of an error. When this output is activated, this variable contains the code for the current detected error. If this output is not activated, this variable holds the last detected error. The detected error source is specified by a 3-level structure.	
WarningCode	TesysTWarning	The WarningCode <i>(see page 125)</i> output holds a data structure that contains information about the alarm currently on the controller.	
Running	BOOL	This output indicates that the Tesys is running. Current higher than 10% of FLA for Advanced and Multifunction controllers.	
ExtControlled	BOOL	This output indicates if the device is controlled from an external source (for example, from the console, from a push-button panel, or from the monitoring system) to the system (1) or not (0). Provides information for programming.	

Output	Туре	Description		
Reseting	BOOL	The Reseting <i>(see page 126)</i> output indicates whether or not a reset is carried out.		
Status	TesysUStatus	The Status (<i>see page 127</i>) output holds a structure with the information that the module extracts from the status variable of controllers with Advanced and Multifunction control modules.		
ЮМар	TesysTIOMap	The IOMap <i>(see page 130)</i> indicates current speed of rotation in EU (Engineering Units).		
NOTE: The variables can not be read from the device when there is a detected communications error. The variables keep their last value.				

Specific TesysTDev Outputs

Outputs Description Table

This table describes the Outputs of the TesysTDev FBD:

Output	Туре	Description
OutputData	TESYSTCTL_ STB_OUT_DDT TESYST_OUT_ DDT	OutputData (see page 131) holds a data structure that contains data sent to the device. The controller can be controlled with this output variable. The output is reserved for the DFB and cannot be used directly.

Output Detail - Warningcode

Description

This output holds a data structure (TesysTWarning) that contains information on the alarm currently on the device.

TesysTWarning Structure Description

This table shows the TesysTWarning structure:

Name	Туре	Description
Ground	BOOL	Ground alarm.
Thermal	BOOL	Thermal alarm on device.
Jam	BOOL	Mechanical jam alarm.
Phase	BOOL	Phase alarm.
UnderCurrent	BOOL	Undercurrent alarm.
HMIPort	BOOL	HMI port communications failure alarm.
InternalTmp	BOOL	Internal temperature alarm.
Internal	BOOL	Detected internal error alarm.
Network	BOOL	Network port communications failure alarm.
Order	BOOL	Follow-up alarm. The device is not responding to the control command within the time specified in CommandCtrlWindow.
ForcedLocalMode	BOOL	Device forced locally; indicated by the device having the Status. ForcedLocalMode status. Control through screw terminal.

Output Detail - Resetting

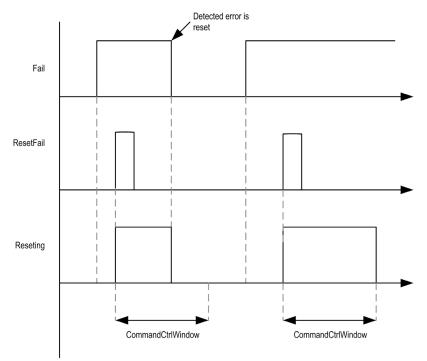
Description

This output indicates whether or not a reset is carried out.

The CommandCtrlWindow variable indicates the maximum time for resetting the detected error.

When a device or communications reset is carried out with ResetFail, the DFB tries to reset the error within the time period defined in CommandCtrlWindow.

If the error is reset:


• The Fail and Resetting output variables are reset (they are set to FALSE).

If the error is not reset:

- The Resetting variable is set to FALSE.
- The Fail variable is held as TRUE.

ResetFail is edge-based.

This figure shows the Resetting output:

Output Detail - Status

Description

This output holds a data structure (TesysTStatus) that contains information that the module extracts from the status variable of device.

TesysTStatus Structure Description

This table shows the TesysUstatus structure:

Name	Туре	Description
Activated	BOOL	Activated contact
Ready	BOOL	Switch in ON position; No detected device error
Fail	BOOL	There is a failure on the TesysT
Trip	BOOL	The Tesys protection was tripped
Warning	BOOL	Alarm present on Tesys
ResetAuth	BOOL	Authorized detected error reset
Controller Power	BOOL	Powered system
MotorRunning	BOOL	MotorRunning
HMIControlled	BOOL	Control through HMI port
MotorStarting	BOOL	The motor is starting
State	INT	Current machine status
Info	INT	Device status

State Integer Values Description

This table shows the State integer values:

Variable Value	Status
-2	Detected DFB error
-1	Not initialized. Waiting for data.
0	Disabled
5	Ready
8	Detected device error
9	Device notification

Info Integer Values Description

This table shows the Code with the information shown on the Unity operator screen:

Variable Value	Status
1	DFB parameter configuration interruption
2	WAITING Ready
8	Tesys working OK
10	Waiting for device information
11	MISSING EnableDFB
12	MISSING CommunicationOK Detected communications error
13	Status Word value is 0
14	Local forcing should be 0
23	REMOVE Run should be 0
24	REMOVE ResetFail. Reset again
81	MISSING ResetFail. Device detected error
82	A RESET is needed
99	Unknown status

Output Detail - StatusExt

Description

This output holds a data structure (TesysTStatusExt) that contains information that the module extracts from the device Status Word variable.

TesysTStatusExt Structure Description

This table shows the TesysTStatusExt structure:

Name	Туре	Description
AutomaticResetActive	BOOL	Active automatic reset
FaultRequested	BOOL	Detected Error, restart (off/on) request
RestartTimeUnd	BOOL	Motor, undetermined restart time
RapidCicleLockout	BOOL	Rapid lockout cycle
LoadSheding	BOOL	Load Shedding
MotorSpeed	BOOL	Motor speed
HMILostComms	BOOL	HMI, loss of communications with the port
LostComms	BOOL	Network port, loss of communications
MotorTransitionLockout	BOOL	Motor, transition lockout

Output Detail - IOMap

Description

This function holds a data structure (TesysTIOMap) that information on the state of the inputs and outputs of the Tesys.

TesysTIOMap Structure Description

This table shows the TesysTIOMap structure:

Name	Туре	Description	
Output 1	BOOL	Shows the state of digital output 1	
Output 2	BOOL	Shows the state of digital output 2	
Output 3	BOOL	Shows the state of digital output 3	
Output 4	BOOL	Shows the state of digital output 4	

Output Detail - OutputData

Description

This function holds a data array structure (TESYST_OUT_DDT) that contains data sent to the device. The controller can be controlled with this output variable.

The function is reserved for the DFB and cannot be used directly.

Allocate the structure (%MWx) to allow the correct operation of the control block.

Depending on the device and the communications used, one of the following structures is used.

TESYSCTL_OUT_DDT Structure Description

This table shows the information available on an Advantys STB based TESYSCTL_OUT_DDT structure:

Name	Туре	Description	
OutputData [0]	INT	System control	
OutputData [1]	INT	Analog signal control	
OutputData [2]	INT	Output control	

TESYST_OUT_DDT Structure Description

This table shows the information available on a CANopen based TESYST_OUT_DDT structure:

Name	Туре	Description
OutputData [0]	INT	System control
OutputData [1]	INT	Analog signal control
OutputData [2]	INT	Output control
OutputData [3]	INT	System 2 control

6.4 Inputs/Outputs

Overview

This section describes the Inputs/Outputs of the TesysTDev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Inputs/Outputs Description	133
Inputs/Outputs Detail - TESYST_ST	134
Inputs/Outputs Detail - TESYST_CFG	136

Generic Inputs/Outputs Description

Overview

This table is the same for all TesysT Profiles.

Inputs/Outputs Description Table

This table describes the inputs/outputs of the TesysT Profile FBD:

Name	Туре	Description
TESYST_ST	TESYST_ST_DDT	TESYST_ST (see page 134) is a device data structure that holds the minimum information required for performing control and monitoring. The information is used by the operator screen and usable from HMI or SCADA.
TESYST_CFG	TESYST_CFG_DDT	TESYST_CFG (<i>see page 136</i>) is a device data structure that holds the information used by the operator screen. It can be read from HMI or SCADA.

Inputs/Outputs Detail - TESYST_ST

Description

The device data structure (TESYST_ST_DDT) holds the minimum information required for performing control and monitoring.

The information is used by operator screen and usable from HMI or SCADA.

TESYST_ST_DDT Structure Description

This table shows the TESYST_ST_DDT structure:

Name	Туре	Description
STW	WORD	Device status
CFGW	WORD	Device control
AverageCurrent	REAL	Current current value in FLC%

STW Word Description

Access to the data held in this bit word is read-only.

This table shows the STW Word description:

Bit	Description
0	Unknown device status or communications interruption. No variable refreshing.
1	Not ready
2	Module running
3	Detected device error
4	Alarm on device or detected follow-up error (detected follow-up errors require resetting).
5	Communications interruption
6	Requires resetting. A ResetFail is required.
7	ExtControlled
8	Resetting
9	EnableDFB

CFGW Word Description

Owner Value	Control is from
1	supervision subsystem or from the opeartor screen
0	supervision subsystem, the DFB input variables values are used for reading from HMI or SCADA

CFGW provides the means necessary to control the device.

This table shows the CFGW Word Description:

Bit	Description
0	ResetFail
1	Owner
3	Direction
6	Run
7	ControlCommand
11	LowFastSpeed
12	ThermalTest

NOTE: The Owner bit enables to control the block from the •••_ST_DDT structure, ignoring the block inputs signals. It enables to effect control from a monitoring system (HMI, SCADA, Operator screen) in manual mode without using the programmed switching operation.

Inputs/Outputs Detail - TESYST_CFG

Description

This function holds a data structure (TESYST_CFG_DDT) that contains device information. The information is used by the operator screen and can be read from HMI or SCADA.

TESYST_CFG_DDT Structure Description

This table shows the TESYST_CFG_DDT structure:

Name	Туре	Description
DataStatus	WORD	Information on the Device status
Info	INT	Device information
WarningCode	WORD	Alarm Code
FailCode 0	INT	Code of last Level 0 error
FailCode 1	INT	Code of last Level 1 error
FailCode 2	INT	Code of last Level 2 error

DataStatus Word Description

DataStatus Word provides the device status and information on the status output structure.

This table shows the DataStatus Word description:

Bit	Description
0	TesysT.Ready
1	TeysTStatus.Active
2	TeysTStatus.Detected error
3	TeysTStatus.Warning
4	TeysTStatus.Trip
5	TeysTStatus.ResetAuth
6	TeysTStatus.ControlledPower
7	TeysTStatus.MotorRunning
8	TeysTStatusExt.HMIControlled
9	TeysTStatusExt.MotorStarting
10	TeysTStatusExt.AutoResetActive
11	TeysTStatusExt.FaultRequested
12	TeysTStatusExt.RapidCicleLockout

Bit	Description
13	TeysTStatusExt.LoadSheding
14	TeysTStatusExt.HMILostComms
15	TeysTStatusExt.MotorTransitionLockout

WarningCode Word Description

This table shows the WarningCode Word description:

Bit	Description
2	WarningCode.Ground
3	WarningCode.Thermal
5	WarningCode.Jam
6	WarningCode.Phase
7	WarningCode.UnderCurrent
8	WarningCode.Order
9	WarningCode.ForcedLocalMode
10	WarningCode.HMIPort
11	WarningCode.InternalTmp
12	WarningCode.Internal
14	WarningCode.Module

Info Word Description

This table shows the Info Word Description:

Name	Туре	Description
FailCode 0	INT	Indicates which error has occurred, FailCode[0]
FailCode 1	INT	Indicates which error has occurred, FailCode[1]
FailCode 2	INT	Indicates which error has occurred, FailCode[2]

6.5 Operator Screen

General

Description

The component includes an operator screen that enables interaction with the communication interface blocks.

The operator screen data is used to deal with a monitoring system by means of the following:

- TESYST_ST_DDT and TESYST_CFG_DDT Inputs/Outputs structures.
- TESYSU_MEA depending on the component Output variables.

6.6 Error Management

Detected Error Code Description

Overview

The detected error codes the device can return are read from the FailCode output variable.

Parameter Configuration Detected Error Codes

This detected error indicates that a parameter configuration public variable has a value that is not allowed.

To reload new values, an edge is required on the EnableDFB variable that cannot be reset:

- FailCode[0]: 16#0003
- FailCode[1]: 16#0000
- FailCode[2]: 16#0004

The Failcode[0] variable can have the following codes:

Error Code	Meaning
0	No detected Error
3	Ground current
4	Thermal overload
5	Extended start
6	Mechanical jam
7	Phase current imbalance.
8	Undercurrent
10	Test
11	HMI port error
12	Loss of HMI port communications
13	Internal network port error
18	Diagnosis
19	Wiring
20	Overcurrent
21	Phase current dropout
22	Phase currents inverted

Error Code	Meaning
23	Motor temperature sensor
24	Phase voltage imbalance
25	Phase voltage dropout
26	Control over voltage
26	Phase voltages inverted
27	Undervoltage
28	Overvoltage
29	Insufficient power
30	Excessive power
31	Insufficient power factor
32	Excessive power factor
33	Load shedding
51	Internal controller temperature error
55	Internal controller error (stack overflow)
56	Internal controller error (RAM error)
57	Internal controller error (RAM checksum error)

NOTE: The device failure reset is sent to the device

Modbus Communications Detected Error

For Modbus communications, this code is used to indicate that communications have not been established It can be reset.

- FailCode[0]: 16#0002
- FailCode[1]: 16#0000
- FailCode[2]: 16#0004

Once Modbus communications have been established, check "Modbus client" error codes for FailCode [0] and [1]. All components make a distinction between read request failures and write request failures:

- FailCode[2]: 16#0001 Read
- FailCode[2]: 16#0002 Write

Error Code Example

For a detected error, the code will be:

- FailCode[1]: 16#0000
- FailCode[2]: 16#0005

6.7 SCoD Representation and Parameter Description

SCoD Representation and Parameter Description

Overview

The usage of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (except that an underscore in the pin name is skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before PLC restart.

SCoD Representation

This figure represents the ASTESYST and CTESYST SCoDs:

SCoD Interface	Туре	ASTESYST, CTE	SYST	Туре	SCoD Interface
		TesysTDe	v		
Variable (PLC)	BOOL	EnableDFB	Ready	-BOOL	Variable (PLC)
Variable (PLC)	BOOL	Run	Fail	-BOOL	Variable (PLC)
Variable (PLC)	BOOL	Direction	Warning	-BOOL	Variable (PLC)
Variable (PLC)	BOOL	ResetFail			
Variable (PLC)	BOOL	LowFastSpeed	FailCode	ARRAY[02]OF INT	Variable (PLC)
Variable (PLC)	BOOL	ThermalTest	WarningCode		Variable (PLC)
Variable (PLC)	TesysTOutputsMap—	OutputsMap	Running	-BOOL	Variable (PLC)
Initial Value	BOOL	CommunicationOK	ExtControlled	-BOOL	Variable (PLC)
	5005	Commanioadionert	Reseting	BOOL	Variable (PLC)
Variable (PLC)	BOOL	ControlCommand	Status		Variable (PLC)
			StatusExt	TesysTStatusExt	Variable (PLC)
Variable (IO_PLC)	ESYSCTL_STB_IN_DDT	Inputs			
			InputsMap	TesysTInputs	Variable (PLC)
Variable (PLC) CAN	_DEV_TIME_PARA_DDT	TimeControl	IOMap	— TesysTIOMap	Variable (PLC)
			Outputs	-TESYSTCTL STB OUT DE	T Variable (IO_PLC)
			-		
Variable (PLC_HMI) Variable (PLC_HMI)	TESYST_ST_DDT	TESYST_ST TESYST_CFG	- TESYST_ST - TESYST_CFG	TESYST_ST_DDT TESYST_CFG_DDT	Variable (PLC_HMI) Variable (PLC_HMI)

Parameter Tab

This figure shows the ASTESYST and CTESYST parameter tab:

New Control Module		×
Parent: ASDev (Equipment Module)		
Basic Parameters		
ScanTime:	CommandCtrtWindow:	
T#3s		
AREA:		
0		
		1
	OK Cancel Apply	

The following table describes the properties:

Property	Туре	Description
ScanTime	TIME	Minimum time to maintain detected error signals
CommandControlWindow	TIME	The time waited before executing orders
AREA	BYTE	Area to which the object that you wish to instantiate belongs. Enables to control access to the functions provided by this object.

6.8 HMI Representation

TESYST - Representation in the HMI

CANOpen TeSysT (Genie)

The CANOpen TeSys T block is represented in the HMI by the following genie.

Genie Elements

Symbol	Meaning
TeSys T 1 %FLC	Opens the CANOpen TeSys T popup. Displays the device name, that is, TeSys T and average current value.
Equi_MBTeSysT	The instance name of the CANOpen TeSys T block is only visible by selecting the Hide/Unhide button in the template.
I TeSys T 1%FLC	When there is an unacknowledged note, the ! symbol is displayed in the genie.
TeSys T 1%FLC	When there is an active and unacknowledged alarm or communication failure, then outer rectangle flashes in red.
TeSys T 1%FLC	When there is an active and unacknowledged alarm or communication failure, then outer rectangle is steady red.

Popup

The CANOpen TeSys T block popup has the following tabs:

- Operator tab
- Analog tab
- Digital tab
- Information tab

Operator Tab

Equi_TESYST
Running
Reset Alarm
Current Operation
Run Order active
Run Forward active
Reset Command active
Control Orders from System active
Fast Speed active
Self Test Order active
Parameters
Module Ready (ON)
Tripped
Fault Reset Authorized
Current Average 1%ELC

This tab has 3 sub-sections:

- Status
- Reset Alarm
- Current Operation
- Parameters

The sub-section Status displays the current status.

The possible displays are listed as follows:

- Unknown Status
- Not Ready
- Running
- Communication Failure
- Failure
- Warning

The following table describes the sub-section Reset Alarms:

Item	Description
Reset Alarm	Resets alarm.

The following table describes the sub-section Current Operation:

Item	Description
Run Order active	Displays the text in green color when the operation is active. Displays the text in white color when the operation is not active.
Run Forward active	
Reset Command active	
Control Orders from System active	
Fast Speed active	
Self Test Order active	

The following table describes the sub-section Parameters:

Item	Description	
Module Ready (ON)	Indicates that the module is ready.	
Tripped	Indicates that the module is tripped.	
Fault Reset Authorized	Indicates the authorization of fault reset.	
Current Average	Indicates the average current value.	

The sub-section **Parameters** also shows the picture of TeSys T.

Analog Tab

🖀 Equi_TESYST	×
	12
Current Values	
Average Current	30.00 %FLC
Grounding Current	10.00 %FLC
Device Information	
Device Information	0
Voltage L2 - L3	0 V
	ź

This tab has 2 sub-tabs:

- 1
- 2

Each sub-tab has 2 sub-sections:

- Current Values
- Device Information

The title of these sections are configurable in the *cem_devices.dbf* file. The analog parameters and their values are displayed in these sub-sections.

Digital Tab

	123
Device Status	
Ready	
Activated	
Device Fault	
Alarm	
Trip	
Reset Authorized	
Voltage in controller	
Motor In Run	
Control by HMI	
Motor is starting	
Auto Reset active	
Fault Warning	
Fast cycle blocked	
Load shedding	
Lost communication with HMI	
Motor transition lockout	

This tab has 3 sub-tabs:

- 1
- 2
- 3

Each sub-tab has a sub-section, which shows the device status. The digital parameter descriptions are displayed in this sub-section.

When the status is not active, the text is displayed in white color. When the status is active, the text is displayed in green color. The text is configurable in the *cem_devices.dbf* file.

Information Tab

For description about **Information** tab, refer to Commonly Used Tabs *(see page 32)*.

MBEM6400 - Modbus Energy Meter 6400

7

Overview

This chapter describes the MBEM6400 block.

What's in this Chapter?

This chapter contains the following sections:

Section	Торіс	Page
7.1	Description	150
7.2	Inputs	153
7.3	Outputs	156
7.4	Inputs/Outputs	159
7.5	SCoD Representation and Parameter Description	163
7.6	HMI Representation	165

7.1 Description

Overview

This section describes the MBEM6400Dev DFB.

What's in this Section?

This section contains the following topics:

Торіс	Page
MBEM6400 - Description	151
FBD Representation	152

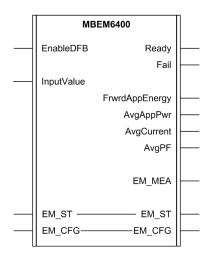
MBEM6400 - Description

General

The MBEM6400 block is implemented as listed in the following table:

Software	Implemented as	
Unity Pro	DFB MBEM6400	
Vijeo Citect	Genie EM6400	
UAG	SCoD MBEM6400	

Function Description


The $\tt MBEM6400$ block is used to manage the energy meters in a communications based manner.

The monitoring function of the energy meter profile control block allows the most important parameter devices to be monitored.

FBD Representation

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

7.2 Inputs

Overview

This section describes the inputs of the MBEM6400Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Inputs Description	154
Input Detail - InputValue	155

Inputs Description

Inputs Description Table

The following table describes the input parameters of the MBEM6400 block:

Parameter	Туре	Description
EnableDFB	BOOL	This input enables the normal execution of the control block. Activating this input enables communications with devices for their operation. The public variable values are loaded during the first enabling cycle.
InputValue	EM64_INPUTS	IO_PLC variable for reading information from complex IO device, containing measurement data from EM6400. Start address: 3900. End address: 3965. Refer to the EM64_INPUTS (see page 155) structure description.

Input Detail - InputValue

EM64_INPUTS Structure Description

Name	Туре	Description
AvgAppPwr	REAL	Average apparent power (kVARH)
AvgActPwr	REAL	Average active power (Kw)
AvgReactPwr	REAL	Average reactive power (Kw)
AvgPF	REAL	Average power factor
AvgLLVoltage	REAL	Average line to line voltage (V)
AvgLNVoltage	REAL	Average line to neutral voltage (V)
AvgCurrent	REAL	Average Current (Amps)
Freq	REAL	Frequency (Hz)
RPhAppPwr	REAL	R - Phase apparent power
RPhActPwr	REAL	R - Phase active power
RPhReactPwr	REAL	R - Phase reactive power
RYPhVoltage	REAL	R - Y Phase voltage (V)
RNPhVoltage	REAL	R - N Phase voltage (V)
RPhCurrent	REAL	R - Phase current (A)
YPhAppPwr	REAL	Y - Phase apparent power
YPhActPwr	REAL	Y - Phase active power
YPhReactPwr	REAL	Y - Phase reactive power
YBPhVoltage	REAL	Y - B Phase voltage (V)
YNPhVoltage	REAL	Y - N Phase voltage (V)
YPhCurrent	REAL	Y - Phase current (A)
BPhAppPwr	REAL	B - Phase apparent power
BPhActPwr	REAL	B - Phase active power
BPhReactPwr	REAL	B - Phase reactive power
BRPhVoltage	REAL	B - R Phase voltage (V)
BNPhVoltage	REAL	B - N Phase voltage (V)
BPhCurrent	REAL	B - Phase current (A)
FrwrdAppEnergy	REAL	Forward apparent energy
FrwrdActEnergy	REAL	Forward active energy
FrwrdReactIndEnergy	REAL	Forward reactive inductive energy
FrwrdReactCapEnergy	REAL	Forward reactive capacitive energy

7.3 Outputs

Overview

This section describes the outputs of the MBEM6400Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
MBEM6400 - Description	157
Output Detail - EM_MEA	158

MBEM6400 - Description

Parameter Description

The following table describes the output parameters of the MBEM6400 block:

Parameter	Туре	Description
Ready	BOOL	This output indicates if the device is enabled and free of detected errors. The device is ready to carry out any read operation.
Fail	BOOL	This output indicates a detected error in the control block (parameter configuration cannot be reset) or a detected communications interruption.
FrwrdAppEnergy	REAL	Apparent power consumption (kVAh).
AvgAppPwr	REAL	Average apparent power (kVA).
AvgCurrent	REAL	Current - average between 3 phases (V).
AvgPF	REAL	Average power factor.
EM_MEA	EM_MEA_DDT	The EM_MEA is a data structure that contains device measurement. Refer to the EM_MEA_DDT (see page 158) structure description.

Output Detail - EM_MEA

EM_MEA_DDT Structure Description

Name	Туре	Description
AvgAppPwr	REAL	Average apparent power (kVARH)
AvgActPwr	REAL	Average active power (Kw)
AvgReactPwr	REAL	Average reactive power (KVAR)
AvgPF	REAL	Average power factor
AvgLLVoltage	REAL	Average line to line voltage (V)
AvgLNVoltage	REAL	Average line to neutral voltage (V)
AvgCurrent	REAL	Average Current (Amps)
Freq	REAL	Frequency (Hz)
RPhAppPwr	REAL	R - Phase apparent power
RPhActPwr	REAL	R - Phase active power
RPhReactPwr	REAL	R - Phase reactive power
RYPhVoltage	REAL	R - Y Phase voltage (V)
RNPhVoltage	REAL	R - N Phase voltage (V)
RPhCurrent	REAL	R - Phase current (A)
YPhAppPwr	REAL	Y - Phase apparent power
YPhActPwr	REAL	Y - Phase active power
YPhReactPwr	REAL	Y - Phase reactive power
YBPhVoltage	REAL	Y - B Phase voltage (V)
YNPhVoltage	REAL	Y - N Phase voltage (V)
YPhCurrent	REAL	Y - Phase current (A)
BPhAppPwr	REAL	B - Phase apparent power
BPhActPwr	REAL	B - Phase active power
BPhReactPwr	REAL	B - Phase reactive power
BRPhVoltage	REAL	B - R Phase voltage (V)
BNPhVoltage	REAL	B - N Phase voltage (V)
BPhCurrent	REAL	B - Phase current (A)
FrwrdAppEnergy	REAL	Forward apparent energy
FrwrdActEnergy	REAL	Forward active energy
FrwrdReactIndEnergy	REAL	Forward reactive inductive energy
FrwrdReactCapEnergy	REAL	Forward reactive capacitive energy

7.4 Inputs/Outputs

Overview

This section describes the inputs/outputs of the ${\tt MBEM6400Dev}$ FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
MBEM6400 - Description	160
Inputs/Outputs Detail - EM64_ST_DDT	161
Inputs/Outputs Detail - EM64_CFG_DDT	162

MBEM6400 - Description

Parameter Description

The following table describes the input/output parameter of the MBEM6400 block:

Parameter	Туре	Description
EM_ST	EM_ST_DDT	The EM_ST device data structure that holds the minimum information required for performing control and monitoring. The information is used by the operator screen and can be read from HMI or SCADA. Refer to the EM_ST <i>(see page 161)</i> structure description.
EM_CFG	EM_CFG_DDT	The EM_CFG device data structure holds information used by the operator screen. It can be read from HMI or SCADA. Refer to the EM_CFG <i>(see page 162)</i> structure description.

Inputs/Outputs Detail - EM64_ST_DDT

EM_ST Structure Description

Name	Туре	Description
STW	WORD	Device main status: Bit 0 - Unknown state Bit 1 - Not ready Bit 2 - Running Bit 3 - Device fail Bit 4 - Warning Bit 5 - Communication interruption Bit 6 - Necessary resetting Bit 9 - Enable DFB
CFGW	WORD	Device main control orders Owner = 1 HMI control Owner = 0 information from inputs • Bit 0 - Reset fail • Bit 1 - Owner
AvgApparentPower	REAL	Current aparent energy (kVAh)
AvgActivePower	REAL	Total aparent power detected (kVA)
AvgPF	REAL	Total power factor in use
Frequency	REAL	Average current (A)

Inputs/Outputs Detail - EM64_CFG_DDT

EM64_CFG_DDT Structure Description

Name	Туре	Description
WarningCode	WORD	Warning of device. Data from warning data from device
FailCode0	INT	Code of last level 0 detected error
FailCode1	INT	Code of last level 1 detected error
FailCode2	INT	Code of last level 2 detected error

Bit description for the warning word (W4112):

Bit	Description
0	Phase 1 voltage out of range
1	Phase 2 voltage out of range
2	Phase 3 voltage out of range
3	Phase 1 current out of range
4	Phase 2 current out of range
5	Phase 3 current out of range
6	Frequency out of range, or phase 1 voltage insufficient to determine frequency
715	Not used

Bit description for the warning word (W3254):

Bit	Description
0	Summary bit (activated if any other bit is activated)
1	Configuration detected error
2	Scaling detected error
3	Phase dropout
4	Cabling detected error
5	Incremental energy could be incorrect due to the meters resetting
6	External demand synchronization waiting time
715	Not used

7.5 SCoD Representation and Parameter Description

MBEM6400 - Representation as SCoD in UAG

Overview

The usage of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (except that an underscore in the pin name is skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before PLC restart.

