

^2 Accessory 72EX

3⏕0-603958-⏕U⏕⏕

July 9, 2023

HARDWARE REFERENCE MANUAL

UMAC Fieldbus Interface

Document # MN-000251

Copyright Information

© 2023 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are

unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained in this

manual may be updated from time-to-time due to product improvements, etc., and may not conform in

every respect to former issues.

To report errors or inconsistencies, call or email your local Omron representative

Operating Conditions

All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain static

sensitive components that can be damaged by incorrect handling. When installing or handling Delta Tau

Data Systems, Inc. products, avoid contact with highly insulated materials. Only qualified personnel

should be allowed to handle this equipment. Before powering, please ensure there is no visible damage to

the product.

In the case of industrial applications, we expect our products to be protected from hazardous or

conductive materials and/or environments that could cause harm to the controller by damaging

components or causing electrical shorts. Our products should not be placed in locations that can accrue a

lot of dust, salt, or conductive iron-like powder. When our products are used in an industrial environment,

install them into an industrial electrical cabinet or industrial PC to protect them from excessive or

corrosive moisture, abnormal ambient temperatures, and conductive materials. If Delta Tau Data

Systems, Inc. products are directly exposed to hazardous or conductive materials and/or environments, we

cannot guarantee their operation. For your own safety, please keep the product’s environmental

conditions within the range outlined by the Environment Specifications section that can be located from

the table of contents in this manual.

Trademarks

Other company names and product names in this document are the trademarks or registered trademarks of

their respective companies.

Safety Instructions

Qualified personnel must transport, assemble, install, and maintain this equipment. Properly qualified

personnel are persons who are familiar with the transport, assembly, installation, and operation of

equipment. The qualified personnel must know and observe the following standards and regulations:

IEC364resp.CENELEC HD 384 or DIN VDE 0100

IEC report 664 or DIN VDE 0110

National regulations for safety and accident prevention or VBG 4

Incorrect handling of products can result in injury and damage to persons and machinery. Strictly adhere

to the installation instructions. Electrical safety is provided through a low-resistance earth connection. It

is vital to ensure that all system components are connected to earth ground.

This product contains components that are sensitive to static electricity and can be damaged by incorrect

handling. Avoid contact with high insulating materials (artificial fabrics, plastic film, etc.). Place the

product on a conductive surface. Discharge any possible static electricity build-up by touching an

unpainted, metal, grounded surface before touching the equipment.

Keep all covers and cabinet doors shut during operation. Be aware that during operation, the product has

electrically charged components and hot surfaces. Control and power cables can carry a high voltage,

even when the motor is not rotating. Never disconnect or connect the product while the power source is

energized to avoid electric arcing.

A Warning identifies hazards that could result in personal injury or

death. It precedes the discussion of interest.

Warning

Caution

A Caution identifies hazards that could result in equipment damage. It

precedes the discussion of interest.

Note

A Note identifies information critical to the understanding or use of

the equipment. It follows the discussion of interest.