Input Output Diagram

SCoD-Interface	TYPE	MB	EM6400	TYPE	SCoD-Interface
Variable (PLC)	BOOL —	EnableDFB	Ready Fail		Variable (PLC) Variable (PLC)
Variable (IO_PLC)	EM64_INPUTS	InputValue	. an	BOOL	
			FrwrdAppEnergy	REAL	Variable (PLC)
			AvgAppPwr	REAL	Variable (PLC)
			AvgCurrent	REAL	Variable (PLC)
			AvgPF	REAL	Variable (PLC)
			EM_MEA	EM64_MEA_DDT	Variable (PLC_HMI)
Variable (PLC_HMI)	EM64_ST_DDT	EM_ST	EM_ST	EM64_ST_DDT	Variable (PLC_HMI)
Variable (PLC_HMI)	EM64_CFG_DDT	EM_CFG —	EM_CFG	EM64_CFG_DDT	Variable (PLC_HMI)

Device Data Tab

Properties Control Module		×
Parent: Device (Equipment Module) Basic Device Data		
Area Information:	Asset ID:	
Kiln	EM6400	
		1
	OK Cancel <u>Apply</u>	

The following table describes the properties:

Name	Initial Value	Property Tab	Position	Description
Area Information	Not available	Device Data	1	Area to which the instantiated object belongs. Enables to control access to the functions provided by this object.
Asset ID	-		2	Asset ID

7.6 HMI Representation

MBEM6400 - Representation in the HMI

Modbus Energy Meter 6400 (Genie)

The MBEM6400 block is represented in the HMI by the following genie.

Genie Elements

Symbol	Meaning
EM6400 30.0 KW	Opens the MBEM6400 popup. Displays the device name, that is, energy meter and energy value.
Equi_EM6400	The instance name of the MBEM6400 block is only visible by selecting the Hide/Unhide button in the template.
EM6400	When there is an unacknowledged note, the ! symbol is displayed in the genie.
EM6400 30.0 KW	When there is an active and unacknowledged alarm or communication failure, then outer rectangle flashes in red.
EM6400 30.0 KW	When there is an active and unacknowledged alarm or communication failure, then outer rectangle is steady red.

Popup

The MBEM6400 block popup has the following tabs:

- Operator tab
- Analog tab
- Digital tab
- Information tab

Operator Tab

🞬 Equi_EM6400 🛛 🔀
Device
Unknown status
R RESET ALARM
CURRENT COMMANDS
BASIC INFORMATION Energy Power Active 0.0 kWh 0.0 kW Apparent 0.0 kWh 0.0 kW Apparent 0.0 kWh 0.0 kW Reactive Ind 0.0 0.0 kVA Reactive Cap 0.0 Avg V L-L 0.0 Avg V L-L 0.0 EM6400 measurement unit Avg V L-N 0.0 FactorPow 0.0

This tab has a sub-section called as **Basic Information**, which is described in the following table:

Item	Description	
Active	Displays the values of active energy and active power.	
Apparent Displays the values of apparent energy and apparent power.		

Item	Description	
Reactive Ind	Displays the values of reactive inductive energy and reactive inductive power.	
Reactive Cap	Displays the values of reactive capacitive energy and reactive capacitive power.	
Avg V L-L	Displays the value of average line to line voltage.	
Avg V L-N	Displays the value of average line to neutral voltage.	
Avg I	Displays the value of average current.	
FactorPow	Displays the value of power factor.	

The sub-section **Parameters** also shows the picture of energy meter.

NOTE: The sub-sections **Status**, **Reset Alarm**, and **Current Commands** are not applicable in the **Operator** tab of the MBEM6400 block.

Analog Tab

🛗 Equi_EM6400	X
Device	
	12
Basic Data	
Apparent energy consumption	0.00 kVAh
Total Apparent Power	0.00 kVA
Advanced Data	1
Frequency	0 Hz
Intensity Current demand phase 1	0 Å

This tab has 2 sub-tabs:

- 1
- 2

Each sub-tab has 2 sub-sections:

- Basic Data
- Advanced Data

The title of these sections are configurable in the *cem_devices.dbf* file. The analog parameters and their values are displayed in these sections.

Digital Tab

2 3

This tab has 3 sub-tabs:

- 1
- 2
- 3

Each sub-tab has a sub-section, which shows the device status. The digital parameter descriptions are displayed in this sub-section.

When the status is not active, the text is displayed in white color. When the status is active, the text is displayed in green color. The text is is configurable in the *cem_devices.dbf* file.

Information Tab

For description about **Information** tab, refer to Commonly Used Tabs *(see page 32)*.

MBEM7300 - Modbus Energy Meter 7300

Overview

This chapter describes the MBEM7300 block.

What's in this Chapter?

This chapter contains the following sections:

Section	Торіс	Page
8.1	Description	172
8.2	Inputs	175
8.3	Outputs	176
8.4	Inputs/Outputs	182
8.5	Error Management	186
8.6	SCoD Representation and Parameter Description	187
8.7	HMI Representation	191

8

8.1 Description

Overview

This section describes the MBEM7300Dev DFB.

What's in this Section?

This section contains the following topics:

Торіс	Page
Functional Description	173
FBD Representation	174

Functional Description

General

The MBEM7300 block is implemented as listed in the following table:

Software	Implemented as	
Unity Pro	DFB MBEM7300	
Vijeo Citect	Genie EM7300	
UAG	SCoD MBEM7300	

The main functions of the energy meter profile control block is explained as follows:

Function	Description
Remote Resetting	Enables to reset the device.
Monitoring	Allows the most important parameter devices to be monitored.

FBD Representation

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

ſ	1		П
	MBEM		
_	EnableDFB	Ready	<u> </u>
_	ResetFail	Fail	<u> </u>
		Warning	<u> </u>
	ModBusAddres	S	
		FailCode	<u> </u>
_	TimeControl	WarningCode	<u> </u>
		ExtControlled	<u> </u>
		Reseting	<u> </u>
		AparentEnergy	<u> </u>
	To To	<u> </u>	
	ד	otalPowerFactor	<u> </u>
		<u> </u>	
	S	tatisticConnector	
		EM_MEA	
_	_	EM_ST	
\neg	EM_CFG	EM_CFG	
	vvorkMemory –		

8.2 Inputs

Inputs Description

Inputs Description Table

The following table describes the input parameters of the MBEM7300 block:

Parameter	Туре	Description
EnableDFB	BOOL	This input enables the normal execution of the control block. When this input is disabled, the entire DFB is restarted (Statuses, output values, counters, and so on are lost) and all the output values are set to 0 or FALSE as long as signal remains on FALSE. Activating this input enables communications with devices for their operation. The public variable values are loaded during the first enabling cycle.
ResetFail	BOOL	Current detected errors are reset on the rising edge of this signal. Both communications and detected device errors can be reset. If the detected error is a device error and if control command = TRUE, it sends a reset command to the device.
ModBusAddress	INT	Device address within the Modbus network.
TimeControl	MB_DEV_Time_ PARA_DDT	Time control is a parameter for device control.

8.3 Outputs

Overview

This section describes the outputs of the MBEM7300Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Outputs Description	177
Output Detail - StatisticConnector	
Output Detail - EM_MEA	180

Outputs Description

Outputs Description Table

The following table describes the output parameters of the MBEM7300 block:

Parameter	Туре	Description
Ready	BOOL	This output indicates if the device is enabled and free of detected errors. The device is ready to carry out any read operation.
Fail	BOOL	This output indicates a detected error in the control block or a detected communications interruption. To reset the detected error, the Rst input has to be activated. The last error is shown on the FailCode.
Warning	BOOL	This output indicates that an alarm is activated for the drive. It does not affect the block operation and need not be reset. This signal remains active until the cause for alarms disappears.
FailCode	ARRAY [02] of INT	This output indicates the detection of an error. When the output is activated, this variable contains the code for the current detected error. If the output is not activated, this variable contains the last detected error. The detected error is specified by a 3-level structure.
WarningCode	WORD	The alert code is a variable that holds the alarm.
ExtControlled	BOOL	This output indicates if the device is controlled from an external source (from the monitoring system) to the system (1) or not (0).
Reseting	BOOL	This output indicates whether or not a reset is carried out.
AparentEnergy	DINT	Apparent power consumption (kVAh).
TotalAparentPower	REAL	Total apparent power (kVA).
TotalPowerFactor	REAL	Total power factor.
AverageCurrent	REAL	Average current between 3 phases.

Parameter	Туре	Description
StatisticConnector	StatisticConn ector	The statistic connector represents information that is used with Modbus communications to obtain statistics on the Modbus network. Refer to the StatisticConnector (see page 179) structure description.
EM_MEA	EM_MEA_DDT	The EM_MEA is a data structure that contains device measurement. Refer to the EM_MEA_DDT (see page 180) structure description.

Output Detail - StatisticConnector

StatisticConnector Structure Description

Name	Туре	Description
PartialTime	DINT	Time partial
Start	BOOL	Operation started
EndOK	BOOL	Operation ended correctly
EndNOK	BOOL	Operation finished with detected error
Reserve	BOOL	Reserved

Output Detail - EM_MEA

EM_MEA_DDT Structure Description

Name	Туре	Description
ActiveEnergy	REAL	Current active energy (kWh)
ReactiveEnergy	REAL	Current reactive energy (kVARh)
TotalActivePower	REAL	Total active power detected (kW)
TotalReactivePower	REAL	Total reactive power detected (kVAR)
AverageLineToLineVol tage	REAL	Average voltage between lines (V)
AverageLineToNeutral Voltage	REAL	Average voltage between line and ground (V)
Frequency	REAL	Detected frequency from line 1(Hz)
ActualCurrentL1	REAL	Instant current from line 1 (A)
ActualCurrentL2	REAL	Instant current from line 2 (A)
ActualCurrentL3	REAL	Instant current from line 3 (A)
VoltageL1ToL2	REAL	Voltage between line 1 and line 2 (V)
VoltageL2ToL3	REAL	Voltage between line 2 and line 3 (V)
VoltageL1ToL3	REAL	Voltage between line 1 and line 3 (V)
VoltageL1ToNeutral	REAL	Voltage between line 1 and ground (V)
VoltageL2ToNeutral	REAL	Voltage between line 2 and ground (V)
VoltageL3ToNeutral	REAL	Voltage between line 3 and ground (V)
ActivePowerL1	REAL	Active power at line 1 (kW)
ActivePowerL2	REAL	Active power at line 2 (kW)
ActivePowerL3	REAL	Active power at line 3 (kW)
AparentPowerL1	REAL	Aparent power at line 1 (kVA)
AparentPowerL2	REAL	Aparent power at line 2 (kVA)
AparentPowerL3	REAL	Aparent power at line 3 (kVA)
ReactivePowerL1	REAL	Reactive power at line 1 (kVAR)
ReactivePowerL2	REAL	Reactive power at line 2 (kVAR)
ReactivePowerL3	REAL	Reactive power at line 3 (kVAR)
THDCurrentL1	REAL	Current THD from line 1 (%)
THDCurrentL2	REAL	Current THD from line 2 (%)

Name	Туре	Description
THDCurrentL3	REAL	Current THD from line 3 (%)
THDVoltageL1	REAL	Voltage THD from line 1 to line 2 (%)
THDVoltageL2	REAL	Voltage THD from line 2 to line 3 (%)
THDVoltageL3	REAL	Voltage THD from line 1 to line 3 (%)

8.4 Inputs/Outputs

Overview

This section describes the inputs/outputs of the MBEM7300Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Inputs/Outputs Description	183
Inputs/Outputs Detail - EM_ST	184
Inputs/Outputs Detail - EM_CFG	185

Inputs/Outputs Description

Inputs/Outputs Description Table

The following table describes the input/output parameter of the MBEM7300 block:

Parameter	Туре	Description
EM_ST	EM_ST_DDT	The EM_ST device data structure that holds the minimum information that is required for performing control and monitoring. The information is used by the operator screen and can be read from HMI or SCADA. Refer to the EM_ST (see page 184) structure description.
EM_CFG	EM_CFG_DDT	The EM_CFG device data structure holds information used by the operator screen. It can be read from HMI or SCADA. Refer to the EM_CFG (see page 185) structure description.
WorkMemory	ARRAY [0544] of INT	Array used for Modbus communications. This variable is meant for use with a Modbus port that serializes all Modbus requests in an optimum manner.

Inputs/Outputs Detail - EM_ST

EM_ST_DDT Structure Description

Name	Туре	Description
STW	WORD	Device main status: Bit 0 - Unknown state Bit 1 - Not ready Bit 2 - Running Bit 3 - Device fail Bit 4 - Alert Bit 5 - Communication interruption Bit 6 - Necessary resetting Bit 9 - Enable DFB
CFGW	WORD	Device main control orders Owner = 1 HMI control Owner = 0 information from inputs • Bit 0 - Reaset fail • Bit 1 - Owner
AparentEnergy	REAL	Current aparent energy (kVAh)
TotalAparentPower	REAL	Total aparent power detected (kVA)
TotalPowerFactor	REAL	Total power factor in use
AverageCurrent	REAL	Average current (A)

Inputs/Outputs Detail - EM_CFG

EM_CFG_DDT Structure Description

Name	Туре	Description
WarningCode	WORD	Alarm code
FailCode0	INT	Code of last level 0 detected error
FailCode1	INT	Code of last level 1 detected error
FailCode2	INT	Code of last level 2 detected error

Bit description for the warning word (W4112):

Bit	Description
0	Phase 1 voltage out of range
1	Phase 2 voltage out of range
2	Phase 3 voltage out of range
3	Phase 1 current out of range
4	Phase 2 current out of range
5	Phase 3 current out of range
6	Frequency out of range, or phase 1 voltage insufficient to determine frequency
715	Not used

Bit description for the warning word (W3254):

Bit	Description
0	Summary bit (activated if any other bit is activated)
1	Configuration detected error
2	Scaling detected error
3	Phase dropout
4	Cabling detected error
5	Incremental energy could be incorrect due to the meters resetting
6	External demand synchronization waiting time
715	Not used

8.5 Error Management

Detected Error Code

Description

The detected error codes the device can return are read from the FailCode output variable. The detected error codes are the same as for the MBPM710, MBPM800 Error Management (see page 239).

8.6 SCoD Representation and Parameter Description

SCoD Representation and Parameter Description


Overview

The usage of the DFB pins in the SCoD editor is explained in the following SCoD diagram.

The variables defined in the SCoD editor have in principle the same name as the pin (except that an underscore in the pin name is skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before PLC is restarted.

SCoD Representation

Parameters Tab

ModBusAddress:	ScanTime:
0	T#3s
Refresh:	CommandCtrlWindow:
T#500ms	t#5s
Current - max (A):	Current - Display format:
1000.0	999.99 💌
Aparent energy - max (kVah):	Aparent energy - Display format:
1000.0	999.99
Aparent power - max (kVA):	Aparent power - Display format:
1000.0	999.99 💌
AREA:	

The following table describes the properties:

Name	Initial Value	Description
ModBus Address	0	This property represents the device address on the Modbus network. This variable can be found in Modbus communications.
Scan Time	T#3s	Minimum time to maintain detected error signals.
Refresh	T#500ms	Refresh time for device read data on Modbus communications.
CommandCtrlWindow	T#5s	The time waited before executing orders.
Current - max (A)	0	Maximum scaling range for average current.
Current - Display format	T#3s	Display format for average current.
Apparent energy - max (kVah)	T#500ms	Maximum scaling range for apparent energy.
Apparent energy - Display format	T#5s	Display format for apparent energy.
Apparent power - max (kVA)	T#500ms	Maximum scaling range for total apparent power.

Name	Initial Value	Description
Apparent power - Display format	T#5s	Display format for total apparent power.
AREA	T#5s	Area to which the instantiated object belongs. Enables to control the acess to the functions provided by this object.

Device Data Tab

Properties Control Module	
Parent: Device (Equipment Module) Basic Parameters Device Data	
Area Information:	Asset ID:
Kiln	EM7300
	OK Cancel Apply

The following table describes the properties:

Name	Initial Value	Description
Area Information	Not available	Area to which the instantiated object belongs. Enables to control the acess to the functions provided by this object.
Asset ID		Asset ID

8.7 HMI Representation

MBEM7300 - Representation in the HMI

Modbus Energy Meter 7300 (Genie)

The MBEM7300 block is represented in the HMI by the following genie.

Genie Elements

Symbol	Meaning
EM7300 30.0 KW	Opens the MBEM7300 popup. Displays the device name, that is, energy meter and active energy value.
Equi_EM7300	The instance name of the MBEM7300 block is only visible by selecting the Hide/Unhide button in the template.
EM7300 30.0 KW	When there is an unacknowledged note, ! symbol is displayed in the genie.
EM7300 30.0 kW	When there is an active and unacknowledged alarm or communication failure, then outer rectangle blinks in red.
EM7300 30.0 KW	When there is an active and unacknowledged alarm or communication failure, then outer rectangle is steady red.

Popup

The MBEM7300 block popup has the following tabs:

- Operator tab
- Analog tab
- Digital tab
- Information tab

Operator Tab

Equi_EM73	00		X
Device			_
<u>(</u>	Run	ining	
Reset Alar	m		
Current Comma	inds		
Reset Comma	nd active		
Parameters			
	Energy	Power	
Active:	0.0 kWh	0.0kW	
Apparent:	0.0 kVAħ	0.0kVA	
Reactive:	0.0	0.0kVAR	
Avg V L- L	0.0		
Avg V L - N	0.0		20- 5
Avg I	0.0		A BO
Power Factor	0.0		
			J

This tab has 3 sub-sections:

- Status
- Reset Alarm
- Current Commands
- Parameters

The sub-section Status displays the current status.

The possible displays are listed as follows:

- Unknown Status
- Not Ready
- Running
- Communication Failure
- Failure
- Warning

The following table describes the sub-section **Reset Alarm**:

Item	Description
Reset Alarm	Resets alarm.

The following table describes the sub-section Current Commands:

Item	Description	
Reset Command active	Displays the text in green color when the operation is active. Displays the text in white color when the operation is not active.	

The following table describes the sub-section **Basic Information**:

Item	Description	
Active	Displays the values of active energy and active power.	
Apparent	Displays the values of apparent energy and apparent power.	
Reactive Ind	Displays the values of reactive inductive energy and reactive inductive power.	
Reactive Cap	Displays the values of reactive capacitive energy and reactive capacitive power.	
Avg V L-L	Displays the value of average line to line voltage.	
Avg V L-N	Displays the value of average line to neutral voltage.	
Avg I	Displays the value of average current.	
FactorPow	Displays the value of power factor.	

The sub-section **Parameters** also shows the picture of energy meter.

Analog Tab

For detailed description, refer to Analog Tab (see page 167).

Digital Tab

For detailed description, refer to Digital Tab (see page 168).

Information Tab

For description about **Information** tab, refer to Commonly Used Tabs *(see page 32)*.

MBATV - Modbus ATV Drive (MBATV31, MBATV61, and MBATV71 SCoDs)

212

215

Overview

This chapter describes the DFB for the control blocks for variable speed drives on a Modbus network, represented by MBATV31, MBATV61, and MBATV71 SCoDs.

What's in this Chapter?

9.7

9.8

I his chapter contains the following sections:		
Section	Торіс	
9.1	Description	
9.2	Inputs	
9.3	Outputs	
9.4	Inputs/Outputs	
9.5	Operator Screen	
9.6	Error Management	

SCoD Representation and Parameter Description

This chapter contains the following sections:

HMI Representation

9.1 Description

Overview

This section describes the MBATVDev FBD.

What's in this Section?

This section contains the following topics:

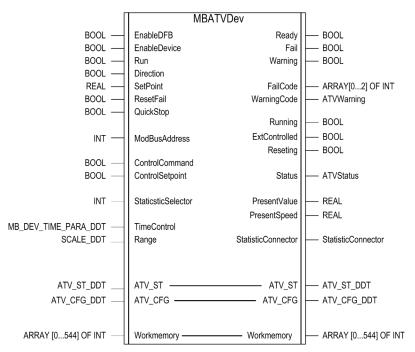
Торіс	Page
Functional Description	197
FBD Representation	198

Functional Description

General

MBATVDev is the control block for the ATV on Modbus Communication.

The MBATVDev block is implemented as listed below:


Software	Implemented as
Unity Pro	FBD MBATVDev
Vijeo Citect	DPC_Devices
UAG	Depending on the speed drive: • SCoD MBATV31 • SCoD MBATV61 • SCoD MBATV71

The main function blocks are described in the ATV Profile Functional Description *(see page 29).*

FBD Representation

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

9.2 Inputs

Overview

This section describes the inputs of the MBATVDev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Inputs Description	200
MBATVDev Specific Inputs	
Input Detail - StatisticsSelector	203

Generic Inputs Description

Overview

This table is the same for all ATV Profiles.

Inputs Description Table

This table describes the generic inputs of the ATV Profile FBD:

Input	Туре	Description	
EnableDFB	BOOL	This input enables the normal execution of the control block. EnableDFB = 0. The entire DFB is restarted (statuses, output values, counters, etc. are lost) and all output values are set to 0 or FALSE. EnableDFB = 1. This input enables communications with devices for their operation. Public variable values are loaded during the first enabling cycle.	
EnableDevice	BOOL	This input variable is true only if EnableDFB is true. To control the speed of the drive, it must be enabled.	
Run	BOOL	This input makes the motor run in the direction selected with the Direction variable.	
Direction	BOOL	This input activates the direction of motor rotation: 1 = forward 0 = reverse NOTE: Setpoint assumes positive values. Changes in the direction of rotation cannot be made with Setpoint sign.	
Setpoint	REAL	This is the speed set-point <i>(see page 54)</i> requested from the speed of the drive. It can only have positive, real values.	
ResetFail	BOOL	Existing detected errors are reset on the rising edge of this signal. Both communications and detected device errors can be reset. If the detected error is a device error, it sends a reset command to the device if ControlCommand = TRUE. This figure shows the input ResetFail:	
QuickStop	BOOL	This input enables a quick stops the drive speed. This variable is state-based. If there is a QuickStop, the Run bit has to be reset to resume operation.	

Input	Туре	Description
ControlCommand	BOOL	This input indicates if the starter is controlled from an external source. If ControlCommand=TRUE the device is controlled from an external source. The generation of follow-up alarms is disabled. If ControlCommand=FALSE, the block only performs read operations on the device status, the transmission of device control or reset commands is not possible. NOTE: This input does not configure the starter; it only defines the DFB operating mode.
ControlSetPoint	BOOL	This input indicates if the speed of the drive is controlled from an external source. (e.g., from the console or a potentiometer)

A WARNING

UNEXPECTED MOTOR START

Reset the Run variable before resuming operation.

The Run input must be inactive while the device is being enabled or while a detected error is being reset.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTICE

UNEXPECTED BEHAVIOUR

The ControlCommand input value must coincide with the speed driver configuration.

Failure to follow these instructions can result in equipment damage.

MBATVDev Specific Inputs

Inputs Description Table

This table describes the inputs of the MBATVDev FBD:

Input	Туре	Description
CommunicationOK	BOOL	A bit is used to indicate whether or not the node is present on the bus.
ModbusAddress	INT	Device address within the Modbus network. This variable can be found in Modbus communications.
StatisticSelector	INT	StatisticSelector <i>(see page 203)</i> is a variable used to obtain statistics for the Modbus network.
TimeControl	MB_DEV_TIME_ PARA_DDT	TimeControl <i>(see page 51)</i> is a parameter for device control.
Range	SCALE_DDT	Range <i>(see page 53)</i> definition for inverter (Raw and engineering range).

Input Detail - StatisticsSelector

Description

This variable is used to obtain statistics for the Modbus network (requests carried out, time between requests, etc.).

This data provides information for using the StatisticsConnector with the Communications library "Statistics Module."

StatisticsSelector Structure Description

This table describes the structure of the StatisticsSelector:

Variable Value	Туре	Description
1	INT	Read Statistics, client
2	INT	Write Statistics, client

9.3 Outputs

Overview

This section describes the outputs of MBATVDev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Outputs Description	205
MBATVDev Specific Output	207
Output Detail - StatisticConnector	208

Generic Outputs Description

Overview

This table is the same for all ATV Profile.

Outputs Description Table

This table describes the outputs of the ATVProfile FBD:

Output	Туре	Description
Ready	BOOL	This output indicates if the device is enabled and free of detected errors. The device is ready to carry out or is carrying out a run or stop command. If QuickStop is enabled, this output is reset to 0. This variable is TRUE as long as there is no detected communications error and the device is in status 5 of the DSP402.
Fail	BOOL	This output indicates a detected error in the control block (parameter configuration, cannot be reset), detected error in the device, or a detected communications error. To reset the detected error, the ResetFail input has to be activated. The last detected error code is in FailCode.
Warning	BOOL	This output indicates if an alarm has been activated for the device. It does not affect the blocks operation and does not need to be reset. The signal remains active until the cause for the alarm disappears. The output is set to 0 only when the alarm is acknowledge.
FailCode	ARRAY	This output indicates the detection of an error. When this output is activated, this variable contains the code for the current detected error. If this output is not activated, this variable contains the last detected error. The detected error source is specified by a 3-level structure.
WarningCode	ATVWarning	The WarningCode <i>(see page 60)</i> output is a data structure that contains information about the alarm currently on the speed of the drive.
Running	BOOL	This output indicates that the speed of the drive is running and has an output frequency. NOTE: If SetPoint is 0 and Run is active, the Running signal is activated.

Output	Туре	Description
ExtControlled	BOOL	Indicates if the drive is controlled from an external source (a console, a push-button panel or a monitoring system) to the system (1) or not (0). It provides information for programming.
Resetting	BOOL	The Resetting <i>(see page 61)</i> output indicates whether or not a reset is being carried out.
Status	ATVStatus	The Status <i>(see page 62)</i> output holds a structure with the information that the module extracts from the drives status variable.
PresentValue	REAL	Indicates the current rotation speed in EU (Engineering Units).
PresentSpeed	REAL	Indicates the current motor rotation speed in rpm.
		ead from the device when there is a detected es keep their last value.

MBATVDev Specific Output

Output Description Table

This table describes the general output of the MBATVDev FBD.

Output	Туре	Description
StatisticConnector	Statistic Connector	The StatisticConnector <i>(see page 208)</i> represents information that is used with Modbus communications to obtain statistics on the Modbus network.

Output Detail - StatisticConnector

Description

The StatisticConnector represents information that is used with Modbus communications to obtain statistics on the Modbus network (requests carried out, time between requests, etc.).

This structure has been created for its use together with the Communications library Statistics module.

StatisticConnector Structure Description

This table describes the structure of StatisticConnector:

Command	Туре	Description
Start	BOOL	Operation has started
EndOk	BOOL	Operation ended correctly
EndNOk	BOOL	Operation ended with an error
PartialTime	DINT	Partial Time

9.4 Inputs/Outputs

Generic Inputs/Outputs Description

Overview

This table is the same for all ATV Profiles.

Inputs/Outputs Description Table

This table describes the inputs/outputs of the ATV Profile FBD:

Name	Туре	Description
ATV_ST	ATV_ST_DDT	The ATV_ST (see page 67) device data structure contains the minimum information required for performing control and monitoring. The information is used by the operator screen and can be read from HMI or SCADA.
ATV_CFG	ATV_CFG_DDT	The ATV_CFG <i>(see page 69)</i> device data structure contains the information used by the operator screen and can be read/write from HMI or SCADA.

9.5 Operator Screen

General

Description

The component includes an operator screen that allows interaction with the communication interface blocks

- ATV_ST_DDT and ATV_CFG_DDT Inputs/Outputs structures.
- ATV_IO_DDT and ATV_IOEXT_DDT Output structures.

9.6 Error Management

Detected Error Code

Description

The detected error codes the device can return are read from the FailCode output variable.

The detected error codes are the same as for the ATVDev Error Management *(see page 74)*.

9.7 SCoD Representation and Parameter Description

SCoD Representation and Parameter Description

Overview

The usage of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (except that an underscore in the pin name is skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before PLC restart.

SCoD Representation

SCoD Interface	Туре	MBATV31, MBA	TV61, MBATV71	Туре	SCoD Interface
	ſ	MBAT	TVDev]	
Variable (PLC)	BOOL —	EnableDFB	Ready	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	EnableDevice	Fail	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	Run	Warning	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	Direction			
Variable (PLC)	REAL	SetPoint	FailCode	ARRAY[02] OF INT	Variable (PLC)
Variable (PLC)	BOOL —	ResetFail	WarningCode	— ATVWarning	Variable (PLC)
Variable (PLC)	BOOL —	QuickStop			
			Running	BOOL	Variable (PLC)
Initial Value	INT —	ModBusAddress	ExtControlled	BOOL	Variable (PLC)
			Reseting	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	ControlCommand			
Variable (PLC)	BOOL —	ControlSetpoint	Status	— ATVStatus	Variable (PLC)
Variable (PLC)	INT —	StaticsticSelector	PresentValue	REAL	Variable (PLC)
			PresentSpeed	- REAL	Variable (PLC)
Variable (PLC) MB_DEV		TimeControl			
Variable (PLC)	SCALE_DDT	Range	StatisticConnector	StatisticConnector	Variable (PLC)
Variable (PLC_HMI)	ATV_ST_DDT	ATV_ST	ATV_ST	ATV_ST_DDT	Variable (PLC_HMI)
Variable (PLC HMI)	ATV CFG DDT -	ATV CFG	ATV CFG	ATV_CFG_DDT	Variable (PLC HMI)
Link ARF	RAY [0544] OF INT	Workmemory —	Workmemory	ARRAY [0544] OF INT	Link

This figure represents the MBATV31, MBATV61 and MBATV71 SCoDs:

Parameter Tab

This figure shows the MBATV31,MBATV61 and MBATV71 parameter tab:

New Control Module	×
Parent: MBDev (Equipment Module)	
Basic Parameters	1
ModBusAddress:	ScanTime:
0	T#3s
Refresh:	CommandCtrfW/indow:
T#500ms	T#5s
AREA:	
0	
Low raw speed inverter:	High raw speed inverter:
0	1500
Low eng. speed inverter:	High eng. speed inverter:
0.0	1500.0
L	OK Cancel Apply

This table describes the properties:

Property	Туре	Description
ModbusAddress	INT	This property represents the device address on the Modbus network. This variable can be found in Modbus communications.
ScanTime	TIME	Minimum time to maintain detected error signals
Refresh	TIME	Refresh time for device read data on Modbus communications
CommandControlWindow	TIME	The time waited before executing orders
AREA	BYTE	Area to which the object that you wish to instantiate belongs. Enables to control access to the functions provided by this object.
Low raw Speed Inverter	INT	Low range value measured in raw units
High raw Speed Inverter	INT	High range value measured in raw units
Low eng. Speed Inverter	REAL	Low range value measured in engineering units
High eng. Speed Inverter	REAL	High range value measured in engineering units

9.8 HMI Representation

MBATV- Representation in the HMI

Modbus ATV (Genie)

The Modbus ATV block is represented in the HMI by the following genie.

Genie Elements

Symbol	Meaning
ATV 30	Opens the Modbus ATV popup. Displays the device name, that is, ATV and PV value.
Eq_MBATV	The instance name of the Modbus ATV block is only visible by selecting the Hide/Unhide button in the template.
ATV 30	When there is an unacknowledged note, the ! symbol is displayed in the genie.
ATV 30	When there is an active and unacknowledged alarm or communication failure, then outer rectangle flashes in red.
ATV 30	When there is an active and unacknowledged alarm or communication failure, then outer rectangle is steady red.

Popup

The Modbus ATV block popup has the following tabs:

- Operator tab
- Analog tab
- Digital tab
- Information tab

Operator Tab	
	For detailed description, refer to Operator Tab of ATV31 (see page 80) and ATV7161 (see page 105).
Analog Tab	
5	For detailed description, refer to Analog Tab (see page 82).
Digital Tab	
·	For detailed description, refer to Digital Tab (see page 83).
Information Tab	
	For description about Information tab, refer to Commonly Used Tabs (see page 32).

MBPM710, MBPM800 - Modbus PM710, PM800 (MBPM710, MBPM800 SCoDs)

10

Overview

This chapter describes the DFB for the control blocks for the PM 710 and PM800 family power meters on a Modbus network, represented by MBPM710 and MBPM800 SCoDs.

What's in this Chapter?

This chapter contains the following sections:

Section	Торіс	Page
10.1	Description	218
10.2	Inputs	222
10.3	Outputs	225
10.4	Inputs/Outputs	232
10.5	Operator Screen	238
10.6	Error Management	239
10.7	SCoD Representation and Parameter Description	240
10.8	HMI Representation	244

10.1 Description

Overview

This section describes the MBPM710Dev DFB and MBPM800Dev DFB.

What's in this Section?

This section contains the following topics:

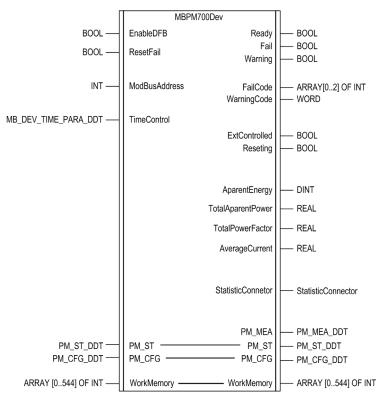
Торіс	Page
Functional Description	219
FBD Representation	220

Functional Description

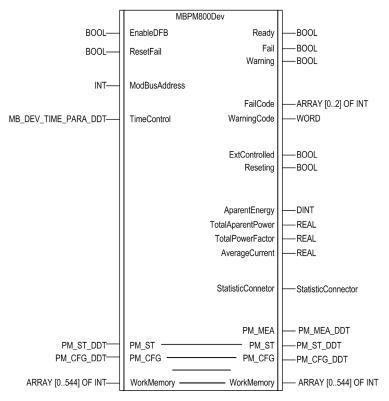
General

The PM profile is part of the device control block family.

The MBPM700Dev and MBPM800Dev blocks are implemented as listed below:


Software	Implemented as	
Unity Pro	DFB MBPM710Dev, MBPM800Dev	
Vijeo Citect	DPC_Devices	
UAG	Depending on the power meters: • SCoD MBPM710 • SCoD MBPM800	

The main function blocks are described in the PM Profile Functional Description *(see page 31)*.


FBD Representation

MBPM710Dev Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

MBPM800Dev Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

10.2 Inputs

Overview

This section describes the inputs of the MBPM710Dev and MBPM800Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Inputs	223
Input Detail - StatisticsSelector	224

Inputs

Inputs Description Table

This table describes the inputs of the MBPM710Dev and MBPM800Dev control blocks:

Input	Туре	Description	
EnableDFB	BOOL	The input enables the normal execution of the control block. When this input is disabled, the entire DFB is restarted (Statuses, Output values, counters, etc. are lost) and all the output values are set to 0 or FALSE as long as the signal remains on FALSE. Activating this input enables communications with devices for their operation. The Public variable values are loaded during the first enabling cycle.	
ResetFail	BOOL	Current detected errors are reset on the rising edge of this signal. Both Communications and detected device errors can be reset. If the detected error is a device error, it sends a reset command to the device if ControlCommand = TRUE. This figure shows the input ResetFail:	
ModbusAddress	INT	Device address within the Modbus network.	
StatisticSelector	INT	The input StatisticsSelector <i>(see page 224)</i> is a variable used to obtain statistics for the Modbus network (requests carried out, time between requests, etc.).	

Input Detail - StatisticsSelector

Description

StatisticSelector is a variable used to obtain statistics for the Modbus network (requests carried out, time between requests, etc.).

This data provides information for using the StatisticsConnector with the Communications library "Statistics Module".

This table describes the variables:

Variable Value	Description
1	Read Statistics, client
2	Write Statistics, client

10.3 Outputs

Overview

This section describes the outputs of the MBPM710Dev and MBPM800Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Outputs Table Description	226
Output Detail - WarningCode	
Output Detail - Resetting	
Output Detail - StatisticConnector	
Output Detail - PM_MEA	

Outputs Table Description

General

This table describes the outputs of the MBPM710Dev and MBPM800Dev FBD:

Output	Туре	Description
Ready	BOOL	This output indicates if the device is enabled and free of detected errors. The device is ready to carry out any read operation.
Fail	BOOL	This output indicates a detected error in the control block (Parameter configuration, cannot be reset) or a detected communications interruption. To reset the detected error, the ResetFail input has to be activated. The last error code is shown on FailCode.
Warning	BOOL	This output indicates an alarm has been activated for the drive. It does not affect the blocks operation and does not need to be reset. This signal remains active until the cause for the alarm disappears.
WarningCode	WORD	The WarningCode <i>(see page 227)</i> is a variable that holds the alarm.
ExtControlled	BOOL	Indicates if the device is controlled from an external source (from the monitoring system) to the system (1) or not (0).
Resetting	BOOL	The Resetting <i>(see page 228)</i> output indicates whether or not a reset is carried out.
ApparentEnergy	DINT	Apparent power consumption (kVAh)
TotalApparentPower	REAL	Total apparent power (kVA)
TotalPowerFactor	REAL	Total power factor
AverageCurrent	REAL	Current, average between the 3 phases (Volt)
StatisticConnector	StatisticConnector	The StatisticConnector <i>(see page 229)</i> represents information that is used with Modbus communications to obtain statistics on the modbus network.
PM_MEA	PM_MEA_DDT	The PM_MEA <i>(see page 230)</i> is a data structure that contains device measurement.
NOTE: The variables communications error.		he device when there is a detected

Output Detail - WarningCode

Description

The output WarningCode is a variable that holds the alarm code.

WarningCode Word Description

This table shows the PM700 (W 4112) Description:

Bit	Description for PM700 (W 4112)	
0	Phase 1 voltage out of range	
1	Phase 2 voltage out of range	
2	Phase 3 voltage out of range	
3	Phase 1 current out of range	
4	Phase 2 current out of range	
5	Phase 3 current out of range	
6	Frequency out of range, or phase 1 voltage insufficient to determine frequency.	

This table shows the PM700 (W 3254) Description:

Bit	Description for PM700 (W 3254)	
0	Summary bit (activated if any other bit is activated)	
1	Configuration error	
2	Scaling error	
3	Phase dropout	
4	Cabling error	
5	Incremental energy could be incorrect due to the meters resetting	
6	External demand synchronization waiting time	

Output Detail - Resetting

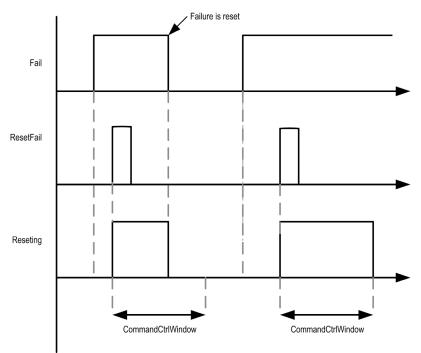
Description

This output indicates whether or not a reset is carried out.

The CommandCtrlWindow variable indicates the maximum time for resetting the detected error.

When a device or communications reset is carried out with ResetFail, the DFB tries to reset the error within the time period defined in CommandCtrlWindow.

If the detected error is reset:


• The Fail and Resetting output variables are reset (they are set to FALSE).

If the detected error is not reset:

- The Resetting variable is set to FALSE.
- The Fail variable is held as TRUE.

ResetFail is edge-based.

This figure shows the Resetting output:

Output Detail - StatisticConnector

Description

The StatisticConnector represents information that is used with Modbus communications to obtain statistics on the Modbus network (requests carried out, time between requests, etc.).

This data provides information for using the StatisticConnector with the Communications library "Statistics Module".

StatisticConnector Structure Description

This table shows the StatisticConnector structure:

Name	Туре	Description
Start	BOOL	Operation has started
EndOk	BOOL	Operation ended correctly
EndNOK	BOOL	Operation ended with an error
PartialTime	DINT	Partial time

Output Detail - PM_MEA

Description

The output PM_MEA is a data structure that contains device measurement information.

Name	Туре	Description
ActiveEnergy	REAL	Real power consumption
ReactiveEnergy	REAL	Reactive power consumption
TotalActivePower	REAL	Total real power
TotalReactivePower	REAL	Total reactive power
AverageLineToLineVoltage	REAL	Voltage, L-L, average between the 3 phases
AverageLineToNeutralVoltage	REAL	Voltage, L-N, average between the 3 phases
Frequency	REAL	Frequency (derived from phase1)
ActualCurrentL1	REAL	Current, instantaneous, phase 1
ActualCurrentL2	REAL	Current, instantaneous, phase 2
ActualCurrentL3	REAL	Current, instantaneous, phase 3
VoltageL1TOL2	REAL	Voltage, phases 1-2
VoltageL2TOL3	REAL	Voltage, phases 2-3
VoltageL1TOL3	REAL	Voltage, phases 1-3
VoltageL1TONeutral	REAL	Voltage, phase 1-N
VoltageL2TONeutral	REAL	Voltage, phase 2-N
VoltageL3TONeutral	REAL	Voltage, phase 3-N
ActivePowerL1	REAL	Real power, phase 1
ActivePowerL2	REAL	Real power, phase 2
ActivePowerL3	REAL	Real power, phase 3
ApparentPowerL1	REAL	Apparent power, phase 1
ApparentPowerL2	REAL	Apparent power, phase 2
ApparentPowerL3	REAL	Apparent power, phase 3
ReactivePowerL1	REAL	Reactive power, phase 1
ReactivePowerL2	REAL	Reactive power, phase 2
ReactivePowerL3	REAL	Reactive power, phase 3
THDCurrentL1	REAL	THD, current, phase 1
THDCurrentL2	REAL	THD, current, phase 2
THDCurrentL3	REAL	THD, current, phase 3
THDVoltageL1ToNeutral	REAL	THD, voltage, 1-N

Name	Туре	Description
THDVoltageL2ToNeutral	REAL	THD, voltage, 2-N
THDVoltageL3ToNeutral	REAL	THD, voltage, 3-N
THDVoltageL1ToL2	REAL	THD, voltage, 1-2
THDVoltageL2ToL3	REAL	THD, voltage, 2-3
THDVoltageL1ToL3	REAL	THD, voltage, 1-3

10.4 Inputs/Outputs

Overview

This section describes the Inputs/Outputs of the MBPM710Dev and MBPM800Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Inputs/Outputs	233
Inputs/Outputs Detail - PM_ST	234
Inputs/Outputs Detail - PM_CFG	236

Inputs/Outputs

Inputs/Outputs Description Table

This table describes the inputs/outputs of the MBPM710Dev and MBPM800Dev DFB:

Name	Туре	Description
PM_ST	PM_ST_DDT	The PM_ST (see page 234) device data structure that holds the minimum information required for performing control and monitoring. The information is used by the operator screen and can be read from HMI or SCADA.
PM_CFG	PM_CFG_DDT	The PM_CFG <i>(see page 236)</i> device data structure holds information used by the operator screen. It can be read from HMI or SCADA.

Inputs/Outputs Detail - PM_ST

Description

The device data structure (PM_ST_DDT) holds the minimum information required for performing control and monitoring.

The information is used by the operator screen and is read/write from HMI or SCADA.

PM_ST_DDT Structure Description

This table shows the PM_ST_DDT structure:

Name	Туре	Description
STW	WORD	Device status
CFGW	WORD	Device control
ApparentEnergy	REAL	Apparent power consumption (kVAh)
TotalApparentPower	REAL	Total apparent power (kVA)
TotalPowerFactor	REAL	Total power factor
AverageCurrent	REAL	Current, average between the 3 phases (Volt)

STW Word Description

The STW Word provides the device status to display in the foreground the monitoring subsystem.

Access to the data held in this bit word is read-only.

This table shows the STW Word description:

Bit	Description
0	Unknown device status or communications interruption. No variable refreshing.
1	Not Ready
2	Module running
3	Detected device error
4	Alarm on device or follow-up detected fault (these require resetting)
5	Communications interruption
6	ResetFail required
8	Resetting
9	EnableDFB
5	Communications interruption

CFGW Word Description

Owner Value	Control is from
1	supervision subsystem or from the opeartor screen
0	supervision subsystem, the DFB input variables values are used for reading from HMI or SCADA

This table shows the CFGW Word Description:

Bit	Description	
0	ResetFail	
1	Owner	

Inputs/Outputs Detail - PM_CFG

Description

This function is a data structure (PM_CFG_DDT) that contains device information.

The information is used by the operator screen and can be read from HMI or SCADA.

PM_CFG_DDT Structure Description

The PM_CFG_DDT data structure contains device information that is used by the operator screen and can be read from HMI or SCADA.

This table shows the PM_CFG_DDT structure:

Name	Туре	Description
WarningCode	WORD	Alarm code
FailCode 0	INT	Code of last level 0 detected error
FailCode 1	INT	Code of last level 1 detected error
FailCode 2	INT	Code of last level 2 detected error

WarningCode Word Description

PM alarm code information.

Takes values from the WarningCode output.

This table shows the PM700 description:

Bit	Description for PM700
0	Phase 1 voltage out of range
1	Phase 2 voltage out of range
2	Phase 3 voltage out of range
3	Phase 1 current out of range
4	Phase 2 current out of range
5	Phase 3 current out of range
6	Frequency out of range, or phase 1 voltage insufficient to determine frequency.

This table shows the PM820 description:

Bit	Description for PM820	
0	Summary bit (activated if any other bit is activated)	
1	Configuration interruption	

Bit	Description for PM820
2	Scaling interruption
3	Phase dropout
4	Cabling interruption
5	Incremental energy could be incorrect due to the meters resetting
6	External demand sinc waiting time

10.5 Operator Screen

General

Description

The component includes an operator screen that enables interaction with the communication interface blocks.

The operator screen data is used to deal with a monitoring system by means of the following:

- PM_ST and PM_CFG Inputs/Outputs structures
- PM_MEA Inputs/Outputs structures

10.6 Error Management

Detected Error Code Description

Overview

The detected error codes the device can return are read from the ErrorCode output variable.

Parameter Configuration Detected Error Codes

This detected error indicates that a parameter configuration public variable has a value that is not allowed.

To reload new values, an edge is required on the EnableDFB variable that cannot be reset:

- FailCode[0]: 16#0003
- FailCode[1]: 16#0000
- FailCode[2]: 16#0004

Modbus Configuration Detected Error Codes

For Modbus, this code is used to indicate that communications have not been established.

It can be reset.

- FailCode[0]: 16#0002
- FailCode[1]: 16#0000
- FailCode[2]: 16#0004

Once Modbus communications have been established, check "Modbus client" detected error codes for FailCode[0] and [1].

All components make a distinction between read and write requests.

- FailCode[2]: 16#0001 Read
- FailCode[2]: 16#0002 Write

10.7 SCoD Representation and Parameter Description

SCoD Representation and Parameter Description

Overview

The usage of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (except that an underscore in the pin name is skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before PLC restart.

MBPM710 SCoD Representation

SCoD Interface	Туре	MBPM710	Туре	SCoD Interface
		MBPM700Dev	Π	
Variable (PLC)	BOOL —	EnableDFB Ready	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	ResetFail Fail Warning	BOOL BOOL	Variable (PLC) Variable (PLC)
				vanazio (i 20)
Initial Value	INT	ModBusAddress		
		FailCode	ARRAY [02] OF INT	Variable (PLC)
Variable (PLC)	MB_DEV_TIME_PARA_DDT	TimeControl WarningCode	WORD	Variable (PLC)
		ExtControlled	BOOL	Variable (PLC)
		Reseting	BOOL	Variable (PLC)
		AparentEnergy		Variable (PLC)
		TotalAparentPower	REAL	Variable (PLC)
		TotalPowerFactor	REAL	Variable (PLC)
		AverageCurrent	REAL	Variable (PLC)
		StatisticConnetor	StatisticConnector	Variable (PLC)
		PM_MEA	PM_MEA_DDT	Variable (PLC_HMI)
Variable (PLC_HN	,	PM_ST PM_ST	PM_ST_DDT	Variable (PLC_HMI)
Variable (PLC_HN	II) PM_CFG_DDT	PM_CFG PM_CFG	PM_CFG_DDT	Variable (PLC_HMI)
Link	ARRAY [0544] OF INT	WorkMemory — WorkMemory	ARRAY [0544] OF INT	Link

This figure represents the MBPM710 SCoD:

MBPM800 SCoD Representation

SCoD Interface	Туре	MBPM800	Туре	SCoD Interface
]	MBPM800Dev	Π	
Variable (PLC)	BOOL —	EnableDFB Ready		Variable (PLC)
Variable (PLC)	BOOL —	ResetFail Fail		Variable (PLC)
		Warning	BOOL	Variable (PLC)
Initial Value	INT —	ModBusAddress		
		FailCode	ARRAY [02] OF INT	Variable (PLC)
Variable (PLC)	MB_DEV_TIME_PARA_DDT	TimeControl WarningCode	WORD	Variable (PLC)
		ExtControlled	BOOL	Variable (PLC)
		Reseting		Variable (PLC)
		AparentEnergy		Variable (PLC)
		TotalAparentPower	REAL	Variable (PLC)
		TotalPowerFactor	REAL	Variable (PLC)
		AverageCurrent	REAL	Variable (PLC)
		StatisticConnetor	StatisticConnector	Variable (PLC)
		PM_MEA	PM_MEA_DDT	Variable (PLC_HMI)
Variable (PLC_HN	II) PM_ST_DDT	PM_ST PM_ST	PM_ST_DDT	Variable (PLC_HMI)
Variable (PLC_HN	II) PM_CFG_DDT	PM_CFG PM_CFG	PM_CFG_DDT	Variable (PLC_HMI)
Link	ARRAY [0544] OF INT —	WorkMemory — WorkMemory	ARRAY [0544] OF INT	Link

This figure represents the MBPM800 SCoD:

Parameter Tab

This figure shows the MBPM710, MBPM800 parameter tab:

New Control Module	×
Parent: MBDev (Equipment Module)	
Basic Parameters	
ModbusAddress;	ScanTime:
	T#3s
Refresh:	CommandCtrlWindow:
T#500ms	T#5s
AREA:	
0	
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
ModbusAddress	INT	Device address within the Modbus network. This variable can be found in Modbus communications.
ScanTime	TIME	Minimum time to maintain detected error signals
Refresh	TIME	Refresh time for device read data on Modbus communications
CommandControlWindow	TIME	The time waited before executing orders
AREA	BYTE	Area to which the object that you wish to instantiate belongs. Enables to control access to the functions provided by this object.

10.8 HMI Representation

MBPM710, MBPM800 - Representation in the HMI

Modbus Power Meter (Genie)

The Modbus Power Meter block is represented in the HMI by the following genie.

Genie Elements

Symbol	Meaning
РМ 30.0 КМ	Opens the Modbus Power Meter popup. Displays the device name, that is, power meter and active power value.
Equi_MBPM	The instance name of the Modbus Power Meter block is only visible by selecting the Hide/Unhide button in the template.
PM 30.0 KW	When there is an unacknowledged note, the ! symbol is displayed in the genie.
PM 30.0 KW	When there is an active and unacknowledged alarm or communication failure, then outer rectangle flashes in red.
Рм 30.0 КМ	When there is an active and unacknowledged alarm or communication failure, then outer rectangle is steady red.

Popup

The Modbus Power Meter block popup has the following tabs:

- Operator tab
- Analog tab
- Digital tab
- Information tab

Operator Tab

🖀 Equi_PM			
Device			
(Ru	nning	
Reset Alar	rm		
Current Comma	ands		
Reset Comma	nd active		
		_	
Parameters			
	Energy	Power	
Active:	0.0 kWh	0.0kW	
Apparent:	0.0 kVAh	0.0kVA	
Reactive:	0.0	0.0kVAR	
Avg V L- L	0.0		
Avg V L - N	0.0		
Avg I	0.0		660 1990 660
Power Factor	0.0		

This tab has 3 sub-sections:

- Status
- Reset Alarm
- Current Commands
- Parameters

The sub-section Status displays the current status.

The possible displays are listed as follows:

- Unknown Status
- Not Ready
- Running
- Communication Failure
- Failure
- Warning

The following table describes the sub-section Reset Alarm:

Item	Description
Reset Alarm	Resets alarm.

The following table describes the sub-section Current Commands:

Item	Description
Reset Command active	Displays the text in green color when the operation is active. Displays the text in white color when the operation is not active.

The following table describes the sub-section Basic Information:

Item	Description
Active	Displays the values of active energy and active power.
Apparent	Displays the values of apparent energy and apparent power.
Reactive Ind	Displays the values of reactive inductive energy and reactive inductive power.
Reactive Cap	Displays the values of reactive capacitive energy and reactive capacitive power.
Avg V L-L	Displays the value of average line to line voltage.
Avg V L-N	Displays the value of average line to neutral voltage.
Avg I	Displays the value of average current.
FactorPow	Displays the value of power factor.

The sub-section **Parameters** also shows the picture of power meter.

Analog Tab

For detailed description, refer to Analog Tab (see page 167).

Digital Tab

For detailed description, refer to Digital Tab (see page 168).

Information Tab

For description about **Information** tab, refer to Commonly Used Tabs *(see page 32)*.

MBTESYST - Modbus Tesys T Motor Management (MBTESYST SCoD)

11

Overview

This chapter describes the DFB for the control block for the Tesys T motor controller on a Modbus network, represented by MBTESYST SCoD.

What's in this Chapter?

Section	Торіс	Page
11.1	Description	248
11.2	Inputs	251
11.3	Outputs	256
11.4	Inputs/Outputs	263
11.5	Operator Screen	266
11.6	Error Management	267
11.7	SCoD Representation and Parameter Description	268
11.8	HMI Representation	271

This chapter contains the following sections:

11.1 Description

Overview

This section describes the MBTESYSTDev DFB.

What's in this Section?

This section contains the following topics:

Торіс	Page
MBTESYSTDev - Functional Description	249
FBD Representation	250

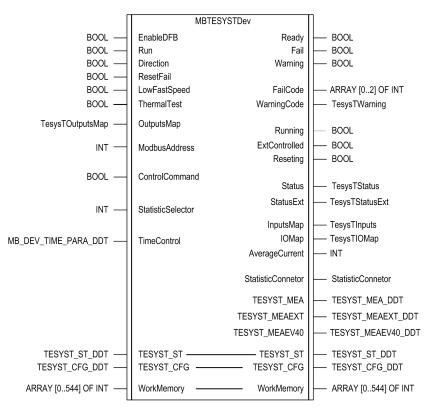
MBTESYSTDev - Functional Description

General

The MBTESYSTDev profile block is the control block for TesysT controller on Modbus communication.

The objective of these functions is to manage the TesysT family of devices in a communications-based manner.

The TesysTDev block is implemented as listed below:


Software	Implemented as
Unity Pro	DFB TesysTDev
Vijeo Citect	DPC_Devices
UAG	Depending on the controller: • SCoD MBTESYST for Advance controller.

The main function blocks are described in the TesysT Profile Functional Description *(see page 30)*.

FBD Representation

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

11.2 Inputs

Overview

This section describes the inputs of the MBTESYSTDev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Inputs Description	252
Specific MBTESYSTDev Inputs	254
Input Detail - StatisticsSelector	255

Generic Inputs Description

Overview

This table is the same for all TesysT Profiles.

Inputs Description Table

This table describes the inputs of the TesysT Profile FBD:

Input	Туре	Description
EnableDFB	BOOL	This input enables the normal execution of the control block. EnableDFB = 0. The entire DFB is restarted (statuses, output values, counters, etc. are lost) and all output values are set to 0 or FALSE. EnableDFB = 1. This input enables communications with devices for their operation. Public variable values are loaded during the first enabling cycle.
Run	BOOL	This input makes the motor run in the direction selected with the Direction variable.
Direction	BOOL	This input activates the direction of motor rotation: 1 = forward 0 = reverse NOTE: Setpoint assumes positive values. Changes in the direction of rotation cannot be
ResetFail	BOOL	made with Setpoint sign. Existing detected errors are reset on a rising edge of this signal. Both Communications and detected device errors can be reset. If the detected error is a device error, it sends a reset command to the device if ControlCommand = TRUE. This figure shows the input ResetFail: Fail AND (NOT Reseting)
LowFastSpeed	BOOL	Slow/fast speed of rotation. For 2-speed motor start configurations. Check the TesysT user manual.
ThermalTest	BOOL	This bit is used to check the forced thermal detected error input on the Tesys T.