REVISION HISTORY

REV DESCRIPTION DATE CHG APPVD

1 Preliminary Manual 11/05/12 SS SS

2
Added Power PMAC support and address settings

based upon 603958-102
09/24/13 SS SS

3 Corrected ACC72EX.Data8[i] references 10/21/13 SS SS

4 Added C code and setup examples; corrected typos 07/29/15 DCDP SS

5 Fixed Jumper E2 description 03/17/16 SGM SGM

6 Added KC Conformity 10/17/18 SM RN

7 Added environmental specifications table 09/14/20 SM RN

8 Added Mounting and Installation section 12/16/20 SM RN

9

Added warning statement and updated drawing

illustration for noise chatter in Mounting and

Installation section

01/26/21 SM RN

A
Added UKCA Marking to front cover and added

description in Agency of Approval section
08/11/21 AE SM

B Updated UKCA standard 01/31/22 AE SF

C Updates for Product Lifecycle Management 6/23/23 AA AA

ACC-72EX User Manual

Table of Contents v

Table of Contents

INTRODUCTION... 8

SPECIFICATIONS... 9

Environmental Specifications ... 9

Agency Approval and Safety .. 10

MOUNTING AND INSTALLATION .. 11

THEORY OF OPERATION ... 12

UBUS Interface ... 12

How ACC-72EX Works .. 12

Turbo PMAC Memory .. 13

Power PMAC Memory ... 13

Hilscher ComX Module Addressing to Turbo PMAC Addressing Conversion 14

Hilscher ComX Module Addressing to Power PMAC Addressing Conversion 16

HARDWARE .. 17

E3: UBUS Address ... 17

CS16- Identification ... 17

Identification Information .. 17

Jumper Settings ... 18

Option Identification Jumpers .. 18

E-Point Jumper Settings ... 18

Communication Option-Dependent E-Point Jumper Settings ... 19

Connector Pinouts ... 20

Fieldbus Port (J4) ... 20

Real-time Ethernet Ports (Ethernet 0 & Ethernet 1) .. 20

Diagnostics Port (Micro A USB) ... 20

DPRAM MEMORY MAP ... 21

DPRAM Blocks .. 22

System Channel .. 22

Handshake Channel .. 24

Communication Channel .. 33

Application Channel... 38

Auto-Generated Dual-Ported Memory Map ... 38

Address Converter .. 38

Memory Map Generator ... 39

DPRAM DATA PROCESSING .. 55

Non-Cyclic Data Exchange ... 55

Message or Packets .. 55

ACC-72EX User Manual

Table of Contents vi

About System and Channel Mailbox ... 58

Command and Acknowledge ... 59

Using ulSrc and ulSrcId ... 62

How to Route rcX Packets ... 62

Client/Server Mechanism ... 63

Input/Output Data Image .. 64

Process Data Handshake Modes .. 64

Start / Stop Communication .. 67

Controlled or Automatic Start .. 67

Start / Stop Communication through Dual-Port Memory .. 67

Reset Command .. 68

System Reset vs. Channel Initialization ... 68

Resetting netX through Dual-Port Memory ... 68

System Reset through Packets ... 71

SOFTWARE SETUP .. 72

Required Software Packages ... 72

SyCon.NET Software Setup ... 72

ACC-72EX Setup Assistant .. 82

Turbo PMAC Setup for Using ACC-72EX .. 84

Initialization PLC ... 84

Watchdog Function .. 85

Enabling the Communication Bus ... 85

Locating the Input/Output Data Image in PMAC .. 86

Reading/Writing from/to Input/Output Data Images ... 87

Power PMAC Setup for Using ACC-72EX .. 89

ACC72EX[i]. Non-Saved Data Structures ... 89

C Programming Access to ACC-72EX Structures .. 92

Global Header for Power PMAC Projects ... 94

Initialization PLC ... 103

Startup .. 105

Watchdog Function .. 105

Enabling the Communication Bus ... 106

Locating the Input/Output Data Image in PMAC .. 106

DIAGNOSTICS... 108

LEDs ... 108

PROFIBUS-DP – Master – OPT10 ... 108

PROFIBUS-DP – Slave – OPT11 .. 108

DeviceNet – Master – OPT20 .. 109

DeviceNet – Slave – OPT21 .. 109

CANopen – Master – OPT30 ... 109

CANopen – Slave – OPT31 ... 110

ACC-72EX User Manual

Table of Contents vii

CC-Link – Slave – OPT51 ... 110

EtherCAT – Master – OPT60 .. 111

EtherCAT – Slave – OPT61 ... 112

EtherNet/IP – Scanner/Master – OPT70 .. 113

EtherNet/IP – Adaptor/Slave – OPT71 .. 114

Open Modbus/TCP – OPT80 ... 115

PROFINET IO – Controller – OPT90 ... 116

PROFINET IO – Device – OPT91 .. 117

APPENDIX A – SETUP EXAMPLES .. 118

SYCON.net Setup ... 118

RSLogix 5000 Setup ... 124

COMX Test PLC .. 132

APPENDIX B – TURBO PMAC MEMORY MAPS ... 143

APPENDIX C – POWER PMAC MEMORY MAPS ... 146

ACC-72EX User Manual

Introduction 8

INTRODUCTION
This manual provides the information needed to configure ACC-72EX, a fieldbus/real-time Ethernet

interface for the Turbo or Power UMAC. The ACC-72EX is equipped with a “gateway” daughter card

that allows the UMAC (also referred to as host application) to send and receive data through the

supported fieldbus/real-time Ethernet protocols. The gateway used is the COMX CN series manufactured

by the Hilscher Corporation. Relevant hyperlinks are provided in Appendix D for in-depth information

regarding these modules.

There are three connectors located on the front of the ACC-72EX:

First, a Micro B USB connector, which is specified as “Diagnostic Port,” and provides USB connectivity

to Hilscher’s “SyCon.NET” software.

The second connector, which is referred to as the “Fieldbus Port”, is a 9-Pin Male D-Sub connector which

is used for connecting the fieldbus link to ACC-72EX. The fieldbus protocols supported through this port

are:

• PROFIBUS-DP – Master – OPT10

• PROFIBUS-DP – Slave – OPT11

• DeviceNet – Master – OPT20

• DeviceNet – Slave – OPT21

• CANopen – Master – OPT30

• CANopen – Slave – OPT31 (No Longer Available)

• CC-Link – Slave – OPT51 (No Longer Available)

The third connector is composed of two RJ-45 ports which provide connection to real-time Ethernet

networks. The following real-time Ethernet protocols are supported through these ports:

• EtherCAT – Master – OPT60

• EtherCAT – Slave – OPT61

• EtherNet/IP – Scanner/Master – OPT70

• EtherNet/IP – Adaptor/Slave – OPT71

• Open Modbus/TCP – OPT80

• PROFINET IO – Controller – OPT90

• PROFINET IO – Device – OPT91

The protocol is dependent upon the equipped COMX gateway. The hardware cannot be programmed for

an alternate protocol or change from slave to master or vice versa. However, should the COMX gateway

be replaced with one supporting another protocol, the baseboard would function properly as a

communications link to UMAC. In this case, proper jumper settings should be set up to ensure proper

functionality on communication lines and option detection.

Most gateway cards get their power from the UBUS back plane; however, the DeviceNet option (Options

3 & 4) requires an external 24 VDC power supply through the “Fieldbus Port.”

ACC-72EX User Manual

Specifications 9

SPECIFICATIONS

Environmental Specifications

Description Specification Notes

Operating Temperature 0°C to 55°C

Storage Temperature -25°C to 70°C

Humidity 10% to 95 % Non-Condensing

ACC-72EX User Manual

Specifications 10

Agency Approval and Safety

Item Description

CE Mark EN61326-1

EMC EN55011 Class A Group 1

EN61000-4-2

EN61000-4-3

EN61000-4-4

EN61000-4-5

EN61000-4-6

Flammability Class UL 94V-0

KC EMI: KN 11

EMS: KN 61000-6-2

UKCA 2016 No. 1091

사 용 자 안 내 문

이 기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은 기기로서 가정

용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다.

한국 EMC적용제품 준수사항

본 제품은 전파법(KC 규정)을 준수합니다. 제품을 사용하려면 다음 사항에 유

의하십시오. 이 기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은

기기로서 가정용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다. 입

력에 EMC 필터, 서지 보호기, 페라이트 코어 또는 1차측의 케이블에 노이즈

필터를 입력으로 사용하십시오.

ACC-72EX User Manual

Mounting and Installation 11

MOUNTING AND INSTALLATION
To connect a UMAC accessory, simply slide the board into any open slot of the UMAC rack.

Customarily, accessories are installed from left to right as follows:

C
P

U

F
ie

ld
b
u

s

A
x
e
s

C
a
rd

s

I/
O

 C
ar

d
s

P
o
w

er
 S

u
p
p

ly

10, 15, or 21-slot rack

ACC-72EX

Prior to installation, make sure that you have set the jumpers and address settings to your desired

requirements. Use the guide tracks that have been installed in the empty slots of your UMAC system

when installing a board.

As you slide the board into the rack, use caution to ensure none of the components on the board make

contact with the front plates of the boards on either side. Getting the front plate flush with the front of the

rack and turning the front screws firmly will ensure a good connection with the backplane.

When removing a board from the system, the user must first pull out any wired connections from the top,

bottom, and front panels then loosen the pem-nuts on the front of the rack. Next, the user can gently pull

the board from the rack and use caution to ensure that none of the components on the board make contact

with the boards on either side.

System malfunction can occur due to noise/chatter if the ACC-72EX

is placed outside of the recommended order as seen in the illustration

above. Note that the ACC-72EX is a Fieldbus device and should be

placed adjacent to the CPU, and as close as possible to ensure smooth

communication. Warning

ACC-72EX User Manual

Theory of Operation 12

THEORY OF OPERATION
The ACC-72EX board is organized as a motherboard/daughter board system. The motherboard contains

the UBUS interface, diagnostics, and the fieldbus connections. The daughter board contains the

intelligence (firmware which will be referred as netX) and the interface electronics required for each

fieldbus. There is a different daughter board for each fieldbus.

The netX firmware on the daughter board implements each fieldbus communications protocol. Fieldbus

data is transferred to/from the fieldbus and placed in a Dual-Ported RAM (memory) on the daughter

board. The structure of this DPRAM is given later in this manual and is common for all the field buses.

ACC-72EX supports up to 64K DPRAM on each device (one full chip-select width).

The PMAC side of the DPRAM is interfaced to the UBUS. PMAC programs access the fieldbus data by

reading or writing data to memory addresses corresponding to the location of the PMAC Gateway 3U

board’s DPRAM.

UBUS Interface
The UBUS is Delta Tau’s bus interface for the UMAC controller. The ACC-72EX maps to the UBUS as

a DPRAM style board. It occupies contiguous memory locations (both X and Y memory for Turbo

PMAC) of the lower two bytes of the 24-bit (middle 16 bits of each 32 bit word for Power PMAC),

DPRAM addresses. Because the DPRAM size supported on ACC-72EX can be as large as 64K, each card

will occupy one full Chip Select addressing space. There can be a maximum of two ACC-72EX cards per

Turbo/Power UMAC (cannot be in a MACRO Station).

M-Variables can be mapped to these locations to move data to and from the fieldbus and PMAC. In

addition to fieldbus data, there is a block of memory that indicates the ACC-72EX’s status.

How ACC-72EX Works
1. The ACC-72EX organizes fieldbus bytes in dual-port memory on the COMX module. These fieldbus

bytes are mapped into PMAC’s memory space via the UBUS interface.

2. PMAC M-Variables are used to move data to and from the fieldbus or to control the COMX board.

3. An E-point jumper on the ACC-72EX sets the address of the board in PMAC memory space.

4. The COMX board is configurable via a USB port. SYCON.NET is provided with the COMX board

for this purpose.

5. Diagnostic LEDs are provided for a visual indication of board status.

ACC-72EX User Manual

Theory of Operation 13

Turbo PMAC Memory
Turbo PMAC uses a DSP (Digital Signal Processor) with a 24-Bit architecture that uses two memory

areas: Y and X Memory. Memory is accessed in PMAC programs using M-Variables. The definition of

an M-Variable includes its number, address, offset, width, and type. Refer to the Turbo PMAC Software

Reference Manual or Turbo PMAC User Manual for additional explanation of M-Variables and their

specification, such as in the “M-Variables” section in the User manual.

Byte 0Byte 1Byte 2

PMAC 24-bit
X-Memory Address

Byte 0Byte 1Byte 2

PMAC 24-bit
Y-Memory Address

PMAC
Address

$06C000

MemCS0_
Offset

$0

M6000->Y:$06C000,0,16,U

M6001->X:$06C000,0,16,U

Turbo PMAC Memory Organization

Power PMAC Memory
Power PMAC uses 32-bit data bus architecture. ACC-72EX Memory is accessed in Power PMAC data

structures or their equivalent #define statements. The #define statements are included later in this manual.

Byte 1Byte 2Byte 3

.Udata16[0]

Power PMAC

ACC72EX[0].

MemCS0_
Offset

$0 Byte 0Byte 5Byte 6Byte 7 Byte 4

.Udata16[1]

.Udata8[0].Udata8[1].Udata8[2].Udata8[3]

Byte 1Byte 2Byte 5Byte 6

Acc72EX[0].Udata32[0]

Power PMAC Memory Organization

ACC-72EX User Manual

Theory of Operation 14

Hilscher ComX Module Addressing to Turbo PMAC Addressing Conversion
As explained in previous sections, Turbo PMAC places 4 bytes of Hilscher ComX memory data in each

PMAC memory word. This means that for each address offset increment on the PMAC side, there will be

4 increments of offset addresses on the Hilscher DPRAM side. The following example shows PMAC

addressing for equivalent offset addresses of 0x400 in Hilscher documentation.