Input	Туре	Description
OutputsMap	TesysUOutputsMap	OutputsMap <i>(see page 116)</i> holds a structure used to control the Tesys outputs. If one of the variables is not available, the comment will indicate that the information cannot be accessed.
ControlCommand	BOOL	This input indicates if the starter is controlled from an external source. If ControlCommand=TRUE the device is controlled from an external source. The generation of follow-up alarms is disabled. If ControlCommand=FALSE, the block only performs read operations on the device status, the transmission of device control or reset commands is not possible. NOTE: This input does not configure the starter; it only defines the DFB operating mode.
TimeControl	CAN_DEV_TIME_ PARA_DDT	TimeControl <i>(see page 119)</i> is a parameter for device control.

A WARNING

UNEXPECTED MOTOR START

Reset the Run variable before resuming operation.

The Run input must be inactive while the device is being enabled or while a detected error is being reset.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTICE

UNEXPECTED BEHAVIOUR

The ControlCommand input value must coincide with the speed driver configuration.

Failure to follow these instructions can result in equipment damage.

Specific MBTESYSTDev Inputs

Inputs Description Table

This table describes the inputs of the MBTESYSTDev FBD:

Input	Туре	Description	
ModbusAddress	INT	Device address within the Modbus network. This variable can be found in Modbus communications.	
StatisticsSelector	INT	StatisticsSelector <i>(see page 255)</i> is a variable used to obtain statistics for the Modbus network.	

Input Detail - StatisticsSelector

Description

Variable used to obtain statistics for the Modbus network (requests carried out, time between requests, etc.).

This data provides information for using the StatisticsConnector with the Communications library "Statistics Module."

StatisticsSelector description depending on the value:

Variable Value	Description
1	Read Statistics, client
2	Write Statistics, client

11.3 Outputs

Overview

This section describes the outputs of the MBTESYSTDev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Outputs Description	257
Specific MBTESYSTDevOutputs	259
Output Detail - StatisticConnector	260
Output Detail - TESYST_MEAEXT	261
Output Detail - TESYST_MEAEV40	262

Generic Outputs Description

Overview

This table is the same for all TesysT Profiles.

Outputs Description Table

This table describes the Outputs of the TesysT Profile FBD:

Output	Туре	Description
Ready	BOOL	This output indicates if the device is enabled and free of errors. The device is ready to carry out or is carrying out any run or stop command. If QuickStop is enabled, this output is reset to 0.
Fail	BOOL	This output indicates an detected error in the control block (Parameter configuration, cannot be reset) or detected error in the device, or a detected communications error. In order to reset the detected error, the ResetFail input has to be activated. The last detected error code is shown on FailCode.
Warning	BOOL	This output indicates if an alarm has been activated for the device. It does not affect the blocks operation and does not need to be reset. The signal remains active until the cause for the alarm disappears.
FailCode	ARRAY	This output indicates the detection of an error. When this output is activated, this variable contains the code for the current detected error. If this output is not activated, this variable holds the last detected error. The detected error source is specified by a 3-level structure.
WarningCode	TesysTWarning	The WarningCode (see page 125) output holds a data structure that contains information about the alarm currently on the controller.
Running	BOOL	This output indicates that the Tesys is running. Current higher than 10% of FLA for Advanced and Multifunction controllers.
ExtControlled	BOOL	This output indicates if the device is controlled from an external source (for example, from the console, from a push-button panel, or from the monitoring system) to the system (1) or not (0). Provides information for programming.

Output	Туре	Description	
Reseting	BOOL	The Reseting <i>(see page 126)</i> output indicates whether or not a reset is carried out.	
Status	TesysUStatus	The Status <i>(see page 127)</i> output holds a structure with the information that the module extracts from the status variable of controllers with Advanced and Multifunction control modules.	
IOMap TesysTIOMap The IOMap <i>(see page 130)</i> indicates current speed of rotation in EU (Engineering Units).			
NOTE: The variables can not be read from the device when there is a detected communications error. The variables keep their last value.			

Specific MBTESYSTDevOutputs

Outputs Description Table

This table describes the Outputs of the MBTESYSTDev FBDk:

Output	Туре	Description
StatisticConnector	StatisticConnetor	The StatisticConnector <i>(see page 260)</i> represents information that is used with Modbus communications to obtain statistics on the Modbus network.
TESYST_MEAEXT	TESYST_MEA EXT_ DDT	TESYST_MEAEXT <i>(see page 261)</i> is a data structure that contains extensive device information related to Modbus communications.
TESYST_MEAEV40	TESYST_MEA EV40_ DDT	TESYST_MEAEV40 (<i>see page 262</i>) is a data structure that contains device information related to an EV40 expansion module with Modbus communications.

Output Detail - StatisticConnector

Description

The StatisticConnector represents information that is used with Modbus communications to obtain statistics on the Modbus network (requests carried out, time between requests, etc.).

This data provides information for using the StatisticsConnector with the Communications library "Statistics Module."

StatisticConnector Structure Description

This table shows the StatisticConnector structure:

Name	Туре	Description
Start	BOOL	Operation has started
EndOk	BOOL	Operation ended correctly
EndNOK	BOOL	Operation ended with an detected error
PartialTime	DINT	Partial time

Output Detail - TESYST_MEAEXT

Description

This function holds a data structure (TESYST_MEAEXT_DDT) that contains extended information on the device on Modbus communications.

TESYST_MEAEXT_DDT Structure Description

This table shows the TESYST_MEAEXT_DDT structure:

Name	Туре	Description
FLCCurrent L1	INT	L1 current (%FLC)
FLCCurrent L2	INT	L2 current (%FLC)
FLCCurrent L3	INT	L3 current (%FLC)
FLCCurrent L4	INT	Internal controller temperature (° C)
Temperature	INT	Frequency (Hz)
Current	REAL	Average current (A)
Current L1	REAL	L1 Current (A)
Current L2	REAL	L2 Current (A)
Current L3	REAL	L3 Current (A)
GroundCurrent	INT	GroundCurrent (A)
MotorTemperature	INT	Motor sensor temperature (%)
TimeTrip	INT	Trip time (x 1s)
LastStartCurrent	INT	Last starting current (%FLC)
LastStartDuration	INT	Last amount of time that it took the motor to start (s)

Output Detail - TESYST_MEAEV40

Description

This function holds a data structure (TESYST_MEAEV40_DDT) that contains information on the device with an EV40 expansion module on Modbus communications.

TESYST_MEAEV40_DDT Structure Description

This table shows the TESYST_MEAEV40_DDT structure:

Name	Туре	Description
PowerFactor	REAL	Power factor
AverageVoltage	INT	Average voltage (V)
L3L1Voltage	INT	Voltage between L3-L1 (V)
L1L2Voltage	INT	Voltage between L1-L2 (V)
L2L3Voltage	INT	Voltage between L2-L3 (V)
VoltageImbalance	INT	Phase voltage imbalance (%)
ActivePower	INT	Real power
ReactivePower	INT	Reactive Power (kVAR)
Reserved	INT	Reserve

11.4 Inputs/Outputs

Overview

This section describes the Inputs/Outputs of the MBTESYSTDev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Inputs/Outputs Description	264
Specific MBTESYSTDev Inputs/Outputs	265

Generic Inputs/Outputs Description

Overview

This table is the same for all TesysT Profiles.

Inputs/Outputs Description Table

This table describes the inputs/outputs of the TesysT Profile FBD:

Name	Туре	Description
TESYST_ST	TESYST_ST_DDT	TESYST_ST (see page 134) is a device data structure that holds the minimum information required for performing control and monitoring. The information is used by the operator screen and usable from HMI or SCADA.
TESYST_CFG	TESYST_CFG_DDT	TESYST_CFG (<i>see page 136</i>) is a device data structure that holds the information used by the operator screen. It can be read from HMI or SCADA.

Specific MBTESYSTDev Inputs/Outputs

Inputs/Outputs Description Table

This table describes the WorkMemory array of the MBTESYSTDev FBD:

Name	Туре	Description
WorkMemory	ARRAY	Array used for Modbus communications. This variable is meant for use with a Modbus Port that serializes all Modbus requests in an optimum manner.

11.5 Operator Screen

General

Description

The component includes an operator screen that enables interaction with the communication interface blocks.

The operator screen data is used to deal with a monitoring system by means of the following:

- TESYST_ST_DDT and TESYST_CFG_DDT Inputs/Outputs structures.
- TESYST_MEA and TESYSTMEAEV40 depending on the component Output variables.

11.6 Error Management

Detected Error Code

Description

The detected error codes the device can return are read from the FailCode output variable.

The detected error codes are the same as for the TesysUCDev Error Management *(see page 139).*

11.7 SCoD Representation and Parameter Description

SCoD Representation and Parameter Description

Overview

The usage of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (except that an underscore in the pin name is skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before PLC restart.

SCoD Representation

SCoD Interface	Туре	MBT	ESYST	Туре	SCoD Interface
	ſ	MBTE	SYSTDev]	
Variable (PLC)	BOOL —	EnableDFB	Ready	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	Run	Fail	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	Direction	Warning	- BOOL	Variable (PLC)
Variable (PLC)	BOOL	ResetFail			
Variable (PLC)	BOOL	LowFastSpeed	FailCode	ARRAY [02] OF INT	Variable (PLC)
Variable (PLC)	BOOL —	ThermalTest	WarningCode	— TesysTWarning	Variable (PLC)
Variable (PLC)	TesysTOutputsMap ——	OutputsMap	Running	BOOL	Variable (PLC)
			ExtControlled	- BOOL	Variable (PLC)
Initial Value	INT	ModbusAddress	Reseting	BOOL	Variable (PLC)
			· ·		. ,
Variable (PLC)	BOOL	ControlCommand	Status		Variable (PLC)
	2001	Controlocominanta	StatusExt		Variable (PLC)
Variable (DLC)	INT				()
Variable (PLC)	IN I ——	StatisticSelector	InputsMap		Variable (PLC)
			IOMap	- TesysTIOMap	Variable (PLC)
Variable (PLC)	MB_DEV_TIME_PARA_DDT	TimeControl	AverageCurrent		Variable (PLC)
			StatisticConnetor	StatisticConnector	Variable (PLC)
			TESYST_MEA	TESYST_MEA_DDT	Variable (PLC_HMI)
			TESYST_MEAEXT	- TESYST_MEAEXT_DDT	Variable (PLC_HMI)
			TESYST MEAEV40	TESYST MEAEV40 DD1	Variable (PLC HMI)
Variable (PLC HMI)	TESYST ST DDT-	TESYST ST	TESYST ST	TESYST ST DDT	Variable (PLC HMI)
Variable (PLC HMI)	TESYST_CFG_DDT	TESYST_CFG	TESYST_CFG	TESYST CFG DDT	Variable (PLC_HMI)
······					
Link	ARRAY [0544] OF INT	WorkMemory —	WorkMemory		Link

This figure represents the MBTESYST SCoD:

Parameter Tab

This figure shows the MBTESYST parameter tab:

New Control Module	×
Parent: MBDev (Equipment Module)	
Basic Parameters	
ModbusAddress:	ScanTime:
0	T#3s
Refresh:	CommandCtr/Window:
T#500ms	T#5s
AREA:	
0	
[OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
ScanTime	TIME	Minimum time to maintain detected error signals
CommandControlWindow	TIME	The time waited before executing orders
AREA	BYTE	Area to which the object that you wish to instantiate belongs. Enables to control access to the functions provided by this object.

11.8 HMI Representation

MBTESYST- Representation in the HMI

Modbus TeSys T (Genie)

The Modbus TeSys T block is represented in the HMI by the following genie.

Genie Elements

Symbol	Meaning
TeSys T 1 %FLC	Opens the Modbus TeSys T popup. Displays the device name, that is, TeSys T and average current value.
Equi_MBTeSysT	The instance name of the Modbus TeSys T block is only visible by selecting the Hide/Unhide button in the template.
TeSys T 1%FLC	When there is an unacknowledged note, the ! symbol is displayed in the genie.
TeSys T 1%FLC	When there is an active and unacknowledged alarm or communication failure, then outer rectangle flashes in red.
TeSys T 1 %FLC	When there is an active and unacknowledged alarm or communication failure, then outer rectangle is steady red.

Popup

The Modbus TeSys T block popup has the following tabs:

- Operator tab
- Analog tab
- Digital tab
- Information tab

Operator Tab	For detailed description, refer to Operator Tab (see page 144).
Analog Tab	For detailed description, refer to Analog Tab (see page 146).
Digital Tab	For detailed description, refer to Digital Tab (see page 147).
Information Tab	For description about Information tab, refer to Commonly Used Tabs <i>(see page 32)</i> .

ATV7161 - Ethernet ATV61, ATV71 (EATV61 and EATV71 SCoDs)

12

Overview

This chapter describes the DFB for the control blocks for variable speed drives on an Ethernet network, represented by EATV61 and EATV71 SCoDs.

MISAPPLICATION OF MODULES

The modules in this section do not reflect any specific installation. Before adopting these modules for use in a specific application, the engineer must:

- · conduct a safety analysis for the application and equipment installed
- verify that all modules are appropriate for the equipment or function in the installation
- supply appropriate parameters, particularly for limits
- · check that all sensors and actuators are compatible with the modules selected
- thoroughly test all functions during verification and commissioning
- provide independent paths for critical control functions (emergency stop, overlimit conditions etc.) according to the safety analysis and applicable codes and regulations.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

What's in this Chapter?

This chapter contains the following sections:

Section	Торіс	Page
12.1	Description	275
12.2	Inputs	278
12.3	Outputs	285
12.4	Inputs/Outputs	293
12.5	Operator Screen	294

Section	Торіс	Page
12.6	Error Management	295
12.7	SCoD Representation and Parameter Description	296
12.8	HMI Representation	299

12.1 Description

Overview

This section describes the ATV7161Dev DFB.

What's in this Section?

This section contains the following topics:

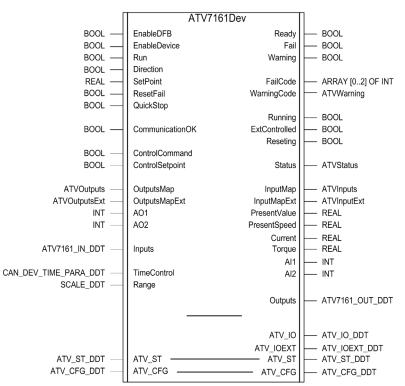
Торіс	Page
Functional Description	276
FBD Representation	277

Functional Description

General

The ATV7161Dev profile is the control block for the ATV61 and ATV71 on Ethernet communication.

The ATV7161Dev block is implemented as listed below:


Software	Implemented as
Unity Pro	DFB ATV7161Dev
Vijeo Citect	DPC_Devices
UAG	Depending on the speed drive: • SCoD EATV61 • SCoD EATV71

The main function blocks are described in the ATV Profile Functional Description *(see page 29)*.

FBD Representation

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

12.2 Inputs

Overview

This section describes the inputs of the ATV7161Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Inputs Description	279
ATV7161Dev Specific Inputs	
Input Detail - OutputsMap	
Input Detail - OutputsMapExt	284

Generic Inputs Description

Overview

This table is the same for all ATV Profiles.

Inputs Description Table

This table describes the generic inputs of the ATV Profile FBD:

Input	Туре	Description
EnableDFB	BOOL	This input enables the normal execution of the control block. EnableDFB = 0. The entire DFB is restarted (statuses, output values, counters, etc. are lost) and all output values are set to 0 or FALSE. EnableDFB = 1. This input enables communications with devices for their operation. Public variable values are loaded during the first enabling cycle.
EnableDevice	BOOL	This input variable is true only if EnableDFB is true. To control the speed of the drive, it must be enabled.
Run	BOOL	This input makes the motor run in the direction selected with the Direction variable.
Direction	BOOL	This input activates the direction of motor rotation: 1 = forward 0 = reverse
		NOTE: Setpoint assumes positive values. Changes in the direction of rotation cannot be made with Setpoint sign.
Setpoint	REAL	This is the speed set-point <i>(see page 54)</i> requested from the speed of the drive. It can only have positive, real values.
ResetFail	BOOL	Existing detected errors are reset on the rising edge of this signal. Both communications and detected device errors can be reset. If the detected error is a device error, it sends a reset command to the device if ControlCommand = TRUE. This figure shows the input ResetFail:
		Fail AND (NOT Reseting)
QuickStop	BOOL	This input enables a quick stops the drive speed. This variable is state-based. If there is a QuickStop, the Run bit has to be reset to resume operation.

Input	Туре	Description
ControlCommand	BOOL	This input indicates if the starter is controlled from an external source. If ControlCommand=TRUE the device is controlled from an external source. The generation of follow-up alarms is disabled. If ControlCommand=FALSE, the block only performs read operations on the device status, the transmission of device control or reset commands is not possible. NOTE: This input does not configure the starter; it only defines the DFB operating mode.
ControlSetPoint	BOOL	This input indicates if the speed of the drive is controlled from an external source. (e.g., from the console or a potentiometer)

UNEXPECTED MOTOR START

Reset the Run variable before resuming operation.

The Run input must be inactive while the device is being enabled or while a detected error is being reset.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTICE

UNEXPECTED BEHAVIOUR

The ControlCommand input value must coincide with the speed driver configuration.

Failure to follow these instructions can result in equipment damage.

ATV7161Dev Specific Inputs

Inputs Description Table

This table describes the inputs of the ATV7161Dev FBD:

Input	Туре	Description
CommunicationOK	BOOL	A bit is used to indicate whether or not the node is present on the bus.
AO1	INT	Controls the value of the AO1 analog output. This value can be found on all devices on CANopen and Ethernet networks. The speed driver analog output can only be controlled with this input variable. It cannot be controlled from HMI/SCADA.
AO2	INT	This input controls the value of the AO2 analog output. This value can be found on ATV71 and ATV61 on CANopen and Ethernet networks. The speed driver analog output can only be controlled with this input variable. It cannot be controlled from HMI/SCADA.
OuputsMap	ATVOutputs	TheOutputsMap <i>(see page 283)</i> holds a data structure used to control the speed of the drive outputs. The information is available on CANopen and Ethernet. The speed of the drive outputs can only be controlled with this input variable.(They cannot be controlled from HMI/SCADA).
OuputsMapExt	ATVOutputsExt	The OutputsMapExt <i>(see page 284)</i> holds a data structure used to control the speed driver outputs for ATV71 and ATV61 extended cards on CANopen and Ethernet networks. The speed of the drive outputs can only be controlled with this input variable.(They cannot be controlled from HMI/SCADA).
Inputs	ATV7161_ IN_ DDT	The Inputs <i>(see page 49)</i> holds a data array structure that contains data obtained from the device. The speed of the drive can be controlled with this input variable. The input is reserved for the DFB and cannot be used directly. Allocate the structure (%MWx) for the correct operation of the control block.

Input	Туре	Description
TimeControl	CAN_DEV_TIM_ PARA_DDT	TimeControl <i>(see page 51)</i> is a parameter for device control
Range	SCALE_DDT	Range <i>(see page 53)</i> definition for inverter (raw and engineering range)

Input Detail - OutputsMap

Description

This function is a data structure (ATVOutputs) used to control the speed of the drive outputs. The information is available on CANopen and Ethernet.

The speed of the drive outputs can only be controlled with this input variable.

They cannot be controlled from the HMI or SCADA.

ATVOutputs Structure Description

This table describes the ATVOutputs structure:

Name	Туре	Description
R1	BOOL	Controls the state of the R1 relay output
R2	BOOL	Controls the state of the R2 relay output

Input Detail - OutputsMapExt

Description

This function is a data structure (ATVOutputsExt) used to control the speed driver outputs for ATV71 and ATV61 extended cards on CANopen and Ethernet networks.

The speed drivers outputs can only be controlled with this input variable.

They cannot be controlled from HMI or SCADA.

ATVOutputsExt Structure Description

This table describes the ATVOutputsExt structure:

Name	Туре	Description
R3	BOOL	Controls the state of the R3 relay output
R4	BOOL	Controls the state of the R4 relay output
LO1	BOOL	Controls the state of digital output LO1
LO2	BOOL	Controls the state of digital output LO2
LO3	BOOL	Controls the state of digital output LO3
LO4	BOOL	Controls the state of digital output LO4

12.3 Outputs

Overview

This section describes the outputs of ATV7161Dev FBD.

What's in this Section?

This section contains the following topics:

Торіс	Page
Generic Outputs Description	286
ATV7161Dev Specific Outputs	288
Output Detail - InputsMap	289
Output Detail - InputsMapExt	290
Output Detail - ATV_IO	291
Output Detail - ATV_IOEXT	292

Generic Outputs Description

Overview

This table is the same for all ATV Profiles.

Outputs Description Table

This table describes the outputs of the ATVProfile FBD:

Output	Туре	Description
Ready	BOOL	This output indicates if the device is enabled and free of detected errors. The device is ready to carry out or is carrying out a run or stop command. If QuickStop is enabled, this output is reset to 0. This variable is TRUE as long as there is no detected communications error and the device is in status 5 of the DSP402.
Fail	BOOL	This output indicates a detected error in the control block (parameter configuration, cannot be reset), detected error in the device, or a detected communications error. To reset the detected error, the ResetFail input has to be activated. The last detected error code is in FailCode.
Warning	BOOL	 This output indicates if an alarm has been activated for the device. It does not affect the blocks operation and does not need to be reset. The signal remains active until the cause for the alarm disappears. The output is set to 0 only when the alarm is acknowledge.
FailCode	ARRAY	This output indicates the detection of an error. When this output is activated, this variable contains the code for the current detected error. If this output is not activated, this variable contains the last detected error. The detected error source is specified by a 3-level structure.
WarningCode	ATVWarning	The WarningCode <i>(see page 60)</i> output is a data structure that contains information about the alarm currently on the speed of the drive.
Running	BOOL	This output indicates that the speed of the drive is running and has an output frequency. NOTE: If SetPoint is 0 and Run is active, the Running signal is activated.

Output	Туре	Description
ExtControlled	BOOL	Indicates if the drive is controlled from an external source (a console, a push-button panel or a monitoring system) to the system (1) or not (0). It provides information for programming.
Resetting	BOOL	The Resetting <i>(see page 61)</i> output indicates whether or not a reset is being carried out.
Status	ATVStatus The Status (see page 62) output holds a structure the information that the module extracts from the drive status variable.	
PresentValue	REAL Indicates the current rotation speed in EU (Engineer Units).	
PresentSpeed	REAL	Indicates the current motor rotation speed in rpm.
NOTE: The variables can not be read from the device when there is a detected communications error. The variables keep their last value.		

ATV7161Dev Specific Outputs

Outputs Description Table

This table describes the outputs of the ATV7161Dev control block.

Output	Туре	Description
InputsMap	ATVInputs	The OutputsMap <i>(see page 289)</i> holds a data structure that contains information on the state of the drive inputs CANopen and Ethernet communications.
InputsMapExt	ATVInputsExt	The OutputMapExt (see page 290) holds a data structure that contains information on the state of the drive inputs for ATV71 and ATV61 extended cards on CANopen and Ethernet networks.
ATV_IO	ATV_IO_DDT	The ATV_IO <i>(see page 291)</i> device data structure holds information for performing monitoring. The information is used by operator screen, it can be read from HMI or SCADA.
ATV_IOEXT	ATV_IOEXT_DDT	The ATV_IOEXT (see page 292) output holds a data structure that contains information for performing monitoring. The information is used by operator screen, it can be read from HMI or SCADA.
Current	REAL	Current motor current in %.
Torque	INT	Current motor torque in 0.1A increments.
Al1	INT	Value of the Al1 analog device input.
AI2	INT	Value of the AI2 analog device input.
OutputData	ATV6171_OUT_DDT	The OutputData <i>(see page 59)</i> holds a data array structure that contains data sent to the device. The speed of the drive can be controlled with this output variable. The output is reserved for the DFB; cannot be used directly. Allocate the structure (%MWx) for a correct control blocks operation.

Output Detail - InputsMap

Description

This function is a data structure (ATVInputs) that contains information on the state of the drive inputs CANopen and Ethernet communications.

ATVInputs Structure Description

The below table shows the ATVInputs structure:

Name	Туре	Description
LI1	Bool	Shows the state of digital input L1
LI2	Bool	Shows the state of digital input L2
LI3	Bool	Shows the state of digital input L3
LI4	Bool	Shows the state of digital input L4
LI5	Bool	Shows the state of digital input L5
LI6	Bool	Shows the state of digital input L6

Output Detail - InputsMapExt

Description

This function is a data structure (ATVInputsMapExt) that contains information on the state of the speed drivers inputs for ATV71, ATV61 extended cards on CANopen and Ethernet networks.

ATVInputsMapExt Structure Description

This table shows the ATVInputsMapExt structure:

Name	Туре	Description
LI7	BOOL	Shows the state of digital input L7
LI8	BOOL	Shows the state of digital input L8
LI9	BOOL	Shows the state of digital input L9
LI10	BOOL	Shows the state of digital input L10
LI11	BOOL	Shows the state of digital input L11
LI12	BOOL	Shows the state of digital input L12
LI13	BOOL	Shows the state of digital input L13
LI14	BOOL	Shows the state of digital input L14

Output Detail - ATV_IO

Description

This device data structure (ATV_IO_DDT) holds information for performing monitoring. The information is used by operator screen and it can be read from HMI or SCADA.

ATV_IO_DDT Structure Description

This table shows the ATV_IO_DDT structure:

Name	Туре	Description
OutputsMap	WORD	Data with the drive speed outputs The OutputsMap provides control over device outputs.
AO1	INT	Device control This output indicates the value of the AO1 analog output (value of input variableAO1).
Current	REAL	Current value This output indicates the current in the motor in 0.1 A increments (Value of the current output variable).

OutputsMap Word Description

This table describes the OutputsMap:

Bit	Description
0	R1 output state (OutputsMap.R1)
1	R2 output state (OutputsMap.R2)
2	R3 output state (OutputsMap.R3). For CATV31M
3	R4 output state (OutputsMap.R4). For CATV31M
4	LO1 output state (OutputsMapExt.LO1). For CATV31M
5	LO2 output state (OutputsMapExt.LO2). For CATV31M
6	LO3 output state (OutputsMapExt.LO3). For CATV31M
7	LO4 output state (OutputsMapExt.LO4). For CATV31M

Output Detail - ATV_IOEXT

Description

This device data structure (ATV_IOEXT_DDT) holds information for performing monitoring.

The information is used by operator screen and it can be read from HMI or SCADA.

ATV_IOEXT_DDT Structure Description

This table shows the ATV_IOEXT_DDT structure:

Name	Туре	Description
InputsMap	WORD	State of the device digital inputs
Al1	INT	AI1 analog input
Al2	INT	AI2 analog input
AO2	INT	AO2 analog output
Torque	DINT	Current Torque value

InputsMap Word Description

The InputsMap provides the value of the device inputs. This table describes the InputsMap:

Bit	Description
0	Value of digital input LI1 (InputsMap.LI1)
1	Value of digital input LI2 (InputsMap.LI2)
2	Value of digital input LI3 (InputsMap.LI3)
3	Value of digital input LI4 (InputsMap.LI4)
4	Value of digital input LI5 (InputsMap.LI5)
5	Value of digital input LI6 (InputsMap.LI6)
6	Value of digital input LI7 (InputsMap.LI7)
7	Value of digital input LI8 (InputsMap.LI8)
8	Value of digital input LI9 (InputsMap.LI9)
9	Value of digital input LI10 (InputsMap.LI10)
10	Value of digital input LI11 (InputsMap.LI11)
11	Value of digital input LI12 (InputsMap.LI12)
12	Value of digital input LI13 (InputsMap.LI13)
13	Value of digital input LI14 (InputsMap.LI14)
14	Value of digital input LI15 (InputsMap.LI15)

12.4 Inputs/Outputs

Generic Inputs/Outputs Description

Overview

This table is the same for all ATV Profiles.

Inputs/Outputs Description Table

This table describes the inputs/outputs of the ATV Profile FBD:

Name	Туре	Description
ATV_ST	ATV_ST_DDT	The ATV_ST (see page 67) device data structure contains the minimum information required for performing control and monitoring. The information is used by the operator screen and can be read from HMI or SCADA.
ATV_CFG	ATV_CFG_DDT	The ATV_CFG <i>(see page 69)</i> device data structure contains the information used by the operator screen and can be read/write from HMI or SCADA.

12.5 Operator Screen

General

Description

The component includes an operator screen that allows interaction with the communication interface blocks.