Byte 0Byte 1Byte 2

PMAC 24-bit
X-Memory Address

Byte 0Byte 1Byte 2

PMAC 24-bit
Y-Memory Address

PMAC Offset

$100

Byte 0

Byte 1

Byte 2

Byte 3

Byte 0Byte 1Byte 2 Byte 0Byte 1Byte 2$101

Byte 4

Byte 5

Byte 6

Byte 7

Byte 0Byte 1Byte 2 Byte 0Byte 1Byte 2$102

Byte 8

Byte 9

Byte 10

Byte 12

Hilscher
DPRAM Offset

0x400

0x401

0x402

0x403

0x404

0x405

0x406

0x407

0x408

0x409

0x40A

0x40B

DPRAM Addressing
Based upon Hilscher

DPRAM Addressing Based
upon TURBO UMAC CPU

Consumed Data Flow

ACC-72EX User Manual

Theory of Operation 15

In general, the following flowcharts can be used to convert any Hilscher DPRAM addressing to PMAC’s

addressing format:

M6017->Y:$6C00A,0,16

Width

Offset

Address

Definition Type

Start
(Definition Type)

SizeOf(Type)
==4 bytes

Definition Type : DP

Mod(INT(Offset/2),2)
==0

Definition Type : Y

Definition Type : X

End

Yes

No

Yes

No

Start
(PMAC Address)

PMAC Address = ACC-72EX Based address +
 INT(Offset/4)

End

Start
(PMAC Offset)

PMAC Offset = ACC-72EX Based address +
 INT(Offset/4)

End

Definition Type == DP
PMAC Offset
Not Needed

Yes

No

Start
(PMAC Width)

PMAC Width = SizeOf(Type)

End

Definition Type == DP
PMAC Width
Not Needed

Yes

No

An address conversion tool is provided in the ACC-72EX Setup Assistant software.

ACC-72EX User Manual

Theory of Operation 16

Hilscher ComX Module Addressing to Power PMAC Addressing Conversion
In Power PMAC, specific Acc72EX[i] data structures have been implemented which allow bit-wide,

byte-wide, 2-byte and 4-byte access to Hilscher ComX Dual Ported RAM.

Acc72EX[i].Udata16[j] structures can be used for individual bit access, both for read and for write

purpose.

Power PMAC Structures

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Byte 8

Byte 9

Byte 10

Byte 12

Hilscher
DPRAM Offset

0x400 (1024)

0x401 (1025)

0x402 (1026)

0x403 (1027)

0x404 (1028)

0x405 (1029)

0x406 (1030)

0x407 (1031)

0x408 (1032)

0x409 (1033)

0x40A (1034)

0x40B (1035)

DPRAM Addressing
Based upon Hilscher

DPRAM Addressing Based
upon Power UMAC CPU

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Byte 8

Byte 9

Byte 10

Byte 12

Acc72EX[0].Udata8[1024]

Acc72EX[0].Udata8[1025]

Acc72EX[0].Udata8[1026]

Acc72EX[0].Udata8[1027]

Acc72EX[0].Udata8[1028]

Acc72EX[0].Udata8[1029]

Acc72EX[0].Udata8[1030]

Acc72EX[0].Udata8[1031]

Acc72EX[0].Udata8[1032]

Acc72EX[0].Udata8[1033]

Acc72EX[0].Udata8[1034]

Acc72EX[0].Udata8[1035]

Acc72EX[0].Udata16[512]

Acc72EX[0].Udata16[513]

Acc72EX[0].Udata16[514]

Acc72EX[0].Udata16[515]

Acc72EX[0].Udata16[516]

Acc72EX[0].Udata16[517]

Acc72EX[0].Udata32[256]

Acc72EX[0].Udata32[257]

Acc72EX[0].Udata32[258]

ACC-72EX User Manual

Hardware 17

HARDWARE

E3: UBUS Address
E-point jumper E3 on the ACC-72EX controls the base address and range on the UBUS. Since each

ACC-72EX uses full-13 bit addressing, it consumes all the memory addressable through each chip select.

As a result, two is the maximum number of ACC-72EX boards that can be used in a Turbo UMAC rack.

E3 Turbo PMAC Power PMAC

1-2 Y/X:$6C000 - $6FFFF ACC-72EX[0] ($E00000)

2-3 Y/X:$74000 - $7FFFF ACC-72EX[1] ($F00000)

The default location on Turbo PMAC is Y/X:$6C000 - $6FFFF ($E00000 on Power PMAC).

Note:

Do not set the ACC-72EX to the DPR address range $6C000-$6FFFF if the

UMAC is equipped with an Acc-54E. Acc-54E is set to this range as default.

CS16- Identification
One of the features of the UBUS is that memory locations, selected by CS16 (Chip Select 16/Active

Low), were reserved for board identification information.

• Vendor ID (8 bits)

• Options Present (10 bits)

• Revision Number (4 bits)

• Product ID (14 bits)

This information (36 bits) is accessible directly with I-Variables added in Turbo PMAC Firmware 1.936

or later. A summary of the PMAC Gateway ID information is in the table below.

I39 controls the values reported.

I39= I4942…I4952 reports the following

0 36 bits (Vendor ID, Options present, Rev Number, Product ID)

1 8 bits (Vendor ID)

2 10 bits (Options Present) Reported by PMAC in HEX ($)

3 4 bits (Revision Number)

4 14 bits (Product ID)

5 19 bits (Card Base Address)

Identification Information
The vendor ID, part number, and revision numbers are programmed into the ACC-72EX base board. The

Option Number is set by jumpers on the board. The settings below are given for reference only. There is

no need to change these from the factory settings.

ACC-72EX User Manual

Hardware 18

Jumper Settings

Option Identification Jumpers

Item Comm. Protocol Option Part Number
JP1 JP2 JP3 JP4 JP5 JP6 JP7 JP8 JP9

Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15 Bit 16 Bit 17

1 PROFIBUS-DP – Master 310-603958-OPT OFF ON OFF ON OFF OFF OFF OFF OFF

2 PROFIBUS-DP – Slave 311-603958-OPT ON ON OFF ON OFF OFF OFF OFF OFF

3 DeviceNet – Master 320-603958-OPT OFF OFF ON OFF ON OFF OFF OFF OFF

4 DeviceNet – Slave 321-603958-OPT ON OFF ON OFF ON OFF OFF OFF OFF

5 CANopen – Master 330-603958-OPT OFF ON ON ON ON OFF OFF OFF OFF

6 CANopen – Slave* 331-603958-OPT ON ON ON ON ON OFF OFF OFF OFF

7 CC-Link – Slave* 351-603958-OPT ON ON OFF OFF ON ON OFF OFF OFF

8 EtherCAT – Master 360-603958-OPT OFF OFF ON ON ON ON OFF OFF OFF

9 EtherCAT – Slave 361-603958-OPT ON OFF ON ON ON ON OFF OFF OFF

10 EtherNet/IP – Scanner/Master 370-603958-OPT OFF ON ON OFF OFF OFF ON OFF OFF

11 EtherNet/IP – Adaptor/Slave 371-603958-OPT ON ON ON OFF OFF OFF ON OFF OFF

12 Open Modbus/TCP 380-603958-OPT OFF OFF OFF OFF ON OFF ON OFF OFF

13 PROFINET IO – Controller 390-603958-OPT OFF ON OFF ON ON OFF ON OFF OFF

14 PROFINET IO – Device 391-603958-OPT ON ON OFF ON ON OFF ON OFF OFF

*No longer available

E-Point Jumper Settings
Point Default Description

E1 1-2 Selection of Reset Polarity Signal for Hilscher Module:

1-2 Selects Low True Reset

2-3 Selects High True Reset

E2 2-3 Selection of UMAC CPU architecture. This selection affects the data bus and provides

contiguous data addressing for the DPRAM:

1-2 Turbo PMAC

2-3 Power PMAC

E3 1-2 Selection of base address for ACC-72EX:

1-2 Selects Y/X:$6C000 - $6FFFF (Acc72EX[0])

2-3 Selects Y/X:$74000 - $7FFFF (Acc72EX[1])

E5 OFF Connects DPRAM interrupt to UBUS IRQ-1

E6 OFF Connects DPRAM interrupt to UBUS IRQ-2

E7 OFF Connects DPRAM interrupt to UBUS IRQ-3

ACC-72EX User Manual

Hardware 19

Communication Option-Dependent E-Point Jumper Settings
Comm. Protocol Option Option Part Number E8 E10 E11 E12

PROFIBUS-DP – Master 310-603958-OPT 1-2 OFF OFF OFF

PROFIBUS-DP – Slave 311-603958-OPT 1-2 OFF OFF OFF

DeviceNet – Master 320-603958-OPT 2-3 ON OFF OFF

DeviceNet – Slave 321-603958-OPT 2-3 ON OFF OFF

CANopen – Master 330-603958-OPT OFF OFF ON OFF

CANopen – Slave* 331-603958-OPT OFF OFF ON OFF

CC-Link – Slave* 351-603958-OPT 2-3 OFF OFF ON

EtherCAT – Master 360-603958-OPT OFF OFF OFF OFF

EtherCAT – Slave 361-603958-OPT OFF OFF OFF OFF

EtherNet/IP – Scanner/Master 370-603958-OPT OFF OFF OFF OFF

EtherNet/IP – Adaptor/Slave 371-603958-OPT OFF OFF OFF OFF

Open Modbus/TCP 380-603958-OPT OFF OFF OFF OFF

PROFINET IO – Controller 390-603958-OPT OFF OFF OFF OFF

PROFINET IO – Device 391-603958-OPT OFF OFF OFF OFF

*No longer available

NOTES:

E8: Determines the signal on pin 5 of the Fieldbus 9-pin D-Sub Connector. The position of the jumper depends

on the COMX module installed/option ordered.

E10: Adds 120 Ω termination resistor for DeviceNet communication lines

E11: Adds 120 Ω termination resistor for CANopen communication lines

E12: Adds 110 Ω termination resistor for CC-Link communication lines

ACC-72EX User Manual

Hardware 20

Connector Pinouts

Fieldbus Port (J4)
Protocol

Pin No.
PROFIBUS DeviceNet CANopen CC-Link

1 +24 V Power Supply CC-Link, Shield

2 Positive power supply CAN High-Signal CAN_L Bus Line
CC-Link, Function

Ground

3 Receive / Send Data-P Reference potential CAN Ground CC-Link, Data A

4 Control

5 Reference potential Shield CC-Link, Data Ground

6 Positive power supply CAN High-Signal CAN_L Bus Line
CC-Link, Function

Ground

7 CAN_H Bus Line

8 Receive / Send Data-N

9 CAN Low-Signal CC-Link, Data B

NOTES
E8, Jumpered 1-2 E8, 2-3 Jumpered

E10 Jumpered

E11 Jumpered E8, Jumpered 2-3

E12 Jumpred

Real-time Ethernet Ports (Ethernet 0 & Ethernet 1)

Pin No. Symbol Description

1 RX+ Receive+

2 RX- Receive–

3 TX+ Transmit+

4

5

6 TX- Transmit–

7

8

Diagnostics Port (Micro A USB)

Pin No. Symbol Description

1 VBUS +5 VDC (Not connected to ACC-72EX +5 VDC)

2 D- Data -

3 D+ Data +

4 GND
Ground Reference (Connected to ACC-72EX and UMAC’s Digital

Ground)

Note:

The USB connection is not a galvanically isolated connection. The ground of the

PC will be connected to the ground of the UMAC system through the USB

connection, which can damage components on the PC and/or ACC-72EX. Make

sure that there is no potential difference between the grounds on both ends.

ACC-72EX User Manual

DPRAM Memory Map 21

DPRAM MEMORY MAP
Below is the standard memory map of address offsets found in the DPRAM of the ACC-72EX module.

Start and end addresses for each of the memory blocks are specified both in Hilscher offset (0x notation

for hexadecimal) and Turbo PMAC offset ($ notation for hexadecimal) notation. The memory map shown

here is the standard memory map. Different COMX modules may have different memory maps. Please

refer to the Hilscher manual for each COMX module for detailed information.

These registers should be read from and written to using M-Variables which point to the lower 16 bits of

the X/Y-memory with an offset from the base address that is configured with E3. Handshake and System

registers are common between all protocols, and others can be auto-generated using the “ACC-72EX

Setup Assistant” software.