- ATV_ST_DDT and ATV_CFG_DDT Inputs/Outputs structures.
- ATV_IO_DDT and ATV_IOEXT_DDT Output structures.

12.6 Error Management

Detected Error Code

Description

The detected error codes the device can return are read from the FailCode output variable.

The detected error codes are the same as for the ATVDev Error Management *(see page 74)*.

12.7 SCoD Representation and Parameter Description

SCoD Representation and Parameter Description

Overview

The usage of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (except that an underscore in the pin name is skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before PLC restart.

SCoD Representation

SCoD Interface	Туре	EATV61, EATV	71	Туре	SCoD Interface
	Γ	ATV7161Dev]	
Variable (PLC)	BOOL —	EnableDFB	Ready	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	EnableDevice	Fail	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	Run	Warning	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	Direction			
Variable (PLC)	REAL	SetPoint	FailCode	ARRAY [02] OF INT	Variable (PLC)
Variable (PLC)	BOOL —	ResetFail	WarningCode	ATVWarning	Variable (PLC)
Variable (PLC)	BOOL —	QuickStop			
			Running	BOOL	Variable (PLC)
Initial Value	BOOL —	CommunicationOK	ExtControlled	BOOL	Variable (PLC)
			Reseting	BOOL	Variable (PLC)
Variable (PLC)	BOOL —	ControlCommand			
Variable (PLC)	BOOL —	ControlSetpoint	Status	ATVStatus	Variable (PLC)
Variable (PLC)	ATVOutputs —	OutputsMap	InputMap	ATVInputs	Variable (PLC)
Variable (PLC)	ATVOutputsExt —	OutputsMapExt	InputMapExt	ATVInputExt	Variable (PLC)
Variable (PLC)	INT —	AO1	PresentValue	- REAL	Variable (PLC)
Variable (PLC)	INT —	AO2	PresentSpeed	- REAL	Variable (PLC)
			Current	- REAL	Variable (PLC)
Variable (IO_PLC)	ATV7161_IN_DDT —	Inputs	Torque	REAL	Variable (PLC)
			Al1	INT	Variable (PLC)
Variable (PLC)	CAN_DEV_TIME PARA_DDT	TimeControl	Al2	INT	Variable (PLC)
Variable (PLC)	SCALE_DDT	Range			
		-	Outputs	ATV7161 OUT DDT	Variable (IO_PLC)
					ranasis (ro_r 20)
			 ATV_IO		Variable (PLC HMI)
			ATV_IOEXT	ATV_IOEXT_DDT	Variable (PLC_HMI)
Variable (DLC, HMI)					(_ /
Variable (PLC_HMI) Variable (PLC_HMI)	ATV_ST_DDT ATV CFG DDT	ATV_ST	ATV_ST	ATV_ST_DDT	Variable (PLC_HMI)
Variable (PLC_HIVII)		AIV_CFG	— ATV_CFG	ATV_CFG_DDT	Variable (PLC_HMI)

This figure represents the EATV61 and EATV71 SCoDs:

Parameter Tab

This figure shows the EATV61 and EATV71 SCoDs parameter tab:

Properties Control Module	
Parent: Eth (Equipment Module)	
Basic Parameters	
ScanTime:	CommandCtrlWindow:
T#3s	T#5s
AREA:	
0	
Low raw speed inverter:	High raw speed inverter:
0	1500
Low eng. speed inverter:	High eng. speed inverter:
0.0	1500.0
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
ScanTime	TIME	Minimum time to maintain detected error signals
CommandControlWindow	TIME	The time waited before executing orders
AREA	BYTE	Area to which the object that you wish to instantiate belongs. Enables to control access to the functions provided by this object.
Low raw Speed Inverter	INT	Low range value measured in raw units
High raw Speed Inverter	INT	High range value measured in raw units
Low eng. Speed Inverter	REAL	Low range value measured in engineering units
High eng. Speed Inverter	REAL	High range value measured in engineering units

12.8 HMI Representation

Ethernet ATV61, ATV71 - Representation in the HMI

Ethernet ATV (Genie)

The Ethernet ATV block is represented in the HMI by the following genie.

Genie Elements

Symbol	Meaning
ATV 30	Opens the Ethernet ATV popup. Displays the device name, that is, ATV and PV value.
Eq_EATV	The instance name of the Ethernet ATV block is only visible by selecting the Hide/Unhide button in the template.
ATV 30	When there is an unacknowledged note, the ! symbol is displayed in the genie.
ATV 30	When there is an active and unacknowledged alarm or communication failure, then outer rectangle flashes in red.
ATV 30	When there is an active and unacknowledged alarm or communication failure, then outer rectangle is steady red.

Popup

The Ethernet ATV block has the following tabs:

- Operator tab
- Analog tab
- Digital tab
- Information tab

Operator Tab

Equi_ATV71	×
Running	
Reset Alarm	
Current Operation	
Device Enable active	
Run Order active	
Run Forward active	
Reset Command active	
QuickStop Order active	
Control Orders from System active	
SetPoint Control from System active	
Parameters	H
PV 30.0	
SP 40.0	Ш
Current 14	Ш
Torque 2Nm	

This tab has 3 sub-sections:

- Status
- Reset Alarm
- Current Operation
- Parameters

The sub-section Status displays the current status.

The possible displays are listed as follows:

- Unknown Status
- Not Ready
- Running
- Communication Failure
- Failure
- Warning

The following table describes the sub-section Reset Alarm:

Item	Description
Reset Alarm	Resets alarm.

The following table describes the sub-section Current Operation:

Item	Description	
Device Enable active	Displays the text in green color when the operation is active. Displays the text in white color when the operation is not active.	
Run Order active		
Run Forward active		
Reset Command active		
QuickStop Order active		
Control Orders from System active		
SetPoint Control from System active		

The following table describes the sub-section Parameters:

Item	Description
PV	Displays the present value.
SP	Displays the set point value.
Current	Displays the value of current.
Torque	Displays the value of torque.

The sub-section Parameters also shows the picture of ATV.

Analog Tab

For detailed description, refer to Analog Tab (see page 82).

Digital Tab

For detailed description, refer to Digital Tab (see page 83).

Information Tab

For description about **Information** tab, refer to Commonly Used Tabs *(see page 32).*

Communication Components

Overview

This part describes the Communication function blocks.

What's in this Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
13	General Overview of Communication Resources	305
14	General Concepts	309
15	CANopen Communication	317
16	ModBus Communication	353
17	Tools	383
18	Ethernet Communication	389
19	Communications Technologies	435

General Overview of Communication Resources

13

Overview

This Chapter lists the resources that were designed specifically for Network communication or bus based communication.

What's in this Chapter?

This chapter contains the following topics:

Торіс	Page
Technological Blocks for Communications	306
Component Library for Communications	308

Technological Blocks for Communications

General

Following is a list of the components that are described in this document and that have been specifically designed for the automation of Modbus, CANopen, and Ethernet Modbus TCP/IP communication systems.

Single Read/Write Requests

- **MBClientBs:** (Basic Modbus Client). Issues a read or write request for n registers on a Modbus communication bus.
- **CClient:** (CANopen Client). Issues a read or write request for n registers on a CANopen communication bus.
- **EClient:** (Ethernet Client). Issues a read or write request for n registers on an Ethernet communication network.

Multiple Read/Write Requests

- **MBScanner:** (Modbus Scanner). Periodically refreshes read or write requests for n registers issued to a single node on a Modbus communication bus.
- **CScanner:** (CANopen Scanner). Periodically refreshes read or write requests for n registers issued to a single node on a CANopen communication bus.
- **EScanner:** (Ethernet Scanner). Periodically refreshes read or write requests for n registers issued to a single node on an Ethernet communications network.

Gateways Between Different Communication Buses

ASRTPBdg: (Gateway between CANopen and Advantys devices). Issues requests to a device that is connected to an Advantys STB input/output island.
 EGtwMB (Modbus – Ethernet Gateway). Serial Modbus-Modbus TCP/IP Gateway (Ethernet). Issues requests via Ethernet to a device connected to a serial gateway (TSXETG100)

Serialization of Requests to the Port

- MBPortM: (M340 Modbus Port). Serializes Modbus requests to the controller port.MBPortP: (Premium Modbus Port). Serializes Modbus requests to the controller physical port.
- **CPortM:** (M340 CANopen Port). Serializes CANopen requests to the controller physical port.
- CPortP: (Premium CANopen Port). Serializes CANopen requests to the controller physical port.
- **EPortM:** (M340 Ethernet Port). Serializes Ethernet requests to the controller physical port or communication modules.

- **EPortP:** (Premium Ethernet Port). Serializes Ethernet requests to the controller's physical port or communication modules.
- **EPortQ:** (Quantum Ethernet Port). Serializes Ethernet requests to the controller physical port or communication modules.

Statistical Tools

Statistics: Performs calculations on the transmitted requests. Time between requests, average response time, etc.

Component Library for Communications

General

The technological blocks listed in the previous section, together with other standard al blocks from the Unity libraries, are combined with each other in order to generate DPU Components that automate communications systems on standard SCHNEIDER ELECTRIC buses.

The DPU Components include the following resources for automatically generating Unity projects:

- Variables
- Control logic
- Operator Screens

General Concepts

14

Overview

This Chapter describes the basic concepts implemented by the communications control resources.

What's in this Chapter?

This chapter contains the following topics:

Торіс	Page
Logical Architecture – Communications	310
Communication Process Diagram	311
What is a Communication Scanner?	312
What is a Communication Client?	314
What is a Port Function?	315

Logical Architecture – Communications

Basics

The communication functions basic operation consists of the various Clients or Scanners storing issued requests in a memory that is managed by the ports.

The Ports are linked to a physical port on the controller and, based on a defined algorithm, manage priorities and waiting times, send the requests to the correct destination, and finally return the corresponding response to the Client or Scanner that generated the request.

Memory Management

The data exchange zone consists of a dynamic structure that adapts to the needs of each program in order to provide appropriate memory management.

The necessary work memory (WorkMemory) is calculated during the first scanning cycle.

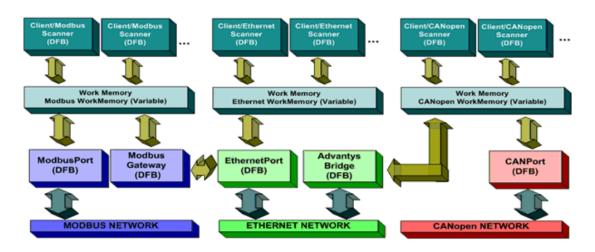
NOTE: Clients and Scanners must already be configured and program instances must be executed when the controller first scanning cycle takes place. This will enable the port to carry out a calculation regarding work memory and enable the correct order of execution to be maintained: First, the clients/scanners; then the Port that serializes the requests.

CANopen

Systems with communications to devices on an Advantys STB island, the CANopen-Advantys device gateway functions as a port in relation to the Client or Scanner requests on CANopen.

Gateway

A gateway is a hardware device which is used to connect Modbus Ethernet networks with Serial Modbus networks. In order to use this device, a DFB that converts requests from serial clients to Ethernet client requests must be used.


Once these requests are received by the gateway, they are converted into serial requests again and are sent to the corresponding devices. The main difference between serial requests and Ethernet requests consists of device addressing.

Internally, a gateway is made up of a modified serial Modbus port and an Ethernet client. Instead of calling the serial communication functions (which is what a normal port does), the serial Modbus port enters the request data into the Ethernet client, waits for its response, and returns the data which has been returned like a normal port would.

Communication Process Diagram

Communication Diagram

The following diagram represents the communication process:

What is a Communication Scanner?

General

A Communication Scanner is a function block that uses an internal Client to issue several sequential requests to different memory positions in the remote device. It makes it possible to program up to 10 read/write requests that will be issued sequentially; activated either cyclically or with one single cycle.

By using a Communication Scanner, it is possible to access a set of memory addresses (consecutive or non-consecutive) in remote devices that cannot be accessed normally with components generated with the DPU solution, just like with a client, but by programming several accesses to different memory positions in the device sequentially and individually, without the use of multiple clients.

Access to this data is explicit, i.e., the user must program access to this data. This is different from the implicit access used in other communications, as with CANopen PDOs or Ethernet IO Scanning, in which access must be configured but not programmed.

The following names will be used in this manual to refer to the scanners: **ModBusScanner:** Modbus Scanner (Modbus Messaging) **CANScanner:** CANopen Client (CANopen messaging. SDO) **ModBusEthernetScanner:** Ethernet Scanner (Ethernet Messaging)

Communication Scanner Functions

The module main functions are described below:

Function	Description
Cyclic reading/writing	Enables reading or writing, with cycling timing.
Multiple register reading/writing	Enables several consecutive registers to be read (only available with ModBusEthernetClient and ModBusClientBasic).
Individual activation of scanner requests	Individually select which requests should be activated (out of the ten available ones).
Error management	Monitors transaction errors, identifying them on three levels in order to determine the source of the error.
Priorities	Define priorities for systems with multiple client accesses.
Statistics	Obtains the transactions OK/NOK status, as well as their access times.

Communication Scanner Blocks

The communications scanner blocks are implemented as listed below:

Software	Implemented as
Unity Pro	Depending on which communication technology is used. There are 3 different blocks: CANOpen: CanScannerCTL <i>(see page 318)</i> ModBus ModBusScannerCTL <i>(see page 354)</i> Ethernet ModBusEthernetScannerCTL <i>(see page 390)</i>
UAG	Depending on which technology is used, there are different available SCoDs: CANOpen: SCoD CScanner (see page 318) ModBus: SCoD MBScanner (see page 354) Ethernet: SCoD EScanner (see page 390)

What is a Communication Client?

General

A communications client enables to access the remote device data.

For example, this enables to read/write from/to a variable speed drive parameter if this parameter is not available on the respective speed driver control block.

Access to this data is explicit and the access to this data must be programmed. This is different from the implicit access used in other communications, as with CANopen PDOs or Ethernet IO Scanning, in which access must be configured but not programmed.

The following names will be used in this manual to refer to the clients: **ModBusClientBasic:** Modbus Client (Modbus Messaging) **CANClient:** CANopen Client (CANopen messaging. SDO). **ModBusEthernetClient:** Ethernet Client (Ethernet Messaging)

Communication Clients

The communications clients block is implemented as listed below:

Software	Implemented as	
Unity Pro	Depending on which communication technology is used. There are 2 different blocks: ModBus: ModBusClientBsCTL (see page 361) CANClient: CANClientCTL (see page 328) Ethernet: ModBusEthernetClientCTL (see page 398)	
UAG	Depending on which communication technology is used, different SCoD should be used: ModBusClientBasic: SCoD MBClientBs (see page 361) CANClient: SCoD CClient (see page 328) ModBusEthernetClient: SCoD EClient (see page 398)	

What is a Port Function?

Function Description

A Port DFB is a function which is capable of serializing and managing requests sent to a physical medium working on CANopen, serial Modbus, or Modbus TCP/IP.

A client is a Modbus communications (ATV, PM, ATS, etc.) device DFB or a generic read/write DFB to a device on the physical medium (Clients, Scanners).

The basic operation consists of:

- 1. Storing the various Clients requests in a memory that is managed by the Port (Modbus, CANopen, or Ethernet).
- **2.** Taking out the requests from the queue, following on a defined algorithm which manages priorities and waiting times
- 3. Sending them to the appropriate destination.
- 4. Returning the destination response to the client that generated the request.

Requirements

Using a port DFB for messaging requests is required.

A minimum of one port per controller hardware is necessary in order to be able to effect communications of this type.

NOTE: In a serial Modbus (RTU) project, it is necessary to use at least one port DFB, since the communications on a Modbus take place through messaging by definition.

If the Device library is used with CANopen or Modbus TCP/IP networks, port DFBs are not required for their control, since these devices exchange cyclic data by means of IO Scanning technology on Modbus TCP/IP and PDOs on CANopen.

Information that is not included in the Device library blocks must be requested through a cyclic exchange, i.e. through requests sent to a port DFB.

Chosing the Port

Select the port SCoD fitting to the PLC and the communication:

Communication	M340	Premium	Quantum
Modbus RTU	ModbusPortM <i>(see page 368)</i>	ModbusPortP (see page 375)	
CANOpen	CanPortM (see page 346)	CanPortP (see page 337)	-
Modbus TCP/IP	ModBusEthernetPortM (see page 414)	ModBusEthernetPortP (see page 421)	ModBusEthernetPortQ (see page 428)

CANopen Communication

15

Overview

This chapter describes the CANopen communication SCoDs and their representation in Unity Pro.

MISAPPLICATION OF MODULES

The modules in this section do not reflect any specific installation. Before adopting these modules for use in a specific application, the engineer must:

- · conduct a safety analysis for the application and equipment installed
- verify that all modules are appropriate for the equipment or function in the installation
- supply appropriate parameters, particularly for limits
- · check that all sensors and actuators are compatible with the modules selected
- thoroughly test all functions during verification and commissioning
- provide independent paths for critical control functions (emergency stop, overlimit conditions etc.) according to the safety analysis and applicable codes and regulations.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

What's in this Chapter?

This chapter contains the following sections:

Section	Торіс	Page
15.1	CScanner: CANopen Scanner	318
15.2	CClient: CANOpen Client	328
15.3	CPortP: CANopen Port Premium	337
15.4	CPortM: CANopen Port Modicon	346

15.1 CScanner: CANopen Scanner

Overview

This section describes the CScanner SCoD, Communication Scanner SCoD using CANopen technology (CANopen messaging, SDO).

What's in this Section?

This section contains the following topics:

Торіс	Page
Description	319
Inputs	320
Outputs	323
Inputs/Outputs	324
Representation as SCoD in UAG	325

Description

Function Description

The CANScannerCTL is a Communications Scanner *(see page 312)* that uses an internal Client to issue several sequential requests to different memory positions in the remote device.

Representation in FBD

CANScannerCTL BOOL EnableDFB Ready BOOL Busy BOOL BOOL · ResetFail BOOL INT Priority End CanAddress BOOL INT Fail Enabled LastSectionProcessed INT ARRAY [0..9] OF BOOL ARRAY [0..9] OF BOOL -ReadWrite FailCode ARRAY [0..1] OF INT CanIndex ARRAY [0..9] OF INT -ReadData ARRAY [0..1] OF INT ARRAY [0..9] OF INT -CanSubIndex StatisticConnector StatisticConnector ARRAY [0..9] OF INT -Length ARRAY [0..9] OF INT -WriteData INT StatisticSelector Refresh TIME INT MaxWriteSize INT MaxReadSize ARRAY [0..19] OF INT WorkMemory WorkMemory ARRAY [0..19] OF INT

The CScanner SCoD is represented with the CanScanner DFB.

Inputs

General

Indexes (Memory Address, CanIndex, CanSubIndex) are usually expressed in decimal values in device manuals. In order to express the index as a hexadecimal value, use the string "16#" before the index, i.e., 16#index.

Input Parameter Description

Parameter	Туре	Description
EnableDFB	BOOL	Activating this input enables communications. If the function is not enabled, initialize the scanner.
ResetFail	BOOL	Resets a communications or parameter error.
Priority	INT	 Command priority. The lower the value, the higher the priority, i.e., 0 is the maximum priority. Any value is valid with a conditions: If integrating a Modbus Client with any element from the DPL Devices Components is requested, the priorities that are used by the latter must be taken into account in order not to interfere with these elements: 1 Control commands. They have maximum priority. 2 Command confirmation. The read operations carried out to confirm that the commands have been executed. Medium priority. 3 Data reading.
		If these priority levels are not observed, it is possible that the Client requests will never be executed or that they will not allow other requests to be transmitted. If integrating a Modbus Client with other DPL Devices Components elements is not requested, any priority levels can be used In other cases, it is recommended to use priority levels greater than or equal to 4.
CanAddress	INT	Address of the CANopen node that the client should access. The range of possible values goes from 1 to 127.
Enabled	ARRAY of INT	Bit array. These bits enable the scanner lines individually. When set to true, the scanner element will be read or written to cyclically, based on the associated parameters.

Parameter	Туре	Description
ReadWrite	ARRAY of INT	Bit array. These bits select, for each scanner line, whether the operation that should be carried out is a: when =1 read operation when =0 write operation
		NOTE: Modifying the read/write operations for each request misaligns the WriteData and/or ReadData arrays.
CanIndex	ARRAY of INT	Each position in the array holds the number of the index for the object with which the operation should be carried out.
CanSubIndex	ARRAY of INT	Each position in the array holds the number of the sub- index for the object with which the operation should be carried out.
Length	ARRAY of INT	Integer array. The integers hold the length of the data to be read/written in each scanner line. For Modbus (ModbusScanner, ModbusEthernetScanner and CANScanner.) or Ethernet (ModBusEthernetClient) communications, the length can be in bits or Words, depending on the BitWord variable. The maximum length for words is 120. If communications are carried out via CANopen (CANClient), this size is specified in bytes, and the size of any CAN request can be 1, 2, or 4 bytes. NOTE: Modifying the lengths of the write operations for each request will misalign the WriteData array.
WriteData	ARRAY of INT	Integer array. The integers hold the data to be written in each scanner line. This table holds the data to be written for the read requests. The size of the variables used for each request is marked by the Length variable. As a result, each write request reserves its zone in this array.
StatisticSelector	INT	 Variable used to obtain network statistics (requests carried out, time beten requests, etc.). This data provides information for using the StatisticsConnector with the Communications library "Statistics Module. Depending on the value: 1 Read Statistics, Scanner 2 Read Statistics, Client 3 Write Statistics, Scanner 4 Write Statistics, Client
Refresh	TIME	Time that the scanner will wait before it repeats an operation cycle.

Parameter	Туре	Description
MaxReadSize	INT	Configuration parameter that indicates how many words will be read in the request issued by this client. If no value is specified, the maximum possible value is used by default (125 words for Ethernet/Modbus; 4 for CANopen). This parameter is used for calculating and managing the work memory area (WorkMemory).
MaxWriteSize	INT	Configuration parameter that indicates how many words will be written in the largest request issued by this client. If no value is specified, the maximum possible value is used by default (125 words for Ethernet/Modbus; 4 for CANopen). This parameter is used for calculating and managing the work memory area (WorkMemory).

Outputs

Output Parameter Description

Parameter	Туре	Description
Ready	BOOL	Indicates that the scanner is ready for operation.
Busy	BOOL	Indicates that the scanner is busy waiting for the response to a request.
End	INT	Indicates that the operation in progress has ended.
Fail	BOOL	Shows an error in the function during the course of the current request. If communications with the slave is in error state, it stops requests until a ResetFail is carried out.
FailCode	INT[3]	Indicates the last error that took place, according to three error levels.
LastSectionProcessed	INT	If End is "true," this output shows the index of the scanner operation that has ended. NOTE: ReadData holds the read data for LastSectionProcessed. Because of this, this data is updated every time a new read operation is processed.
		This data must be unloaded from this array by the program in case it is needed after the next request.
StatisticConnector	StatisticConnector	Information data used to obtain network statistics (requests carried out, time between requests, etc.). This structure has been created for its use together with the Communications library Statistics module.

This tables describes the StatisticConnector type:

Name	Туре	Description
Start	BOOL	Operation has started
EndOk	BOOL	Operation ended correctly
EndNOK	BOOL	Operation ended with an error
PartialTime	DINT	Partial time

Inputs/Outputs

Inputs/Outputs Parameter Description

Parameter	Туре	Description
WorkMemory	Array	Work memory. Array used for communications. This variable is used in a CanPort / ModBusPort / ModBusEthernetPort, which has the objective of serializing client requests in an optimum manner.

Representation as SCoD in UAG

Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

CANScannerCTL Input Output Diagram

SCoD Interface	Туре			Туре	SCoD Interface
	[CANScannerCTL]	
Variable (PLC)	BOOL —	EnableDFB	Ready	- BOOL	Variable (PLC)
Variable (IO_PL	C) BOOL —	ResetFail	Busy	- BOOL	Variable (PLC)
Variable (PLC)	INT —	Priority	End	- BOOL	Variable (PLC)
Variable (PLC)	INT —	CanAddress	Fail	- BOOL	Variable (PLC)
Variable (PLC)	ARRAY [09] OF BOOL	Enabled	LastSectionProcessed	- INT	Variable (PLC)
Variable (PLC)	ARRAY [09] OF BOOL	ReadWrite	FailCode	ARRAY [01] OF INT	Variable (PLC)
Variable (PLC)	ARRAY [09] OF INT	CanIndex	ReadData	ARRAY [01] OF INT	Variable (PLC)
Variable (PLC)	ARRAY [09] OF INT	CanSubIndex	StatisticConnector	 StatisticConnector 	Variable (PLC)
Variable (PLC)	ARRAY [09] OF INT	Length			. ,
Variable (PLC)	ARRAY [09] OF INT	WriteData			
Variable (PLC)	INT	StatisticSelector			
Variable (PLC)	TIME	Refresh			
Variable (PLC)	INT —	MaxWriteSize			
Variable (PLC)	INT	MaxReadSize			
Link	ARRAY [019] OF INT	WorkMemory —	WorkMemory	ARRAY [019] OF INT	Link

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: CO (Equipment Module)	
Basic Parameters	
MaxWriteSize:	MaxReadSize:
2	2
CanAddress:	Priority:
-1	0
Refresh:	
T#500ms	
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
CANAddress	INT	Address of the CANopen node that the client should access. The range of possible values goes from 1 to 127.
MaxReadSize	INT	Configuration parameter that indicates how many words will be read in the request issued by this client. This parameter is used for calculating and managing the work memory area (WorkMemory). NOTE: If several requests are made with the same client, use the maximum length of the read requests to be issued as the value of the parameter.
MaxWriteSize	INT	Configuration parameter that indicates how many words will be read in the request issued by this client. This parameter is used for calculating and managing the work memory area (WorkMemory). NOTE: If several requests are made with the same client, use the maximum length of the read requests to be issued as the value of the parameter.

Property	Туре	Description
Priority	INT	Command priority. The lower the value, the higher the priority. (0 is the maximum priority)
Refresh	TIME	Time that the scanner will wait before it repeats an operation cycle.

15.2 CClient: CANOpen Client

Overview

This section describes the CClient SCoD, the Client SCoD with CANopen communication technology.

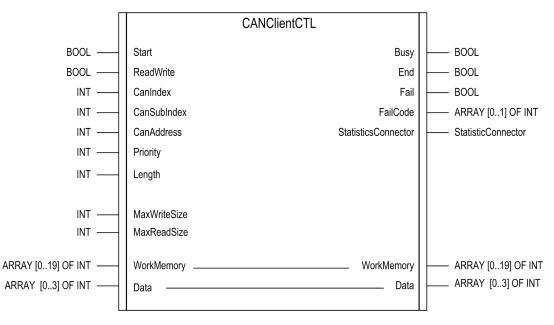
The module main functions are described below:

Function	Description
Read/Write	Enables select whether the parameter has read or write access.
Error management	Monitors transaction errors, identifying them on three levels in order to determine the source of the error.
Priorities	Enables to define priorities for systems with multiple client accesses.
Statistics	Obtains the transactions OK/NOK status, as well as their access times.

What's in this Section?

This section contains the following topics:

Торіс	Page
Description	329
Inputs	330
Outputs	332
Inputs/Outputs	334
Representation as SCoD in UAG	335


Description

Function Description

This Communication Client *(see page 314)* enables device data to be written or read to/from CANopen technologies.

Representation in FBD

The CClient SCoD is represented with the CanClientCTL DFB in Unity Pro:

Inputs

General

Indexes (Memory Address, CanIndex, CanSubIndex) are usually expressed in decimal values in device manuals. In order to express the index as a hexadecimal value, use the string "16#" before the index, i.e., 16#index.

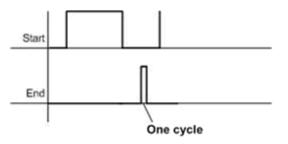
Input Parameter Description

Parameter	Туре	Description
Start	BOOL	A rising edge on this signal indicates, to the client, that the data on the inputs is valid and that a request to a server should be issued. The rising edge also resets errors. A falling edge on this signal triggers an ACK of the end-of- operation notification, and the client is ready for the next cycle. When the signal is activated, the parameters are copied to the function, so modifying them has no effect.
ReadWrite	BOOL	Selects whether the operation to be carried out is a read operation (when set to false) or a write operation (when set to true). Selects whether the operation to be carried out is a: when =1 read operation when =0 write operation
CanIndex	INT	Number of the index for the object with which the operation should be carried out. It can be expressed as a decimal or hexadecimal value.
CanSubIndex	BOOL	Indicates the number of the sub-index for the object with which the operation should be carried out. It can be expressed as a decimal or hexadecimal value.
CanAddress	INT	Address of the CANopen node that the client should access. The range of possible values goes from 1 to 127.