$0000 /

$000C /

$002C /
$002E /
$0030 /

$0040 /

$0060 /

$0080 /

$0080 /
$0081 /
$0082 /
$0083 /
$0084 /
$0085 /
$0086 /
$0087 /
$0088 /

$00C0 /

$00C0 /
$00C2 /
$00C4 /

$00D4 /

$0140 /

$02D0 /

$0460 /

$0470 /

$0480 /

$04C0 /

$0A60 /

$1000 /

$0000 /

$0080 /

$00C0 /

$1000 /

$4000 /

ACC-72EX User Manual

DPRAM Memory Map 22

DPRAM Blocks
In the Hilscher COMX module DPRAM, the system channel and the handshake channel are always

present. These channels are used for communicating with the firmware on the COMX module, from this

point on referred to as “netX.”

The system channel provides information about the state of the COMX module operating system, netX,

and the structure of the dual-port memory. It allows basic communication via system mailboxes.

The handshake channel provides a bit toggle mechanism that insures synchronizing data transfer between

the UMAC and COMX module. All handshake cells from system, communication, and application

channels are brought together in this one location.

Next are the communication and application channels. A communication channel provides network

access and occupies an area of the COMX dual-port memory with process, non-cyclic, and diagnostic

data. An application channel can be used for any functionality that may be executed in the context of the

netX operating system. The application channels are not supported by COMX modules at the time of

writing this manual.

DPRAM Suggested Macro Names
ACC-72EX Setup Assistant software, available through the Tools menu in PEWIN32PRO2 software,

provides a complete overview of blocks and sub-blocks available to each ACC-72EX. Under each

section is a list of macro names provided for M-Variable definition.

For more information on structures and data registers in COMX modules, please refer to references

introduced in appendix A of this manual.

System Channel
The System Channel is the first of the channels in the dual-port memory and starts at address offset

$0000. It holds information about the system itself (netX, netX operating system) and provides a mailbox

transfer mechanism for system-related messages or packets.

ACC-72EX Setup Assistant software uses the data available in this channel to generate the information in

the memory map output file.

System Information Block
The first block of information allows identification of the netX dual memory; it is used for testing proper

communication. The first 4 registers hold character values for “netX” (110, 101, 116, 88). If these values

are reading properly, the DPRAM communication is in working condition.

 Hilscher Documentation ACC-72EX Setup Assistant

Sy
st

em
 In

fo
rm

at
io

n
 B

lo
ck

abCookie[4] SI_abCookie_0_ .. SI_abCookie_3_

ulDpmTotalSize SI_ulDpmTotalSize

ulDeviceNumber SI_ulDeviceNumber

ulSerialNumber SI_ulSerialNumber

ausHwOptions[4] SI_ausHwOptions_0_ .. SI_ausHwOptions_3_

usManufacturer SI_usManufacturer

usProductionDate SI_usProductionDate

ulLicenseFlags1 SI_ulLicenseFlags1

ulLicenseFlags2 SI_ulLicenseFlags2

usNetxLicenseID SI_usNetxLicenseID

usNetxLicenseFlags SI_usNetxLicenseFlags

usDeviceClass SI_usDeviceClass

bHwRevision SI_bHwRevision

bHwCompatibility SI_bHwCompatibility

bDevIdNumber SI_bDevIdNumber

ACC-72EX User Manual

DPRAM Memory Map 23

Channel Information Block
The system block includes information about all the other channels and their availability on the COMX

module. This information is used to locate and identify different channels in the system.

 Hilscher Documentation ACC-72EX Setup Assistant

Sy
st

em
 C

h
an

n
el

In
fo

rm
at

io
n

 bChannelType SCI_bChannelType

bSizePositionOfHandshake SCI_bSizePositionOfHandshake

bNumberOfBlocks SCI_bNumberOfBlocks

ulSizeOfChannel SCI_ulSizeOfChannel

usSizeOfMailbox SCI_usSizeOfMailbox

usMailboxStartOffset SCI_usMailboxStartOffset

 Hilscher Documentation ACC-72EX Setup Assistant

H
an

d
sh

ak
e

C
h

an
n

el
 In

fo
. bChannelType HCI_bChannelType

ulSizeOfChannel HCI_ulSizeOfChannel

 Hilscher Documentation ACC-72EX Setup Assistant

C
o

m
m

u
n

ic
at

io
n

 C
h

an
n

el

In
fo

rm
at

io
n

bChannelType CCxI_bChannelType

bChannelId CCxI_bChannelId

bSizePositionOfHandshake CCxI_bSizePositionOfHandshake

bNumberOfBlocks CCxI_bNumberOfBlocks

ulSizeOfChannel CCxI_ulSizeOfChannel

usCommunicationClass CCxI_usCommunicationClass

usProtocolClass CCxI_usProtocolClass

usConformanceClass CCxI_usConformanceClass

Note: x in MACRO name is replaced by Application Channel number 0 … 3

 Hilscher Documentation ACC-72EX Setup Assistant

A
p

p
lic

at
io

n

C
h

an
n

el
 In

fo
. bChannelType ACxI_bChannelType

bChannelId ACxI_bChannelId

bSizePositionOfHandshake ACxI_bSizePositionOfHandshake

bNumberOfBlocks ACxI_bNumberOfBlocks

ulSizeOfChannel ACxI_ulSizeOfChannel

Note: x in MACRO name is replaced by Application Channel number 0 … 1

System Control Block
The system control block is used by UMAC to force netX to execute certain commands in the future.

Currently, there are no such commands defined.

 Hilscher Documentation ACC-72EX Setup Assistant

Sy
st

em
 C

o
n

tr
o

l

B
lo

ck

ulSystemCommandCOS SCtrl_ulSystemCommandCOS

ACC-72EX User Manual

DPRAM Memory Map 24

System Status Block
The system status block provides information about the staus of the netX firmware.

 Hilscher Documentation ACC-72EX Setup Assistant

Sy
st

em
 S

ta
tu

s
B

lo
ck

ulSystemCOS SStat_ulSystemCOS

ulSystemStatus SStat_ulSystemStatus

ulSystemError SStat_ulSystemError

ulBootError SStat_ulBootError

ulTimeSinceStart SStat_ulTimeSinceStart

usCpuLoad SStat_usCpuLoad

ulHWFeatures SStat_ulHWFeatures

System Mailbox
The system mailbox is the “window” to the operating system. It is always present even if no firmware is

loaded. For more information about using system send/receive mailboxes, please see the examples shown

in the following chapters. A complete list of functions, which can be accessed using the mailboxes, can be

found in the netX Dual-Ported Memory Interface document available from Hilscher.

 Hilscher Documentation ACC-72EX Setup Assistant

Sy
st

em
 B

lo
ck

 S
en

d
 M

ai
lb

o
x

usPackagesAccepted SSMB_usPackagesAccepted

ulDest SSMB_ulDest

ulSrc SSMB_ulSrc

ulDestId SSMB_ulDestId

ulSrcId SSMB_ulSrcId

ulLen SSMB_ulLen

ulId SSMB_ulId

ulState SSMB_ulState

ulCmd SSMB_ulCmd

ulExt SSMB_ulExt

ulRout SSMB_ulRout

… SSMB_ultData0 .. SSMB_ultData20

 Hilscher Documentation ACC-72EX Setup Assistant

Sy
st

em
 B

lo
ck

 R
e

ce
iv

e
M

ai
lb

o
x

usWaitingPackages SRMB_usWaitingPackages

ulDest SRMB_ulDest

ulSrc SRMB_ulSrc

ulDestId SRMB_ulDestId

ulSrcId SRMB_ulSrcId

ulLen SRMB_ulLen

ulId SRMB_ulId

ulState SRMB_ulState

ulCmd SRMB_ulCmd

ulExt SRMB_ulExt

ulRout SRMB_ulRout

… SRMB_ultData0 .. SRMB_ultData20

Handshake Channel
The handshake channel provides a mechanism that allows the synchronizing of data transfer between the

UMAC CPU and ACC-72EX dual-port memory. The handshake channel brings all handshake registers

from other channel blocks together in one location. The handshake register could be moved from the

handshake block to the beginning of each of the communication channels.

There are three types of handshake cells, described below.

ACC-72EX User Manual

DPRAM Memory Map 25

System Handshake Cells
System handshake flags are used to synchronize data transfer between the ACC-72EX Hilscher Module

and UMAC via the system mailbox and to handle certain changes of state function. They also hold

information about the status of the ACC-72EX Hilscher module and can be used to execute certain

commands in the module (for a module-wide reset, for example).

There are two sets of system flags. One set is dedicated for netX writes and is read by UMAC, and the

other one is designated for UMAC writes. netX is continuously reading the second set.

ACC-72EX User Manual

DPRAM Memory Map 26

netX System Flags
The ACC-72EX Hilscher module firmware writes to the netX system register; UMAC reads this register.

The netX system register is located at address offset $80 in the dual-port memory.

Bit

Fu
n

ct
io

n

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bNetxFlags – netX writes, UMAC reads

N
SF

_
R

EA
D

Y

N
SF

_
ER

R
O

R

N
SF

_
H

O
ST

_
C

O
S_

A
C

K

N
SF

_
N

ET
X

_
C

O
S_

C
M

D

N
SF

_
SE

N
D

_
M

B
X

_
A

C
K

N
SF

_
R

EC
V

_
M

B
X

_
C

M
D

Reserved

netX System Flags bNetxFlags (ACC-72EX UMAC)

Bit No. Definition / Description

0

Ready (NSF_READY)

The Ready flag is set as soon as the COMX has initialized itself properly and passed its

self-test. When the flag is set, the netX is ready to accept packets via the system mailbox.

If cleared, the netX does not accept any packages.

1

Error (NSF_ERROR)

The Error flag is set when the netX has detected an internal error condition. This is

considered to be a fatal error. The Ready flag is cleared and the netX operating system is

stopped. An error code helping to identify the issue is placed in the ulSystemError

variable in the system status block.

2

Host Change Of State Acknowledge (NSF_HOST_COS_ACK)

The Host Change of State Acknowledge flag is set when the netX acknowledges a

command from the host system. This flag is used together with the Host Change of State

Command flag in the host system flags.

3

netX Change Of State Command (NSF_NETX_COS_CMD)

The netX Change of State Command flag is set if the netX signals a change of its state to

the host system. Details of what has changed can be found in the ulSystemCOS variable

in the system control block.

4

Send Mailbox Acknowledge (NSF_SEND_MBX_ACK)

Both the Send Mailbox Acknowledge flag and the Send Mailbox Command flag are used

together to transfer non-cyclic packages between the UMAC and the netX.

5

Receive Mailbox Command (NSF_RECV_MBX_CMD)

Both the Receive Mailbox Command flag and the Receive Mailbox Acknowledge flag are

used together to transfer non-cyclic packages between the netX and UMAC.

6, 7 … 15 6, 7 … 15 Reserved, set to zero

 Hilscher Documentation ACC-72EX Setup Assistant

Sy
st

em
 H

an
d

sh
ak

e
R

eg
is

te
r

n
et

X
 S

ys
te

m
 F

la
gs

 bNetxFlags HCSC_bNetxFlags

NSF_READY HCSC_NSF_READY

NSF_ERROR HCSC_NSF_ERROR

NSF_HOST_COS_ACK HCSC_NSF_HOST_COS_ACK

NSF_NETX_COS_CMD HCSC_NSF_NETX_COS_CMD

NSF_SEND_MBX_ACK HCSC_NSF_SEND_MBX_ACK

NSF_RECV_MBX_CMD HCSC_NSF_RECV_MBX_CMD

ACC-72EX User Manual

DPRAM Memory Map 27

Host System Flags
The host system flags are written by UMAC; the netX reads these flags. The host system register is

located at address offset $81 in the dual-port memory.