Parameter	Туре	Description
Priority	INT	 Command priority. The lower the value, the higher the priority, i.e., 0 is the maximum priority. Any value is valid with a conditions: If integrating a Modbus Client with any element from the DPL Device Component is requested, the priorities that are used by the latter must be taken into account in order not to interfere with these elements: 1 Control commands. They have maximum priority. 2 Command confirmation. The read operations carried out to confirm that the commands have been executed. Medium priority. 3 Data reading.
		If these priority levels are not observed, it is possible that the Client requests will never be executed or that they will not allow other requests to be transmitted. If integrating a Modbus Client with other DPL Device Component elements is not requested, any priority levels can be used In other cases, it is recommended to use priority levels greater
Length	INT	than or equal to 4. Length of the data involved in the request that has been carried out. The maximum length for words is 120. If communications are carried out via CANopen (CANClient), this size is specified in bytes, and the size of any CAN request can be 1, 2, or 4 bytes
MaxReadSize	INT	Configuration parameter that indicates how many words will be read in the request issued by this client. If no value is specified the maximum possible value is used by default (=4). This parameter is used for calculating and managing the work memory area (WorkMemory).
MaxWriteSize	INT	Configuration parameter that indicates how many words will be written in the largest request issued by this client. If no value is specified, the maximum possible value is used by default (=4) This parameter is used for calculating and managing the work memory area (WorkMemory).

Outputs

Output Parameter Description


Parameter	Туре	Description	
Busy	BOOL	Activated while a request is taking place. Indicates that the client is busy and that no new requests can be made because of this.	
End	INT	Activated when a request cycle ends. Indicates that the operation has ended (with or without error). This signal is acknowledged (ACK) by setting the Start signal to Low.	
Fail	BOOL	Activated when there is an error in the request transmission. In order to reset the error, activate the client again by setting the Start signal to High. Time diagram:	
FailCode	INT[3]	Indicates the last error that took place, according to three error levels.	
StatisticsConnector	StatisticsConnector	Information data used to obtain network statistics (requests carried out, time between requests, etc.). This structure has been created for its use together with the Communications library Statistics module.	

This table describes the StatisticConnector type:

Name	Туре	Description
Start	BOOL	Operation has started
EndOk	BOOL	Operation ended correctly
EndNOK	BOOL	Operation ended with an error
PartialTime	DINT	Partial time

NOTE:

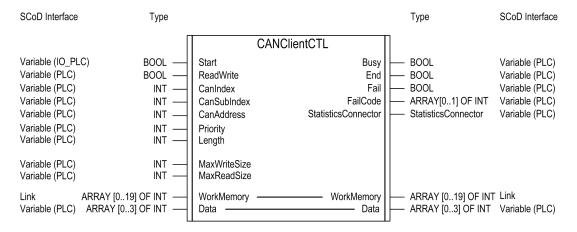
If, for any reason, the Start signal is FALSE when the End signal is activated, only an edge for one cycle of the End signal will be produced. This can result in the program (depending on how it is designed) not detecting the End signal, which is why this must not be allowed to happen for any reason what so ever. The corresponding behavior would be as follows:

Inputs/Outputs

Inputs/Outputs Parameter Description

Parameter	Туре	Description
WorkMemory	Array	Work memory. Array used for communications. This variable is used in a CanPort / ModBusPort / ModBusEthernetPort, which has the objective of serializing client requests in an optimum manner.
Data	Array	Holds the write data or the read data, depending on the ReadWrite input parameter.

Representation as SCoD in UAG


Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: CO (Equipment Module)	
Basic Parameters	
MaxWriteSize:	MaxReadSize:
125	125
CanAddress:	Priority:
-1	3
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
MaxReadSize	INT	Configuration parameter that indicates how many words will be read in the request issued by this client. This parameter is used for calculating and managing the work memory area (WorkMemory).
MaxWriteSize	INT	Configuration parameter that indicates how many words will be read in the request issued by this client. This parameter is used for calculating and managing the work memory area (WorkMemory).
CANAddress	INT	Address of the CANopen node that the client should access. The range of possible values goes from 1 to 127.
Priority	INT	Command priority. The lower the value, the higher the priority. (0 is the maximum priority)

15.3 CPortP: CANopen Port Premium

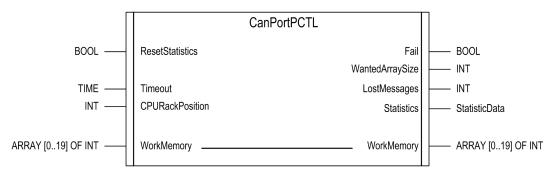
Overview

This section describes CPortP, the Port SCoD when using CANOpen technology with Premium PLC.

What's in this Section?

This section contains the following topics:

Торіс	Page
Description	338
Inputs	339
Outputs	340
Inputs/Outputs	342
Representation as SCoD in UAG	344


Description

General

CPortP is a Port *(see page 315)* function which is capable of serializing and managing requests sent to a physical medium working on CANopen.

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

Inputs

Input Parameter Description

Parameter	Туре	Description
Reset Statistics	BOOL	Enabling this input resets output variables. When =1, the data on the Statistics output variable is reset to its default values (0). The input is level-based, i.e., statistics will remain set to 0 as long as the input is held as true
Timeout	TIME	Defines the timeout value to be used in the DFB to activate the Fail output variable.
CPURackPosition	INT	Defines the slot in which the CPU is located on the rack.

Outputs

Output Parameter Description

Parameter	Туре	Description	
Fail	BOOL	Indicates that an error has occurred while transmitting a request. The bit cannot be reset as soon as a request is issued without an error, it is set to 0. The error codes must be checked in each DFB belonging to devices or serial Modbus clients.	
WantedArraySize	INT	 Indicates the size necessary for the WorkMemoryRS485 array to function correctly. Since arrays start on 0, the array must be declared with the minim size of [0WantedArraySize-1]. If additional serial Modbus (RTU) clients or devices are added to program, the size of this variable will increase, making it necessary to monitor the WorkMemoryRS485 Array. This variable is calculated during the first Scanning cycle so add serial Modbus (RTU) clients or devices during "online" mode has consquences: The size of the Array will not increase. The ModbusGateway DFB will not take into account requests from these new clients. 	
LostMessages	INT	Indicates the number of messages that have been lost (that the clie has not received). A value ≠ 0 often comes from a CANClient instance is probably no being executed on every single cycle or a programming error. If messages are being lost on the CANopen bus timing between cal of different clients, hardware (wiring) problem should be checked.	
Statistics	StatisticData	Holds a structure with statistical data on the operation of the EthernetGatewayModbus DFB. The information obtained in this data structure is the statistic for the requests managed by this EthernetGatewayModbus DFB. Requests sent by clients that are associated with this DFB by means of the WorkMemory485 Array.	

This tables describes the StatisticData type:

Name	Туре	Description
RequestsSended	DINT	Total number of sent requests.
RequestsOk	DINT	Total number of requests that ended correctly.
RequestsError	DINT	Total number of requests that ended in an error
MinTime	DINT	Minimum time required to end a request (msec)
AvgTime	REAL	Average time required to end a request (msec)

Name	Туре	Description
MaxTime	DINT	Maximum time required to end a request (msec)
LastTime	DINT	Time required to end the last request (msec)
CurrentTime	DINT	The time spent on processing the current request (0 if there is no request in progress)
RequestsSecond	DINT	Number of requests that can be sent per second (calculated with the AvgTime value).
LastCycleNumber	DINT	Number of controller cycles that the last request took to be executed.
CurrentCycleNumber	DINT	Number of controller cycles that the current request has taken so far (0 if there is no request in progress).
TimeOnQueue	DINT	Time that the last request has been waiting in the queue before being sent (only useful for client statistics).

Inputs/Outputs

WorkMemory Description

This Array holds the read/write requests of the clients/scanners.

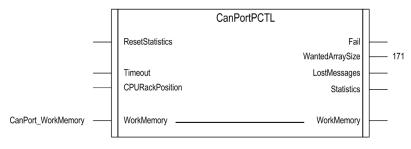
During the first Scanning cycle, the devices reserve read/write %Mwords from this Array, based on the exchange words required by each DFB. The ModbusGateway DFB then counts them, and as a result specifies and knows how many pieces of data will be serialized.

UNEXPECTED EQUIPMENT OPERATION

The WorkMemory variable must be adjusted previously to set:

- The size of the data exchange area between the device and client DFB
- The CanPortPCTL DFB to the size needed for the elements that are being used

Failure to follow these instructions can result in injury or equipment damage.


The system will be limited by fixed sizes or use memory that is not being used if this is not done.

Calculating the WorkMemory Array Size

The necessary size for the array of the variable associated to WorkMemoryRS485 is automatically calculated by the DFBs of the port shown by the WantedArraySize output.

But it is necessary to check that the size of the Array for the WorkMemoryRS485 variable of the CanPortCTL DFB has a size greater than or equal to the one that the WantedArraySize variable requires.

Example with a CanPort DFB:

🖻 🔮 CPortP_C	anPort		CanPort		
+ Cinputs>					
🖃 📥 Koutp	uts>				
- 🔶 F	ail	1	BOOL	1	
- 🔶 W	/antedArraySize	2	INT	(171)	
🔶 L	ostMessages	3	INT	0	
🛨 🎒 S	tatistics	4	StatisticData		

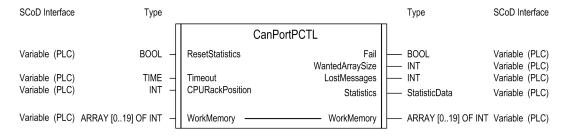
Editing this in Variables:

E- CanPort_WorkMemory

In order to check the value:

- **1.** Execute the program with the calculated array
- 2. Check the value returned by the CanPortCTL DFB
- **3.** Resize the array to the WantedArraySize value (the array must have a size of [0 ... WantedArraySize-1] as a minimum).

Representation as SCoD in UAG


Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: CO (Equipment Module)	
Basic Parameters	
Timeout:	CPURackPosition:
T#2s	
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
Timeout	TIME	Defines the timeout value to be used in the DFB to activate the Fail output variable.
CPURackPosition	INT	Defines the slot in which the CPU is located on the rack.

15.4 CPortM: CANopen Port Modicon

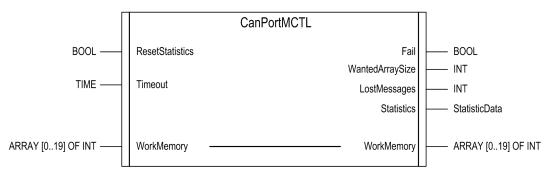
Overview

This section CPortM, the Port function when using CANOpen technology with Modicon PLC.

What's in this Section?

This section contains the following topics:

Торіс	Page
Description	347
Inputs	348
Outputs	349
Inputs/Outputs	350
Representation as SCoD in UAG	


Description

General

CPortM is a Port *(see page 315)* function which is capable of serializing and managing requests sent to a physical medium working on serial Modbus.

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

Inputs

Input Parameter Description

Parameter	Туре	Description
Reset Statistics	BOOL	Described in CPortP Inputs. (see page 339)
TimeOut	TIME	Described in CPortP Inputs. (see page 339)

Outputs

Output Parameter Description

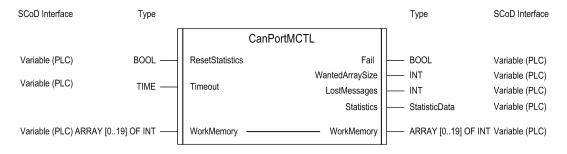
Parameter	Туре	Description
Fail	BOOL	Described in CPortP Outputs. (see page 340)
WantedArraySize	INT	Described in CPortP Outputs. (see page 340)
LostMessages	INT	Described in CPortP Outputs. (see page 340)
Statistic	StatisticData	Described in CPortP Outputs. (see page 340)

Inputs/Outputs

WorkMemoryRS485 (Array)

This Array is described in the CPortP Inputs/Outputs. (see page 342)

Representation as SCoD in UAG


Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: CO (Equipment Module)	
Basic Parameters	
Timeout: T#2s	
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
Timeout	TIME	Defines the timeout value to be used in the DFB to activate the Fail output variable.

ModBus Communication

16

Overview

This chapter describes the ModBus communication SCoDs and their representation in Unity Pro.

MISAPPLICATION OF MODULES

The modules in this section do not reflect any specific installation. Before adopting these modules for use in a specific application, the engineer must:

- · conduct a safety analysis for the application and equipment installed
- verify that all modules are appropriate for the equipment or function in the installation
- supply appropriate parameters, particularly for limits
- · check that all sensors and actuators are compatible with the modules selected
- thoroughly test all functions during verification and commissioning
- provide independent paths for critical control functions (emergency stop, overlimit conditions etc.) according to the safety analysis and applicable codes and regulations.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

What's in this Chapter?

This chapter contains the following sections:

Section	Торіс	Page
16.1	MBScanner: ModBus Scanner	354
16.2	MBClientBs: ModBus Client Basic	361
16.3	MBPortM: ModBus Port Modicon 340	368
16.4	MBPortP: ModBus Port Premium	375

16.1 MBScanner: ModBus Scanner

Overview

This section describes the MBScanner, Communication Scanner SCoD using Modbus technology (Modbus Messaging).

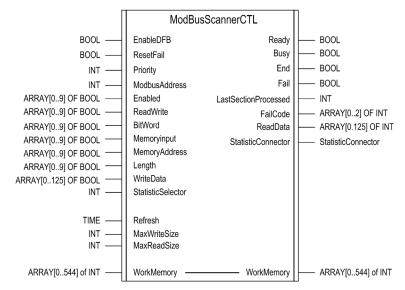
What's in this Section?

This section contains the following topics:

Торіс	Page
Description	355
Inputs	356
Outputs	357
Inputs/Outputs	358
Representation as SCoD in UAG	

Description

General


The ModBusScannerCTL Communications Scanner *(see page 312)* is a function block that uses an internal Client to issue several sequential requests to different memory positions in the remote device.

The communications scanner blocks are implemented as listed below:

Software	Implemented as
Unity Pro	ModBusScannerCTL
UAG	SCoD MBScanner

Representation in FBD

The MBScanner SCoD is represented with the ModBusScannerCTL DFB.

Inputs

Input Parameter Description

Parameter	Туре	Description
EnableDFB	BOOL	Described in CScanner - Inputs (see page 320)
ResetFail	BOOL	Described in CScanner - Inputs (see page 320)
Priority	INT	Described in CScanner - Inputs (see page 320)
ModBusAddress	INT	Address of the Modbus slave that the client should access. The range of possible values goes from 1 to 255.
Enabled	ARRAY of INT	Described in CScanner - Inputs (see page 320)
ReadWrite	ARRAY of INT	Described in CScanner - Inputs (see page 320)
BitWord	ARRAY of INT	Described in CScanner - Inputs (see page 320)
MemoryInput	ARRAY of INT	Each position in the array selects memory zones with false (40000 or %MW registers) or input zones with true (30000 or %IW registers).
MemoryAddress	ARRAY of INT	Each position in the array holds the memory address where the requested scanner operation will start. Any value is valid for the master, since the slave must validate the address based on its memory map.
Length	ARRAY of INT	Described in CScanner - Inputs (see page 320)
WriteData	ARRAY of INT	Described in CScanner - Inputs (see page 320)
StatisticsSelector	INT	Described in CScanner - Inputs (see page 320)
Refresh	TIME	Described in CScanner - Inputs (see page 320)
MaxReadSize	INT	Described in CScanner - Inputs (see page 320)
MaxWriteSize	INT	Described in CScanner - Inputs (see page 320)

Outputs

Output Parameter Description

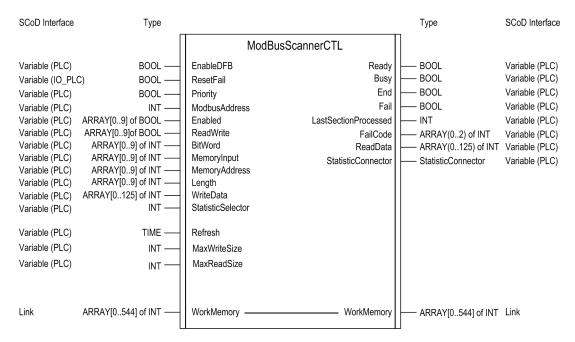
Parameter	Туре	Description
Ready	BOOL	Described in CScanner - Outputs (see page 323)
Busy	BOOL	Described in CScanner - Outputs (see page 323)
End	INT	Described in CScanner - Outputs (see page 323)
Fail	BOOL	Described in CScanner - Outputs (see page 323)
FailCode	INT[3]	Described in CScanner - Outputs (see page 323)
LastSectionProcessed	INT	Described in CScanner - Outputs (see page 323)
StatisticConnector	StatisticConnector	Described in CScanner - Outputs (see page 323)

Inputs/Outputs

Inputs/Outputs Parameter Description

Parameter	Туре	Description
WorkMemory	Array	Described in CScanner - Inputs/Outputs (see page 324)

Representation as SCoD in UAG


Overview

Use the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: MB (Equipment Module)	
Basic Parameters	
MaxWriteSize:	MaxReadSize:
125	125
ModBusAddress:	Priority:
-1	3
Refresh:	
T#500ms	
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
MaxReadSize	INT	Configuration parameter that indicates how many words will be read in the request issued by this client. This parameter is used for calculating and managing the work memory area (WorkMemory).
MaxWriteSize	INT	Configuration parameter that indicates how many words will be written in the request issued by this client. This parameter is used for calculating and managing the work memory area (WorkMemory).
ModBusAddress	INT	Address of the Modbus slave that the client should access. The range of possible values goes from 1 to 255.
Priority	INT	Command priority. The lower the value, the higher the priority. (0 is the maximum priority)
Refresh	TIME	Time that the scanner will wait before it repeats an operation cycle.

16.2 MBClientBs: ModBus Client Basic

Overview

This section describes the MBClientBs SCoD, the Client SCoD with ModBus technology.

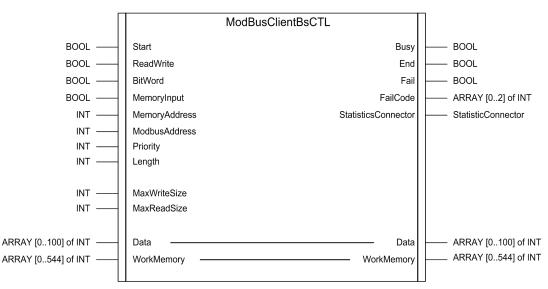
What's in this Section?

This section contains the following topics:

Торіс	Page
Description	362
Inputs	363
Outputs	364
Inputs/Outputs	365
Representation as SCoD in UAG	366

Description

Function Description


This Communication Client *(see page 314)* enables device data to be written or read to/from ModBus technologies.

The communications clients block is implemented as listed below:

Software	Implemented as	
Unity Pro	ModBusClientBsCTL	
UAG	SCoD MBClientBs	

Representation in FBD

The MBClientBs SCoD is represented with the ModBusClientBsCTL DFB.

Inputs

Input Parameter Description

Parameter	Туре	Description
Start	BOOL	Described in the CClient - Inputs section. (see page 330)
ReadWrite	BOOL	Described in the CClient - Inputs section. (see page 330)
BitWord	BOOL	Described in the CClient - Inputs section. (see page 330)
MemoryInput	BOOL	Described in the EClient - Inputs section (see page 400)
MemoryAddress	INT	Described in the EClient - Inputs section (see page 400)
ModBusAddress	INT	Address of the Modbus slave that the client should access. The range of possible values goes from 1 to 255.
Priority	INT	Described in the CClient - Inputs section. (see page 330)
Length	INT	Described in the CClient - Inputs section. (see page 330)
MaxReadSize	INT	Described in the CClient Client - Inputs/Outputs section. (see page 334)
MaxWriteSize	INT	Described in the CClient Client - Inputs/Outputs section. (see page 334)

Outputs

Output Parameter Description

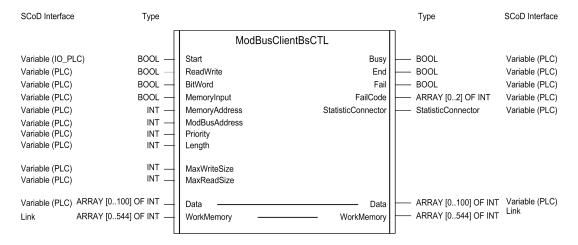
Parameter	Туре	Description
Busy	BOOL	Described in the CClient - Outputs section. (see page 332)
End	INT	Described in the CClient - Outputs section. (see page 332)
Fail	BOOL	Described in the CClient - Outputs section. (see page 332)
FailCode	INT[3]	Described in the CClient - Outputs section. (see page 332)
StatisticsConnector	StatisticsConnector	Described in the CClient - Outputs section. (see page 332)

Inputs/Outputs

Inputs/Outputs Parameter Description

Parameter	Туре	Description
Data	Array	Described in the CClient - Inputs/Outputs section. (see page 334)
WorkMemory	Array	Described in the CClient - Inputs/Outputs section. (see page 334)

Representation as SCoD in UAG


Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: MB (Equipment Module)	
Basic Parameters	
MaxWriteSize:	MaxReadSize:
125	125
, ModBusAddress:	Priority:
-1	3
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
MaxReadSize	INT	Configuration parameter that indicates how many words will be read in the request issued by this client. This parameter is used for calculating and managing the work memory area (WorkMemory).
MaxWriteSize	INT	Configuration parameter that indicates how many words will be read in the request issued by this client. This parameter is used for calculating and managing the work memory area (WorkMemory).
ModBusAddress	STRING [26]	Address of the Modbus slave that the client should access. The range of possible values goes from 1 to 255.
Priority	INT	Command priority. The lower the value, the higher the priority. (0 is the maximum priority)

16.3 MBPortM: ModBus Port Modicon 340

Overview

This section describes MBPortM, the Port SCoD when using ModBus technology with Modicon PLC.

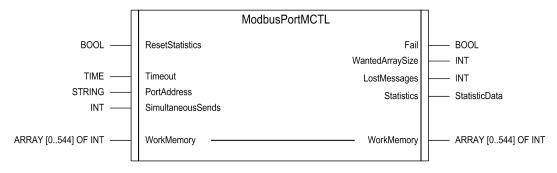
What's in this Section?

This section contains the following topics:

Торіс	Page
Description	369
Inputs	370
Outputs	371
Inputs/Outputs	372
Representation as SCoD in UAG	373

Description

Overview


The MBPortM is a Port *(see page 315)* function which is capable of serializing and managing requests sent to a physical medium working on serial Modbus.

The communications port block is implemented as listed below:

Software	Implemented as
Unity Pro	ModBusPortMCTL
UAG	SCoD ModbusPortM

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:.

Inputs

Input Parameter Description

Parameter	Туре	Description
Reset Statistics	BOOL	Described in CPortP Inputs. (see page 339)
TimeOut	TIME	Described in CPortP Inputs. (see page 339)
PortAddress	STRING	Described in EPortM Inputs. (see page 416)
SimultaneousSends	INT	Described in EPortQ Inputs. (see page 430)

Outputs

Output Parameter Description

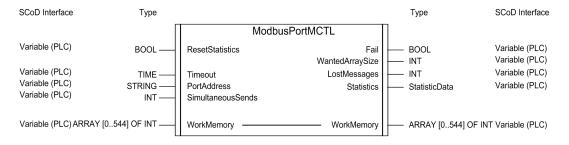
Parameter	Туре	Description
Fail	BOOL	Described in CPortP Outputs. (see page 340)
WantedArraySize	INT	Described in CPortP Outputs. (see page 340)
LostMessages	INT	Described in CPortP Outputs. (see page 340)
Statistics	StatisticsData	Described in CPortP Outputs. (see page 340)

Inputs/Outputs

WorkMemory (Array)

This Array is described in the CPortP Inputs/Outputs. (see page 342)

Representation as SCoD in UAG


Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: MB (Equipment Module)	
Basic Parameters	
PortAddress:	Timeout:
0.0.0	T#2s
SimultaneousSends:	
4	
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
SimultaneousSends	INT	Number of requests queued (serialized) in the Modbus Master.
PortAddress	STRING	Defines the physical port that the DFB will use to send the Modbus TCP/IP request in Modicon M340 PLCs.
Timeout	TIME	Defines the timeout value to be used in the DFB to activate the Fail output variable.

16.4 MBPortP: ModBus Port Premium

Overview

This section ModBusPortP, the Port function when using ModBus technology with Premium PLC.

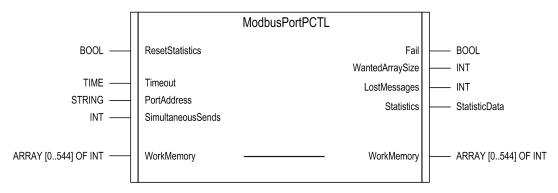
What's in this Section?

This section contains the following topics:

Торіс	Page
Description	376
Inputs	377
Outputs	378
Inputs/Outputs	379
Representation as SCoD in UAG	380

Description

General


MBPortP FB is a Port *(see page 315)* function which is capable of serializing and managing requests sent to a physical medium working on serial Modbus.

The communications port block is implemented as listed below:

Software	Implemented as
Unity Pro	ModBusPortPCTL
UAG	SCoD ModbusPortP

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:.

Inputs

Input Parameter Description

Parameter	Туре	Description
ResetStatistics	BOOL	Described in CPortP Inputs. (see page 339)
TimeOut	TIME	Described in CPortP Inputs. (see page 339)
PortAddress	STRING	Described in EPortM Inputs. (see page 416)
SimultaneousSends	INT	Described in EPortQ Inputs. (see page 430)

Outputs

Output Parameter Description

Parameter	Туре	Description
Fail	BOOL	Described in CPortP Outputs. (see page 340)
WantedArraySize	INT	Described in CPortP Outputs. (see page 340)
LostMessages	INT	Described in CPortP Outputs. (see page 340)
Statistics	StatisticsData	Described in CPortP Outputs. (see page 340)

Inputs/Outputs

WorkMemory (Array)

This Array is described in the CPortP Inputs/Outputs. (see page 342)

Representation as SCoD in UAG

Overview

Use the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

SCoD Interface	Туре			Туре	SCoD Interface
		Modbusl	PortPCTL		
Variable (PLC)	BOOL	ResetStatistics	Fail	BOOL	Variable (PLC)
			WantedArraySize	INT	Variable (PLC)
Variable (PLC)	TIME	Timeout	LostMessages	INT	Variable (PLC)
Variable (PLC)	STRING-	PortAddress	Statistics	— StatisticData	Variable (PLC)
Variable (PLC)	INT	SimultaneousSends			
Variable (PLC)	ARRAY [0544] OF INT	WorkMemory	WorkMemory	ARRAY [0544] OF	INT Variable (PLC)

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: MB (Equipment Module)	
Basic Parameters	
Destables	Timest
PortAddress:	Timeout:
0.2.0	T#2s
SimultaneousSends:	
4	
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
PortAddress	STRING	Defines the physical port that the DFB will use to send the Modbus TCP/IP request in Modicon M340 PLCs.
Timeout	TIME	Defines the timeout value to be used in the DFB to activate the Fail output variable.
SimultaneousSends	INT	Number of requests queued (serialized) in the Modbus Master.

Tools

17

Overview

This chapter describes the SCoD Statistics.

MISAPPLICATION OF MODULES

The modules in this section do not reflect any specific installation. Before adopting these modules for use in a specific application, the engineer must:

- · conduct a safety analysis for the application and equipment installed
- verify that all modules are appropriate for the equipment or function in the installation
- supply appropriate parameters, particularly for limits
- · check that all sensors and actuators are compatible with the modules selected
- · thoroughly test all functions during verification and commissioning
- provide independent paths for critical control functions (emergency stop, overlimit conditions etc.) according to the safety analysis and applicable codes and regulations.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

What's in this Chapter?

This chapter contains the following topics:

Торіс	
Statistics - Description	384
Statistic - Inputs	385
Statistic - Outputs	
Statistics - Representation as SCoD in UAG	

Statistics - Description

General

The Statistics block is implemented as listed below:

Software	Implemented as
Unity Pro	DFB StatisticsCounter
UAG	SCoD StatisticsCounter

Function Description

The statistics block enables to assess the quality and speed of s on a Modbus, Ethernet, or CANopen network.


It enables calculations to be performed on the Client, Scanner, Port, and Gateway blocks from the entire communications library and on devices in Modbus communications.

The Statistics module main functions are summarized below:

Function	Description
Requests	The number of requests issued is calculated.
Times	Communication times are calculated (request time, time of last request, etc.)
Information	Communications information is calculated (maximum and minimum values, controller cycles, etc.)
Reset	The block allows the described totalizers to be reset.

Representation in FBD

The functional module used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

Statistic - Inputs

StatisticsConnector (StatisticsConnector)

Provides, to the DFB, the data from which to derive the statistics. Components that can provide statistics have an output of this type. It is possible to directly match the output variable of any component in order to evaluate statistics.

This table describes the StatisticsConnector type:

Name	Туре	Description
Start	BOOL	Operation has started
EndOk	BOOL	Operation ended correctly
EndNOK	BOOL	Operation ended with an error
PartialTime	DINT	Partial time

Reset (Bool)

Enabling this input resets the output variables.

When this signal is true, the data on the Statistics output variable is reset to its default values (0).

The input is level-based, i.e., statistics will remain set to 0 as long as the input is held as true.

Statistic - Outputs

StatisticData (StatisticData)

Provides statistical data obtained from the DFB that is being analyzed.

This tables describes the StatisticData type:

Name	Туре	Description
RequestsSended	DINT	Total number of sent requests.
RequestsOk	DINT	Total number of requests that ended correctly.
RequestsError	DINT	Total number of requests that ended in an error
MinTime	DINT	Minimum time required to end a request (msec)
AvgTime	REAL	Average time required to end a request (msec)
MaxTime	DINT	Maximum time required to end a request (msec)
LastTime	DINT	Time required to end the last request (msec)
CurrentTime	DINT	The time spent on processing the current request (0 if there is no request in progress)
RequestsSecond	DINT	Number of requests that can be sent per second (calculated with the AvgTime value).
LastCycleNumber	DINT	Number of controller cycles that the last request took to be executed.
CurrentCycleNumber	DINT	Number of controller cycles that the current request has taken so far (0 if there is no request in progress).
TimeOnQueue	DINT	Time that the last request has been waiting in the queue before being sent (only useful for client statistics).

Statistics - Representation as SCoD in UAG

Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

Ethernet Communication

18

Overview

This chapter describes the ethernet communcation based functions.

MISAPPLICATION OF MODULES

The modules in this section do not reflect any specific installation. Before adopting these modules for use in a specific application, the engineer must:

- · conduct a safety analysis for the application and equipment installed
- verify that all modules are appropriate for the equipment or function in the installation
- supply appropriate parameters, particularly for limits
- · check that all sensors and actuators are compatible with the modules selected
- · thoroughly test all functions during verification and commissioning
- provide independent paths for critical control functions (emergency stop, overlimit conditions etc.) according to the safety analysis and applicable codes and regulations.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

What's in this Chapter?

This chapter contains the following sections:

Section	Торіс	Page
18.1	EScanner: Ethernet Scanner	390
18.2	EClient: Ethernet Client	398
18.3	EGtwMB: Serial Modbus-Ethernet Gateway	405
18.4	EPortM: Ethernet Port Modicon	414
18.5	EPortP: Ethernet Port with Premium PLC	421
18.6	EPortQ: Ethernet Port Quantum	428

18.1 EScanner: Ethernet Scanner

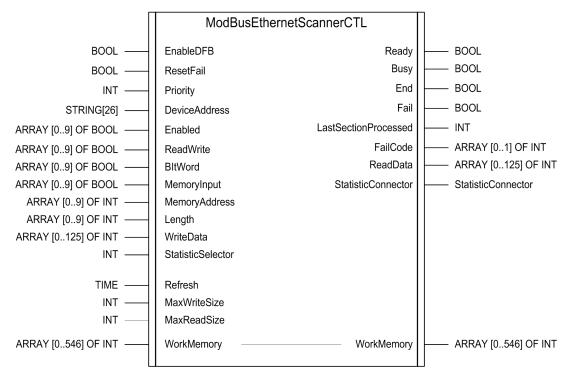
Overview

This section describes the EScanner SCoD, the Communication Scanner SCoD using Ethernet technology (Ethernet Messaging).

What's in this Section?

This section contains the following topics:

Торіс	Page
Description	391
Inputs	392
Outputs	394
Inputs/Outputs	395
Representation as SCoD in UAG	396


Description

Function Description

The EScanner is a Communications Scanner *(see page 312)* that periodically refreshes read or write requests for n registers issued to a single node on an Ethernet communications network.

Representation in FBD

The EScanner SCoD is represented with the ModBusEthernetScannerCTL DFB.

Inputs

General

Memory Address indexes are usually expressed in decimal values in device manuals. In order to express the index as a hexadecimal value, use the string "16#" before the index, i.e., 16#index.

Input Parameter Description

Parameter	Туре	Description
EnableDFB	BOOL	Described in CScanner - Inputs (see page 320)
ResetFail	BOOL	Described in CScanner - Inputs (see page 320)
Priority	INT	Described in CScanner - Inputs (see page 320)
DeviceAddress	REAL	Device address. See the IP Addressing table below.
MemoryInput	ARRAY of INT	Each position in the array selects memory zones with false (40000 or %MW registers) or input zones with true (30000 or %IW registers).
MemoryAddress	ARRAY of INT	Each position in the array holds the memory address where the requested scanner operation will start. Any value is valid for the master, since the slave must validate the address based on its memory map.
Enabled	ARRAY of INT	Described in CScanner - Inputs (see page 320)
ReadWrite	ARRAY of INT	Described in CScanner - Inputs (see page 320)
BitWord	ARRAY of INT	Described in CScanner - Inputs (see page 320)
Length	ARRAY of INT	Described in CScanner - Inputs (see page 320)
WriteData	ARRAY of INT	Described in CScanner - Inputs (see page 320)
StatisticsSelector	INT	Described in CScanner - Inputs (see page 320)
Refresh	TIME	Described in CScanner - Inputs (see page 320)
MaxReadSize	INT	Described in CScanner - Inputs (see page 320)
MaxWriteSize	INT	Described in CScanner - Inputs (see page 320)

DeviceIP AddressingM340{IP}IDPremium{XWAY}.Slot.Channel.IDQuantumSlot.{IP}.ID

Depending on the platform, the following definitions apply for IP addressing:

NOTE: Do not omit the punctuation marks.

Outputs

Output Parameter Description

Parameter	Туре	Description
Ready	BOOL	Described in CScanner - Outputs (see page 323)
Busy	BOOL	Described in CScanner - Outputs (see page 323)
End	INT	Described in CScanner - Outputs (see page 323)
Fail	BOOL	Described in CScanner - Outputs (see page 323)
LastSectionProcessed	INT	Described in CScanner - Outputs (see page 323)
FailCode	INT[3]	Described in CScanner - Outputs (see page 323)
StatisticConnector	StatisticConnector	Described in CScanner - Outputs (see page 323)

Inputs/Outputs

Inputs/Outputs Parameter Description

Parameter	Туре	Description
WorkMemory	Array	Described in CScanner - Inputs/Outputs (see page 324)

Representation as SCoD in UAG

Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

SCoD Interface	е Туре			Туре	SCoD Interface
		ModBusEthe	ModBusEthernetScannerCTL		
Variable (PLC) Variable (PLC)	BOOL INT ARRAY [09] OF BOOL ARRAY [09] OF BOOL ARRAY [09] OF BOOL ARRAY [09] OF BOOL ARRAY [09] OF INT ARRAY [09] OF INT ARRAY [0125] OF INT INT	EnableDFB ResetFail Priority DeviceAddress Enabled ReadWrite BltWord MemoryInput MemoryAddress Length WriteData StatisticSelector	Ready Busy End Fail LastSectionProcessed FailCode ReadData StatisticConnector	BOOL BOOL BOOL INT ARRAY [01] OF INT ARRAY [0125] OF INT StatisticConnector	Variable (PLC) Variable (PLC) Variable (PLC) Variable (PLC) Variable (PLC) Variable (PLC) Variable (PLC) Variable (PLC)
Variable (PLC) Variable (PLC) Variable (PLC)	TIME INT INT	Refresh MaxWriteSize MaxReadSize			
Link	ARRAY [0546] OF INT	WorkMemory	WorkMemory	ARRAY [0546] OF INT	Link

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: Eth (Equipment Module) Basic Parameters	
MaxWriteSize:	MaxReadSize:
125	125
DeviceAddress:	Priority:
{IP o XWAY} <0.0.MB> o SYS	0
Refresh:	_
T#500ms	
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
MaxReadSize	INT	Configuration parameter that indicates how many words will be read in the request issued by this client. This parameter is used for calculating and managing the work memory area (WorkMemory).
MaxWriteSize	INT	Configuration parameter that indicates how many words will be read in the request issued by this client. This parameter is used for calculating and managing the work memory area (WorkMemory).
DeviceAddress	STRING [26]	Device address. See the "Ethernet Technology" chapter in this manual in order to see examples. (see page 436)
Priority	INT	Command priority. The lower the value, the higher the priority. (0 is the maximum priority)
Refresh	TIME	Time that the scanner will wait before it repeats an operation cycle.

18.2 EClient: Ethernet Client

Overview

This section describes the EClient SCoD, the Client SCoD with ethernet communication technology.

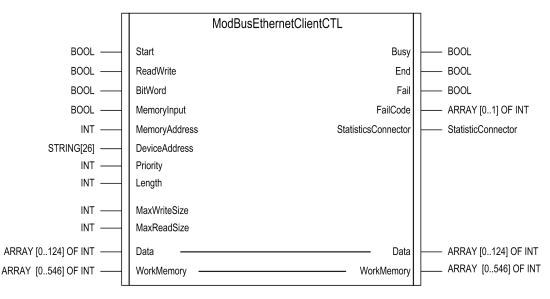
What's in this Section?

This section contains the following topics:

Торіс	Page
Description	399
Inputs	400
Outputs	401
Inputs/Outputs	402
Representation as SCoD in UAG	403

Description

Function Description


This Communication Client *(see page 314)* enables device data to be written or read to/from Ethernet technologies.

The module main functions are described below:

Function	Description	
Read/Write	Enables select whether the parameter has read or write access.	
Multiple register reading/writing	Enables several consecutive registers to be read (available only with ModBusEthernetClient and ModBusClientBasic).	
Error management	Monitors transaction errors, identifying them on three levels in order to determine the source of the error.	
Priorities	Enables to define priorities for systems with multiple client accesses.	
Statistics	Obtains the transactions OK/NOK status, as well as their access times.	

Representation in FBD

The EClient SCoD is represented with the ModBusEthernetClientCTL DFB.

Inputs

Input Parameter Description

Parameter	Туре	Description
Start	BOOL	Described in the CClient - Inputs section. (see page 330)
ReadWrite	BOOL	Described in the CClient - Inputs section. (see page 330)
BitWord	BOOL	Described in the CClient - Inputs section. (see page 330)
MemoryInput	BOOL	Selects memory zones with false (40000 or %MW registers) or input zones with true (30000 or %IW registers).
DeviceAddress	STRING[26]	Device address. See the IP Addressing table below.
MemoryAddress	INT	Memory address where the requested operation will start. Any value is valid for the master, since the slave must validate the address based on its memory map. Values can be entered as hexadecimal or decimal values.
Priority	INT	Described in the CClient - Inputs section. (see page 330)
Length	INT	Described in the CClient - Inputs section. (see page 330)
MaxReadSize	INT	Described in the CClient - Inputs/Outputs section. (see page 334)
MaxWriteSize	INT	Described in the CClient - Inputs/Outputs section. (see page 334)

Depending on the platform, the following definitions apply:

Device	IP Addressing
M340	{IP}ID
Premium	{XWAY}.Slot.Channel.ID
Quantum	Slot.{IP}.ID

NOTE: Do not omit the punctuation marks.

Outputs

Output Parameter Description

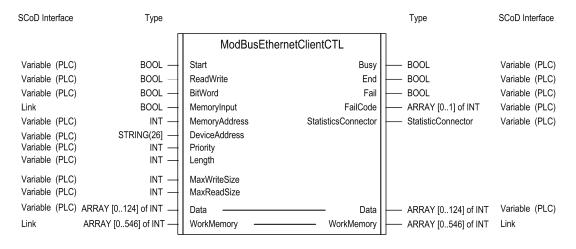
Parameter	Туре	Description
Busy	BOOL	Described in the CClient - Outputs section. (see page 332)
End	INT	Described in the CClient - Outputs section. (see page 332)
Fail	BOOL	Described in the CClient - Outputs section. (see page 332)
FailCode	INT[3]	Described in the CClient - Outputs section. (see page 332)
StatisticsConnector	StatisticsConnector	Described in the CClient - Outputs section. (see page 332)

Inputs/Outputs

Inputs/Outputs Parameter Description

Parameter	Туре	Description
WorkMemory	Array	Described in the CClient - Inputs/Outputs section. (see page 334)
Data	Array	Described in the CClient - Inputs/Outputs section. (see page 334)

Representation as SCoD in UAG


Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: Eth (Equipment Module)	
Basic Parameters	
MaxWriteSize:	MaxReadSize:
125	125
DeviceAddress:	Priority - Initial Value:
{IP o XWAY} <0.0.MB> o SYS	3
[OK Cancel Apply

The following table describes the properties:

Property	Туре	Description	
MaxReadSize	INT	Configuration parameter that indicates how many words will be read in the request issued by this client. This parameter is used for calculating and managing the work memory area (WorkMemory).	
MaxWriteSize	INT	Configuration parameter that indicates how many words This parameter is used for calculating and managing the work memory area (WorkMemory).	
DeviceAddress	STRING [26]	Device address. See the "Ethernet Technology" chapter in this manual in order to see examples. (see page 436)	
Priority	INT	Command priority. The lower the value, the higher the priority. (0 is the maximum priority)	

18.3 EGtwMB: Serial Modbus-Ethernet Gateway

Overview

This section describes the EGtwMB SCoD.

What's in this Section?

This section contains the following topics:

Торіс	Page
EGtwMB - Description	406
Inputs	407
Outputs	408
Inputs/Outputs	410
Representation as SCoD in UAG	412

EGtwMB - Description

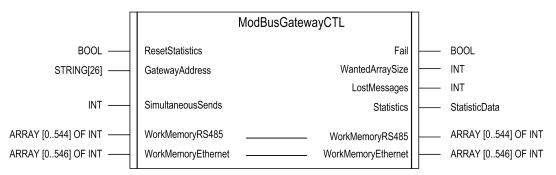
General

TheSerial Modbus-Ethernet Gateway block is implemented as listed below:

Software	Implemented as
Unity Pro	DFB ModBusGatewayCTL
UAG	SCoD EGtwMB

Function Description

The EthernetGatewayModbus gateway is the DFB that functions as a bridge between serial devices and Ethernet buses.


By using a gateway (TSXETG100), it is possible to establish communications for a CPU that only has Ethernet ports with devices that only implement an RS485 interface.

The module main functions are described below:

Function	Description
Request conversion	Enables read/write requests to be issued to devices on a 485 bus through an Ethernet port (available only for ModBusClientBasic and ModbusScanner).
Statistics	Obtains the transactions OK/NOK status, as well as their access times.

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

Inputs

Input Parameter Description

Parameter	Туре	Description	
Reset Statistics	BOOL	Activating this input enables communications. If the function is not enabled, initialize the scanner.	
GatewayAddress	String [26]	IP address for the gateway where the serial Modbus devices are physically located. See IP addressing table below.	
SimultaneousSends	Int	 Indicates how many requests are in the gateway queue. The value ranges from 1 to 4. The more requests in the gateway queue, the better the system general performance, but the following features must be taken into account: The maximum number of requests in the CPU buffer The maximum number of requests for a gateway queue. Priority management does not take into account requests that are queued in the hardware buffer, which makes it possible for a high-priority command to have to wait until lower-priority commands that are already in the queue are sent first. This results in a longer response time for high-priority commands. 	

Depending on the platform used and on the position in which the Ethernet port is located inside the PLC rack, IP addressing must be entered in different formats:

Device	IP Addressing (GatewayAddress)
M340	{IP}
Premium	{XWay network.XWay address}.Slot.Channel.
Premium Copro	{XWay network.XWay address}.0.0. In Premium range PLCs in which requests are issued through the CPU integrated Ethernet port, the channel will always be "zero."
Quantum Copro	254.{IP}
Quantum	Slot.{IP}.ID

The Slot indicates the position occupied by the Ethernet port inside the PLC rack.

NOTICE

INVALID MODBUS SLAVES ADDRESSING

Follow the naming conventions specified above (periods, brackets, etc.) to ensure correct addressing of the requests to the serial Modbus slaves.

Failure to follow these instructions can result in equipment damage.

Outputs

Output Parameter Description

Parameter	Туре	Description
Fail	BOOL	Indicates that an error has occurred while transmitting a request. The bit cannot be reset as soon as a request is issued without an error, it is set to 0. The error codes must be checked in each DFB belonging to devices or serial Modbus clients.
WantedArraySize	INT	 Indicates the size necessary for the WorkMemoryRS485 array to function correctly. Since arrays start on 0, the array must be declared with the minimum size of [0WantedArraySize-1]. If additional serial Modbus (RTU) clients or devices are added to the program, the size of this variable will increase, making it necessary to monitor the WorkMemoryRS485 Array. This variable is calculated during the first Scanning cycle so adding serial Modbus (RTU) clients or devices during "online" mode has 2 consquences: The size of the Array will not increase. The ModbusGateway DFB will not take into account requests from these new clients.
LostMessages	INT	Indicates the number of messages that have been lost (that the client has not received). A value ≠ 0 often comes from a CANClient instance is probably not being executed on every single cycle or a programming error. If messages are being lost on the CANopen bus timing between calls of different clients, hardware (wiring) problem should be checked.
Statistic	StatisticData	Holds a structure with statistical data on the operation of the EthernetGatewayModbus DFB. The information obtained in this data structure is the statistic for the requests managed by this EthernetGatewayModbus DFB. In other words, the requests sent by clients that are associated with this DFB by means of the WorkMemory485 Array.

This tables describes the StatisticData type:

Name	Туре	Description	
RequestsSended	DINT	Total number of sent requests.	
RequestsOk	DINT	Total number of requests that ended correctly.	

Name	Туре	Description	
RequestsError	DINT	Total number of requests that ended in an error	
MinTime	DINT	Minimum time required to end a request (msec)	
AvgTime	REAL	Average time required to end a request (msec)	
MaxTime	DINT	Maximum time required to end a request (msec)	
LastTime	DINT	Time required to end the last request (msec)	
CurrentTime	DINT	The time spent on processing the current request (0 if there is no request in progress)	
RequestsSecond	DINT	Number of requests that can be sent per second (calculated with the AvgTime value).	
LastCycleNumber	DINT	Number of controller cycles that the last request took to be executed.	
CurrentCycleNumber	DINT	Number of controller cycles that the current request has taken so far (0 if there is no request in progress).	
TimeOnQueue	DINT	Time that the last request has been waiting in the queue before being sent (only useful for client statistics).	

Inputs/Outputs

WorkMemoryRS485 Description

This Array holds the read/write requests of the clients/scanners.

The WorkMemoryRS485 Array is the work memory or link between the serial Modbus clients/scanners and an Ethernet port DFB.

During the first Scanning cycle, the devices reserve read/write %Mwords from this Array, based on the exchange words required by each DFB. The ModbusGateway DFB then counts them, and as a result specifies and knows how many pieces of data will be serialized.

NOTICE

UNEXPECTED EQUIPMENT OPERATION

The WorkMemoryRS485 variable must be adjusted previously to set:

- The size of the data exchange area between the device and client DFB
- The ModbusGateway DFB to the size needed for the elements that are being used

Failure to follow these instructions can result in equipment damage.

The system will be limited by fixed sizes or use memory that is not being used if this is not done.

Calculating the WorkMemoryRS485 Array Size

The necessary size for the array of the variable associated to WorkMemoryRS485 is automatically calculated by the DFBs of the port shown by the WantedArraySize output.

But it is necessary to check that the size of the array for the WorkMemoryRS485 variable of the ModbusGateway DFB, which has been calculated by the SGS Workbench code generator, has a size greater than or equal to the one that the WantedArraySize variable requires.

In order to check the value:

- **1.** Execute the program with the calculated array
- 2. Check the value returned by the ModbusGateway DFB
- **3.** Resize the array to the WantedArraySize value (the array must have a size of [0 ... WantedArraySize-1] as a minimum).

	EGIWIVIB_GAIEWAYAQQI	string[∠b]
🐤	EGtwMB_LostMessages	INT
÷… 📘 📗	EGtwMB_MBWorkMemory	ARRAY[0250] OF INT
-	EGtwMB_MBWorkMemory EGtwMB_ResetStatistics	ARRAY[0250] OF INT BOOL

The DFB will rebuild the serial Modbus requests that are in WorkMemoryRS485 as Modbus TCP/IP requests, which will be copied to the WorkMemoryEthernet variable.

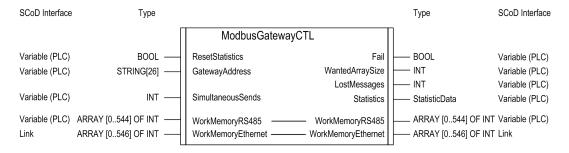
WorkMemoryEthernet (Array)

This variable holds the requests that are in the WorkMemoryRS485 in Modbus TCP/IP requests.

This variable must have a bigger size than the WorkMemoryRS485 variable, since each request holds more data, such as the destination IP address, etc.

NOTE: The WantedArraySize output variable only indicates the size that is required for the WorkMemoryRS485 variable. In order to know the appropriate size for the variable, check the WantedArraySize output variable of the Ethernet port DFB to which the ModbusGateway DFB is linked.

Representation as SCoD in UAG


Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: Eth (Equipment Module)	
Basic Parameters	
GatewayAddress:	SimultaneousSends:
	4
l	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
GatewayAddress	String [26]	IP address for the gateway where the serial Modbus devices are physically located. See IP addressing table below.
SimultaneousSends	INT	Indicates how many requests are in the gateway queue.

18.4 EPortM: Ethernet Port Modicon

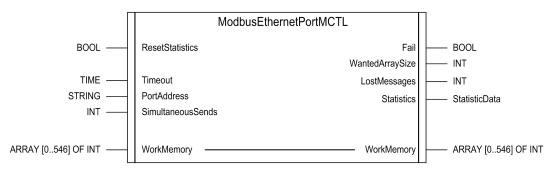
Overview

This section describes EPortM, the Port SCoD when using Ethernet technology with Modicon PLC.

What's in this Section?

This section contains the following topics:

Торіс	Page
Description	415
Inputs	416
Outputs	417
Inputs/Outputs	418
Representation as SCoD in UAG	419


Description

General

EPortM is a Port (see page 315) function which is capable of serializing and managing requests sent to a physical medium working on Modbus TCP/IP.

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

Inputs

Input Parameter Description

Parameter	Туре	Description	
Reset Statistics	BOOL	Described in CPortP Inputs. (see page 339)	
TimeOut	TIME	Described in CPortP Inputs. (see page 339)	
PortAddress	STRING	Defines the physical port that the DFB will use to send the Modbus TCP/IP request in Modicon M340 PLCs, to do so, write the name of the Ethernet channel through which communications will take place. (see graphic)	
SimultaneousSends	INT	Described in EPortQ Inputs. (see page 430)	

Outputs

Output Parameter Description

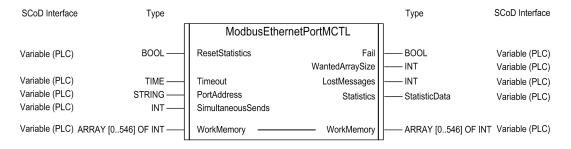
Parameter	Туре	Description
Fail	BOOL	Described in CPortP Outputs. (see page 340)
WantedArraySize	INT	Described in CPortP Outputs. (see page 340)
LostMessages	INT	Described in CPortP Outputs. (see page 340)
Statistic	StatisticData	Described in CPortP Outputs. (see page 340)

Inputs/Outputs

WorkMemory (Array)

This Array is described in the CPortP Inputs/Outputs. (see page 342)

Representation as SCoD in UAG


Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: Eth (Equipment Module)	
Basic Parameters	
PortAddress:	Timeout:
[NetworkName]	T#2s
SimultaneousSends:	
4	
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
SimultaneousSends	INT	Number of requests queued (serialized) in the Modbus Master.
PortAddress	STRING	Defines the physical port that the DFB will use to send the Modbus TCP/IP request in Modicon M340 PLCs.
Timeout	TIME	Defines the timeout value to be used in the DFB to activate the Fail output variable.

18.5 EPortP: Ethernet Port with Premium PLC

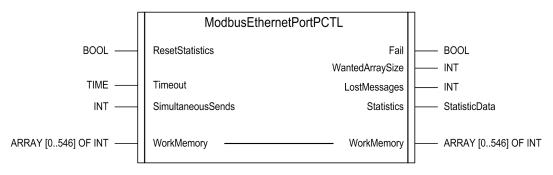
Overview

This section describes EPortP, the Port SCoD when using Ethernet technology with Premium PLC.

What's in this Section?

This section contains the following topics:

Торіс	Page
Description	422
Inputs	423
Outputs	424
Inputs/Outputs	425
Representation as SCoD in UAG	


Description

General

EPortP is a Port *(see page 315)* function which is capable of serializing and managing requests sent to a physical medium working on Modbus TCP/IP.

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

Inputs

Input Parameter Description

Parameter	Туре	Description
Reset Statistics	BOOL	Described in CPortP Inputs. (see page 339)
TimeOut	TIME	Described in CPortP Inputs. (see page 339)
SimultaneousSends	INT	Described in EPortQ Inputs. <i>(see page 430)</i>

Outputs

Output Parameter Description

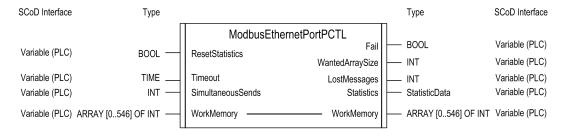
Parameter	Туре	Description
Fail	BOOL	Described in CPortP Outputs. (see page 340)
WantedArraySize	INT	Described in CPortP Outputs. (see page 340)
LostMessages	INT	Described in CPortP Outputs. (see page 340)
Statistic	StatisticData	Described in CPortP Outputs. (see page 340)

Inputs/Outputs

WorkMemory (Array)

This Array is described in the CPortP Inputs/Outputs. (see page 342)

Representation as SCoD in UAG


Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: Eth (Equipment Module)	
Basic Parameters	
SimultaneousSends:	Timeout:
4	T#2s
	OK Cancel Apply

The following table describes the properties:

Property	Туре	Description
SimultaneousSends	INT	Number of requests queued (serialized) in the Modbus Master.
Timeout	TIME	Defines the timeout value to be used in the DFB to activate the Fail output variable.

18.6 EPortQ: Ethernet Port Quantum

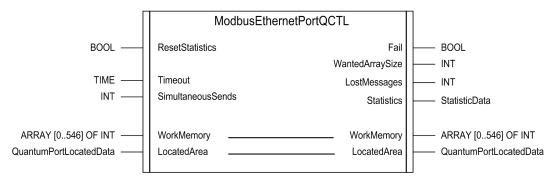
Overview

This section describes EPortQ, the Port SCoD when using Ethernet technology with Quantum PLC.

What's in this Section?

This section contains the following topics:

Торіс	Page
Description	429
Inputs	430
Outputs	431
Inputs/Outputs	432
Representation as SCoD in UAG	433


Description

General

EPortQ is a Port *(see page 315)* function which is capable of serializing and managing requests sent to a physical medium working on Modbus TCP/IP.

Representation in FBD

The functional module that will be used in the program has the following aspect (at the FBD block level) after PLC generation in UNITY Pro:

Inputs

Input Parameter Description

Parameter	Туре	Description
Reset Statistics	BOOL	Described in CPortP Inputs. (see page 339)
TimeOut	TIME	Described in CPortP Inputs. (see page 339)
SimultaneousSends	INT	 Indicates how many requests are in the gateway queue. The value ranges from 1 to 4. The more requests in the gateway queue, the better the system general performance, but the following features must be taken into account: The maximum number of requests in the CPU buffer The maximum number of requests for a gateway queue. Priority management does not take into account requests that are queued in the hardware buffer, which makes it possible for a high-priority command to have to wait until lower-priority commands that are already in the queue are sent first. This results in a longer response time for high-priority commands.

Outputs

Output Parameter Description

Parameter	Туре	Description
Fail	BOOL	Described in CPortP Outputs. (see page 340)
WantedArraySize	INT	Described in CPortP Outputs. (see page 340)
LostMessages	INT	Described in CPortP Outputs. (see page 340)
Statistic	StatisticData	Described in CPortP Outputs. (see page 340)

Inputs/Outputs

WorkMemory (Array)

This Array is described in the CPortP Inputs/Outputs. (see page 342)

LocatedArea (QuantumPortLocatedData)

Due to internal requirements, the Quantum port needs some variables to be mapped.

This input is used to provide the port with a memory area that has the internal structure necessary for it to work. This internal data does not have to be checked and should not be modified.

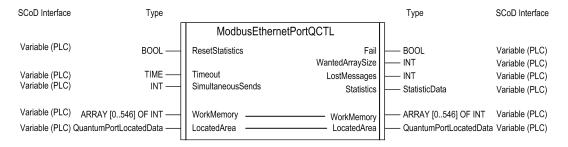
It is mandatory to declare this variable (specify the variable address) in the variable table and to allocate an address to it; otherwise the port will not work.

The necessary data consists of 537 words. If, for example, the variable has been addressed on %MW100, this would be the equivalent of reserving a %MW100:537 array.

This area should not be used for any other purpose. By default, the SGS will generate a memory address that could cause an error or warning when the project is compiled.

This has been done to address the variable within the PLC working range. If this input is not mapped, error code 16#200E (Hex) will appear at level 0.

Representation as SCoD in UAG


Overview

Use of the DFB pins in the SCoD editor is explained in the input/output diagram below.

The variables defined in the SCoD editor have in principle the same name as the pin (exception is that an underscore in the pin name will be skipped for the variable name).

If the variables defined in the SCoD have the property 'Initial Value' then the values of the instantiated SCoD variables can be modified manually in Unity Pro before the PLC restart.

Input Output Diagram

Parameter Tab

The figure below shows the **Parameter tab** of the **Properties Control Module** window.

New Control Module	×
Parent: Eth (Equipment Module)	
Basic Parameters	
SimultaneousSends:	Timeout
4	
	OK Cancel Apply
	Cancel Apply

The following table describes the properties:

Property	Туре	Description
SimultaneousSends	INT	Number of requests queued (serialized) in the Modbus Master.
Timeout	TIME	Defines the timeout value to be used in the DFB to activate the Fail output variable.

Communications Technologies

19

Overview

This chapter describes the different types of Communications Technologies.

MISAPPLICATION OF MODULES

The modules in this section do not reflect any specific installation. Before adopting these modules for use in a specific application, the engineer must:

- · conduct a safety analysis for the application and equipment installed
- verify that all modules are appropriate for the equipment or function in the installation
- supply appropriate parameters, particularly for limits
- · check that all sensors and actuators are compatible with the modules selected
- · thoroughly test all functions during verification and commissioning
- provide independent paths for critical control functions (emergency stop, overlimit conditions etc.) according to the safety analysis and applicable codes and regulations.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

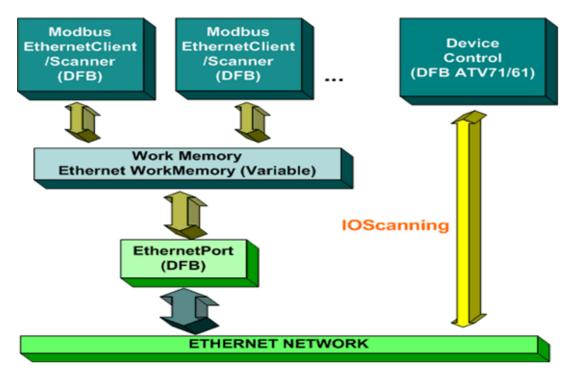
What's in this Chapter?

This chapter contains the following sections:

Section	Торіс	Page
19.1	Ethernet Technology	436
19.2	Gateway Technology	443
19.3	CANOpen Technology	454
19.4	MODBUS Technology	458

19.1 Ethernet Technology

Overview


This section provides useful information regarding Ethernet Technology.

What's in this Section?

This section contains the following topics:

Торіс	Page
Communications Technologies - Ethernet	437
Addressing Example for the M340 Platform	439
Addressing Example for the TSX Premium Platform	440
Addressing Example for the Quantum Platform	442

Communications Technologies - Ethernet

Ethernet Communications Architecture:

Description

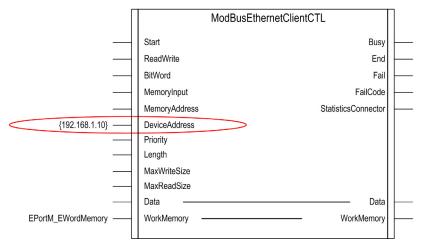
This first part makes it possible to correctly address the EthernetClient DFB components that have to carry out non-cyclic messaging through the various EthernetPort DFB components.

Depending on the PLC platform to be used, IP addressing for Ethernet clients varies and must be handled separately. Independently of the PLC platform used, acyclic messaging requires an EthernetPort. IP addressing is implemented with the DeviceAddress input variable.

The EthernetPort DFB component carries out the Modbus TCP/IP request by means of Read_Var, Write_Var, or MBP_MSTR-type instructions in Quantum. Because of this, the clients message is sent through WorkMemory.

Platform	IP Addressing, DeviceAddress(variable)
M340	{IP}ID
Premium	{XWAY}.Slot.Channel.ID
Quantum	Slot.{IP}.ID
Premium Copro	{XWAY}.0.0.ID
Quantum Copro	254.{IP}.ID

Depending on the platform, the following definitions apply:


If the destination device is another CPU with an Ethernet port, the following table applies:

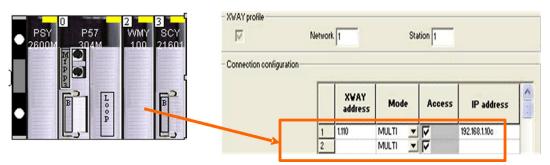
Platform	IP Addressing, DeviceAddress(variable)
M340	{IP}SYS
Premium	{XWAY}.SYS
Quantum	Slot.{IP}.SYS
Premium Copro	{XWAY}.SYS
Quantum Copro	254.{IP}.SYS

Addressing Example for the M340 Platform

General

The current platform allows addressing with the name of the channel through which the Modbus TCP/IP requests are made. Addressing for the Ethernet client with M340 would be as in the following example (addressing for an ModBusEthernet Scanner DeviceAddress would be implemented the same way):

The ID ({IP}ID) is necessary based on the slave addressing, and ranges from 0 to 255.

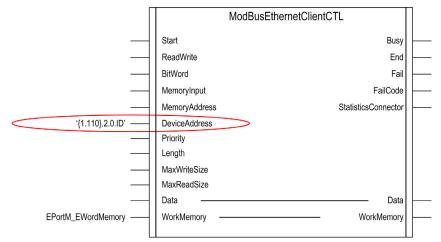

Regarding the Ethernet Port DFB component to/from which the client transmits/receives external requests with WorkMemory, the public variable must be addressed.

Variables DDT Types Function Blocks DFB Types				
Filter Name *				
Name	no.	Туре	Value	Co
EClient_MBEClient	1	ModBusEthernetClient		
EPortM_MBEPortM		ModBusEthernetPortM		
🗉 🗀 <inputs></inputs>				
🗉 🗀 <outputs></outputs>				
Image: Construct of the second secon				
□🔁 <public></public>				
Timeout		TIME	T#2s	Ti
SimultaneousSends		INIT	4	Nu
PortAddress		string[33]	Ethernet 1	N

Addressing Example for the TSX Premium Platform

General

IP addressing for the Premium range is based on XWAY addressing, which is the service used on the PLC Ethernet ports.



XWAY Address

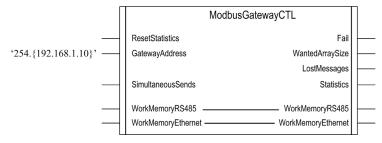
An XWAY address is defined by using the Modbus TCP/IP messaging provided by the Premium Ethernet modules. An XWAY address is simply the definition of the Server device for the Ethernet module, as well as the identification of the type of protocol to be used on the Ethernet bus. The client (Premium) initiates the requests to the respective data server, and the server answers the request through the defined XWAY channel address.

An XWAY address consists of the network number and the station number (within that network) where the device for which communications should be established through Modbus TCP/IP is located (100..164 addresses).

Therefore, and as an example, an address of {1.110} is associated to the remote Modbus TCP/IP device with an address on the network (192.168.1.10 in this example). Communications are carried out through a module on Slot 2 and through channel 0.

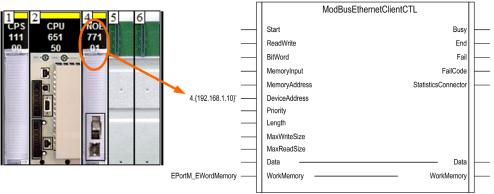
The ID ({IP}ID) is necessary based on the slave addressing, and ranges from 0 to 255.

Addressing Example for the Quantum Platform


General

Quantum platforms do not have XWAY addressing, since the instructions they use for Modbus TCP/IP communications do not require this type of addressing.

Depending on the physical location of the Ethernet port for which communications are to be established.


Port Located on the PLC CPU

If the Ethernet port through which communications will be carried out is the port located on the PLC CPU (not on an Ethernet communications NOE module), the address must have the header "254".

Port Located on a NOE

If the Ethernet port with which communications will be carried out is a port located on a NOE (Quantum platform communications module), the corresponding Quantum Rack position must be indicated. Example: A NOE module located in Slot 4 of the Quantum PLC.

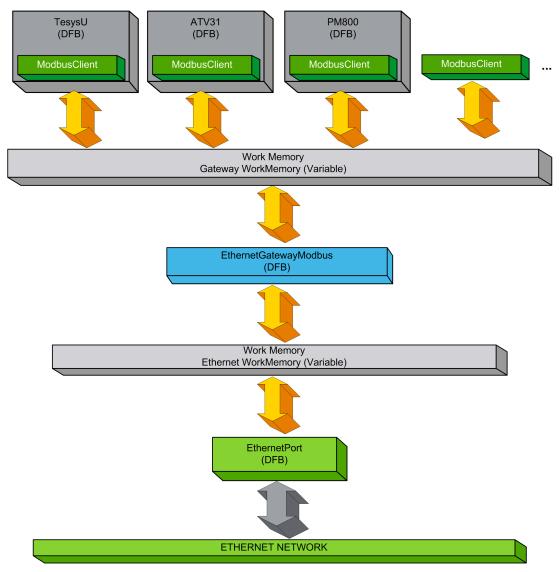
The ID ({IP}ID) is necessary based on the slave addressing, and ranges from 0 to 255.

19.2Gateway Technology

Overview

This section provides useful information regarding Gateway Technology.

What's in this Section?


This section contains the following topics:

Торіс	Page
Communications Technologies - Gateway	444
Addressing Example for the M340 Platform	446
Addressing Example for the TSX Premium Platform	448
Addressing Example for the Quantum Platform	451

Communications Technologies - Gateway

Gateway Communications Architecture:

Diagram of the architecture used in communications implemented with a Serial Modbus-Modbus TCP/IP gateway:

Description

This part will make it possible to correctly address the ModbusClient/Scanner components that have to carry out non-cyclic messaging through Modbus Ethernet gateways and the various different EthernetPort instances.

Depending on the PLC platform to be used, IP addressing for Ethernet clients varies and must be handled separately. Independently of the PLC platform used, acyclic messaging requires an Ethernet gateway instance (EGtwMB). IP addressing is implemented with the DeviceAddress input variable.

The Ethernet Modbus TCP/IP-Serial Modbus gateway component receives requests from the Modbus slaves (clients/scanners) through WorkMemory RS485 and converts them into serial Modbus requests to the Ethernet port (EthernetPort).

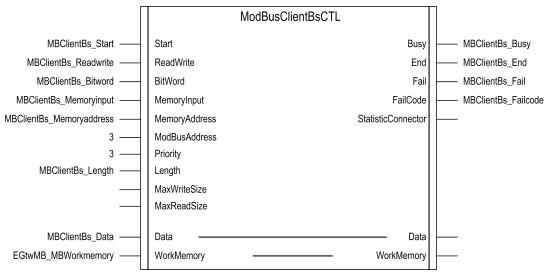
The programmed EthernetPort instance issues the Modbus TCP/IP request by means of Read_Var, Write_Var, or MBP_MSTR-type instructions in Quantum. Because of this, the clients message is sent through EthernetWorkMemory.

Platform	IP Addressing GatewayAddress(variable)	Client/Scanner Addressing ModbusAddress (variable)
M340	{IP}	Modbus slave number
Premium	{XWAY}.Slot.Channel	Modbus slave number
Quantum	Slot.{IP}	Modbus slave number

Depending on the platform, the following definitions apply:

NOTE: Do not omit the punctuation marks.

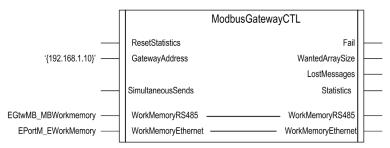
Addressing Example for the M340 Platform


General

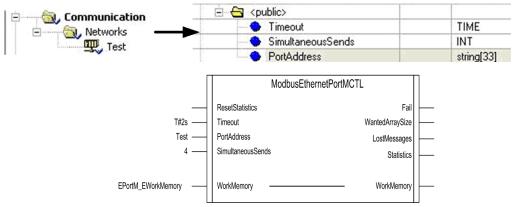
In this programming example, an M340 series PLC issues requests to a Modbus slave (slave number 3) through a Serial Modbus-Modbus TCP/IP gateway. This example has a client on Modbus (addressing in ModbusAddress and an MBScanner various WorkMemorys would be implemented the same way):

The name of the "EGtwMB_MBWorkMemory" variable must be the same in the "ModBusClientBsCTL" and "ModBusGatewayCTL."

The name of the "EPortM_EWorkMemory" variable must be the same in the "ModBusGatewayCTL" and "ModBusEthernetPortPCTL".


Modbus Slave with address 3

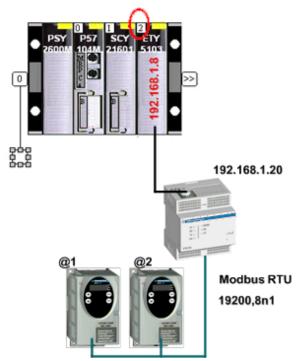
The result of the read operation once "MBClientBs_End" has been activated will be found in "MBClientBs_Data." To carry out a write operation, the values to be written will be found in "MBClientBs_Data."


Modbus TCP/IP – Serial Modbus Gateway.

The IP address that must be entered into the Gateway Address input variable:

Ethernet port

The DFB has a input variable into which the name of the PLC configured channel (IP + services) must be provided. This is the channel through which the PLC will issue its requests to the slave:

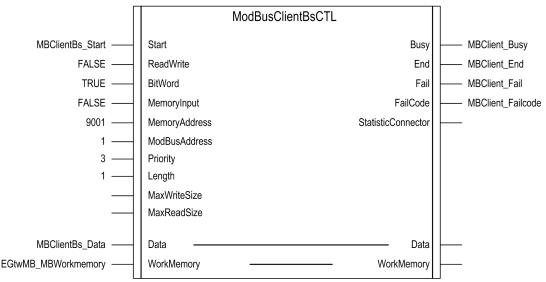

The name of the "EGtwMB_MBWorkMemory" variable must be the same in the "ModbusClientBasic" and "ModBusGateway."

The name of the "EPortM_EWorkMemory" variable must be the same in the "ModBusGateway" and "EthernetPor

Addressing Example for the TSX Premium Platform

General

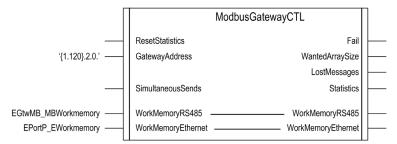
The following is a practical example:



The same structure used in the previous section is used here. The objective is to establish communications with a Premium PLC towards an ATV31 Modbus slave (Modbus slave number 1) through a Modbus Ethernet-Serial Modbus gateway in order to read the Acceleration value (register 9001).

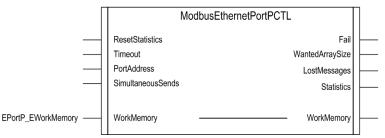
The first step is to define XWAY addressing in the PLC Ethernet module through which communication is done.

Modbus Slave: For the ATV31 speed driver with address 1


Therefore, and as an example, an address of {1.110} is associated to the remote Modbus TCP/IP device with an address on the network (192.168.1.10 in this example). Communications are carried out through a module on Slot 2 and through channel 0.

The result of the read operation once "MBClient_End" has been activated will be found in "MBClientBs_Data[0]."

Modbus TCP/IP – Serial Modbus Gateway


In this example, communications are carried out through the port of a Premium CPU ETY module; Slot 2, channel 0. Additionally, the XWAY address must be addressed correctly, as shown in the following example

The XWAY messaging address with which communications should take place must be edited in the PLC Ethernet port configuration:

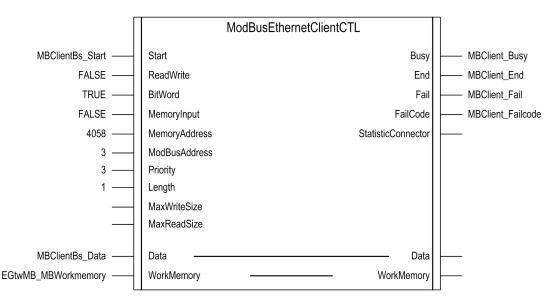
		XWAY	IP address	Access	Mode	
	1	1.120	192.168.1.20	ন	MULTI 💌	
	2			¬	MULTI 🗾	
	3			P	MULTI 💌	
ess control	4			F	MULTI 👱	
	5	8		T	MULTI 👱	
1	6			P	MULTI 🔄	
	7	8		P	MULTI 👱	
	8			T	MULTI 👱	
	9			P	MULTI 🗾	
	10	5		ন	MULTI 🚬	
	11			F	MULTI 🗵	
	12			J	MULTI 👻	

Ethernet Port

The name of the "EGtwMB_MBWorkMemory" variable must be the same in the "ModBusClientBsCTL" and "ModBusGatewayCTL".

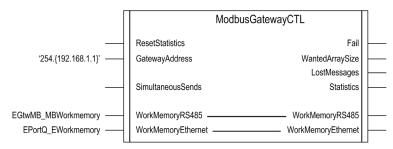
The name of the "EPort _EWorkMemory" variable must be the same in the "ModBusGatewayCTL" and "ModBusEthernetPortPCTL".

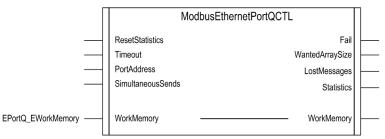
The result of the read operation once "MBClient_End" has been activated will be found in "MBClientBs_Data[0]."


Addressing Example for the Quantum Platform

General

The following is a practical example:


The objective is to establish communications with a Quantum PLC towards an ATS48 Modbus slave (Modbus slave number 3) through a Modbus Ethernet-Serial Modbus gateway in order to write to the cascade function activation register (register 4058).


Modbus Slave: ATS48 speed driver with address 3

Modbus TCP/IP – Serial Modbus Gateway.

The Ethernet address must be addressed correctly. Communications will be carried out through the PLC integrated port. Because of this, the channel must be identified with a value of 254.

Ethernet Port

The name of the "EGtwMB_MBWorkMemory" variable must be the same in the "ModBusClientBsCTL" and "ModBusGatewayCTL."

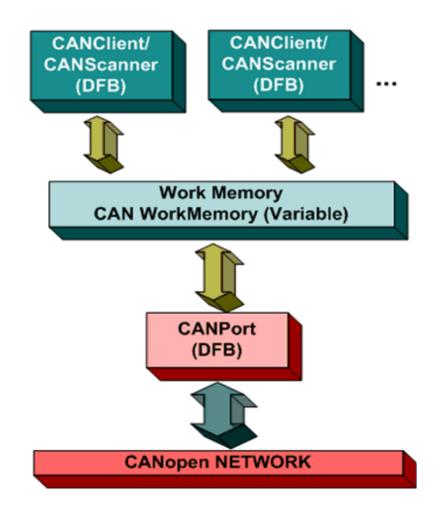
The name of the "EPort _EWorkMemory" variable must be the same in the "ModBusGatewayCTL" and "ModBusEthernetPortQCTL."

19.3CANOpen Technology

Overview

This section provides useful information regarding CANOpen Technology.

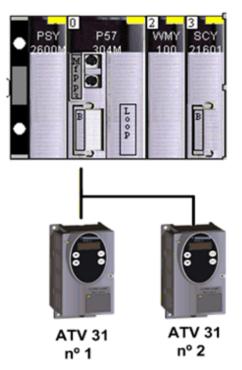
What's in this Section?


This section contains the following topics:

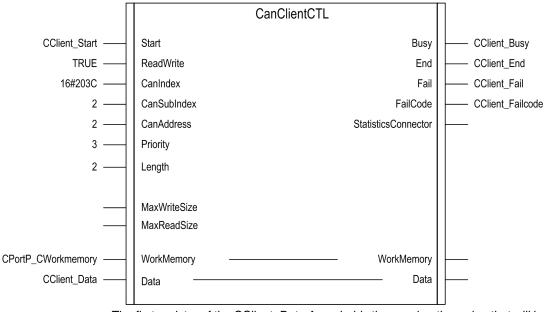
Торіс				
Communications Technologies - CANOpen	455			
TSX Premium Platform Example	456			

Communications Technologies - CANOpen

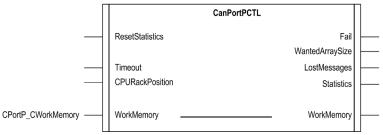
CANOpen Communications Architecture:


Diagram of CANopen communications architecture:

TSX Premium Platform Example


General

A Premium PLC is used in this example to write the value of the ACC (register 203C / 2 in CANopen) of the ATV31 speed driver with slave number 2.


NOTE: This example can be applied to any CPU of the Modicon M340 and Premium families that can communicate on CANopen.

The first register of the CClient_Data Array holds the acceleration value that will be sent to the device every time that CClient_Start is TRUE and the CClient_End reading operation ends in TRUE.

CANopen Port

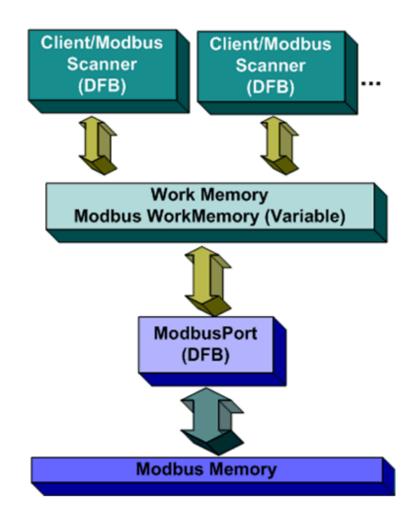
The name of the "CPortP_CWorkMemory" variable must be the same in the "CanClientCTL" and "CanPortPCTL".

19.4MODBUS Technology

Overview

This section provides useful information regarding MODBUS Technology.

What's in this Section?


This section contains the following topics:

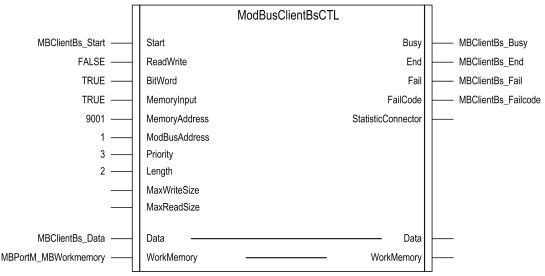
Торіс	Page
Communications Technologies - MODBUS	459
Modicon M340 Platform Example	460

Communications Technologies - MODBUS

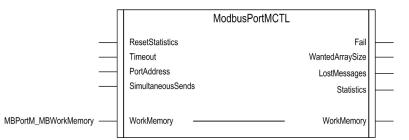
MODBUS Communications Architecture:

Diagram of Modbus communications architecture:

Modicon M340 Platform Example


General

A Modicon M340 PLC is used in this example to read the value of the ACC and DEC (registers 9001 and 9002) of the ATV31 speed driver with slave number 1.


NOTE: This example can be applied to any CPU of the Modicon M340 and Premium families that can communicate on Modbus.

The first register of the MBClientBs_Data[0] Array holds the acceleration value, and the second register holds the deceleration read from the device every time that MBClientBs_Start is TRUE and the MBClient_End reading operation ends in TRUE.

Modbus Port

The name of the "MBPortM_MBWorkMemory" variable must be the same in the "ModBusClientBsCTL" and "ModBusPortMCTL".

Index

Α

ATV31 - CANopen ATV31 Drive CATV31M, 41 Description, 42 Error Management, 72 HMI Representation, 79, 299 Inputs, 45 Inputs/Outputs, 65 Operator Screen, 71 Outputs, 55 SCoD Representation and Parameter Description, 76 ATV31 - CANopen ATV7161 Drive HMI Representation, 104 ATV7161 - CANopen ATV Drive CATV61M. 85 CATV71M, 85 Description, 86 Error Management, 100 Inputs, 89 Inputs/Outputs, 98 Operator Screen, 99 Outputs, 94 SCoD Representation and Parameter Description, 101

ATV7161 - Ethernet ATV61, ATV71 Description, 275 EATV61, 273 EATV71, 273 Error Management, 295 Inputs, 278 Inputs/Outputs, 293 Operator Screen, 294 Outputs, 285 ATV7161 - Ethernet ATV71, ATV61 SCoD Representation and Parameter Description, 296

С

CANopen Devices ATV31 - CANopen ATV31 Drive, 41 ATV7161 - CANopen ATV Drive, 85

D

Device Components, 107 MBEM6400 - Modbus Energy Meter 6400, 149 MBEM7300 - Modbus Energy Meter 7300, 171

Ε

Ethernet Devices ATV7161 - Ethernet ATV61, ATV71, 273

G

General Overview of Resource for Devices Profile Descriptions, 28 Resources for Devices, 24

I

Introduction General Concepts, *35* General Overview of Device Resources, *23* Introduction, *21*

Μ

MBATV - Modbus ATV Drive Description, 196 Inputs, 199 Inputs/Outputs, 209 MBATV31, 195 MBATV61, 195 MBATV71. 195 Operator Screen, 210 Outputs. 204 SCoD Representation and Parameter Description, 212 MBATV- Modbus ATV Drive Error Management, 211 MBEM6400 - Modbus Energy Meter Inputs. 153 MBEM6400 - Modbus Energy Meter 6400 Description, 150 HMI Representation, 165 Outputs. 156 SCoD Representation and Parameter Description, 163 MBEM6400 Modbus Energy Meter 6400 Inputs/Outpus, 159 MBEM7300 - Modbus Energy Meter 7300 Description. 172 Error Management, 186 HMI Representation, 191 Inputs. 175 Outputs, 176 SCoD Representation and Parameter

Description, 187 MBEM7300 - Modbus Energy Meter 7300 Inputs/Outputs, 182 MBPM710, MBPM800 - Modbus PM710, PM800 Description, 218 Error Management, 239 Inputs, 222 Inputs/Outputs, 232 MBPM710. 217 MBPM800. 217 Operator Screen, 238 Outputs, 225 SCoD Representation and Parameter Description, 240 MBTESYST - Modbus Tesys T Motor Management Description, 248 Error Management, 267 HMI Representation, 215, 244, 271 Inputs, 251 Inputs/Outputs, 263 MBTESYST. 247 Operator screen, 266 Outputs. 256 SCoD Representation and Parameter Description, 268 Modbus Devices MBATV - Modbus ATV Drive, 195 MBPM710, MBPM800 - Modbus PM710, PM800. 217 MBTESYST - Modbus Tesys T Motor Management, 247

Т

TESYST - AdvantysSTB and CANopen Te-

sys T Motor Management CTESYST, 107 Description, 109 Error Management, 139 Inputs, 112 Inputs/Outputs, 132 Operator Screen, 138 Outputs, 121 SCoD Representation and Parameter Description, 141 TESYST - CANopen Tesys T Motor Management HMI Representation, 143