Bit

Fu
n

ct
io

n

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bHostFlags – UMAC writes, netX reads

H
SF

_R
ES

ET

H
SF

_B
O

O
TS

TA
R

T

H
SF

_H
O

ST
_C

O
S_

C
M

D

H
SF

_N
ET

X
_C

O
S_

A
C

K

H
SF

_S
EN

D
_M

B
X

_C
M

D

H
SF

_R
EC

V
_M

B
X

_A
C

K

Reserved

Host System Flags bHostFlags (UMAC ACC-72EX)

Bit No. Definition / Description

0

Reset (HSF_RESET)

The Reset flag is set by the UMAC to execute a system wide reset. This forces the system

to restart. All network connections are interrupted immediately regardless of their current

state.

1

Bootstart (HSF_BOOTSTART)

If set during reset, the Boot-Start flag forces the netX to stay in boot loader mode; a

firmware that may reside in the context of the operating system rcX is not started. If

cleared during reset, the operating system will start the firmware if available.

2

Host Change Of State Command (HSF_HOST_COS_CMD)

The Host Change of State Command flag is set by the UMAC to signal a change of its state

to the netX. Details of what has changed can be found in the ulSystemCommandCOS

variable in the system control block.

3

netX Change Of State Acknowledge (HSF_NETX_COS_ACK)

The netX Change of State Acknowledge flag is set by the UMAC to acknowledge the new

state of the netX. This flag is used together with the netX Change of State Command flag

in the netX system flags.

4

Send Mailbox Command (HSF_SEND_MBX_CMD)

Both the Send Mailbox Command flag and the Send Mailbox Acknowledge flag are used

together to transfer non-cyclic packages between the UMAC and the netX.

5

Receive Mailbox Acknowledge (HSF_RECV_MBX_ACK)

Both the Receive Mailbox Acknowledge flag and the Receive Mailbox Command flag are

used together to transfer non-cyclic packages between the netX and the UMAC.

6, 7 …

15

6, 7 … 15 Reserved; set to zero

 Hilscher Documentation ACC-72EX Setup Assistant

Sy
st

em
 H

an
d

sh
ak

e
R

eg
is

te
r

H
o

st
 S

ys
te

m

Fl
ag

s

bHostFlags HCSC_bHostFlags

HSF_RESET HCSC_HSF_RESET

HSF_BOOTSTART HCSC_HSF_BOOTSTART

HSF_HOST_COS_CMD HCSC_HSF_HOST_COS_CMD

HSF_NETX_COS_ACK HCSC_HSF_NETX_COS_ACK

HSF_SEND_MBX_CMD HCSC_HSF_SEND_MBX_CMD

HSF_RECV_MBX_ACK HCSC_HSF_RECV_MBX_ACK

ACC-72EX User Manual

DPRAM Memory Map 28

Communication Channel Handshake Cells
The channel handshake register is used to indicate the status of the protocol stack as well as execute

certain commands in the protocol stack (e.g. reset a channel or synchronization of process data). The

mailbox flags are used to send and receive non-cyclic messages via the channel mailboxes.

There are two sets of Communication Channel flags. One set is dedicated for netX writes; UMAC

continually reads this. The other set is designated for UMAC writes; netX continuously reads this.

netX Communication Flags
This flag register is organized as a bit field. The netX protocol stack writes to the register to control data

synchronization via the mailbox system and the process data image. It also informs the UMAC about its

current network state. The UMAC reads this register.

Bit

Fu
n

ct
io

n

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

usNetxFlags – netX writes, UMAC reads

N
C

F_
C

O
M

M
U

N
IC

A
TI

N
G

N
C

F_
ER

R
O

R

N
C

F_
H

O
ST

_C
O

S_
A

C
K

N
C

F_
N

ET
X

_C
O

S_
C

M
D

N
C

F_
SE

N
D

_M
B

X
_A

C
K

N
C

F_
R

EC
V

_M
B

X
_C

M
D

Reserved

N
C

F_
P

D
0

_O
U

T_
A

C
K

N
C

F_
P

D
0

_I
N

_C
M

D

N
C

F_
P

D
1

_O
U

T_
A

C
K

(n
o

t
su

p
p

o
rt

ed
 y

et
)

N
C

F_
P

D
1

_I
N

_C
M

D
(n

o
t

su
p

p
o

rt
ed

 y
et

)

Communication Channel Flags usNetXFlags (ACC-72EX UMAC)

ACC-72EX User Manual

DPRAM Memory Map 29

Bit

No.

Definition / Description

0

Communicating (NCF_COMMUNICATING)

The NCF_COMMUNICATING flag is set if the protocol stack has successfully opened a

connection to at least one of the configured network slaves (for master protocol stacks),

respectively has an open connection to the network master (for slave protocol stacks). If

cleared, the input data should not be evaluated, because it may be invalid, old or both. At

initialization time, this flag is cleared.

1

Error (NCF_ERROR)

The NCF_ERROR flag signals an error condition that is reported by the protocol stack. It

could indicate a network communication issue or something to that effect. The corresponding

error code is placed in the ulCommunicationError variable in the common status block. At

initialization time, this flag is cleared.

2

Host Change Of State Acknowledge (NCF_HOST_COS_ACK)

The NCF_HOST_COS_ACK flag is used by the protocol stack indicating that the new state

of the UMAC has been read. At initialization time, this flag is cleared.

3

netX Change Of State Command (NCF_NETX_COS_CMD)

The NCF_NETX_COS_CMD flag signals a change in the state of the protocol stack. The new

state can be found in the ulCommunicationCOS register in the common status block. In return

the UMAC program then toggles the HCF_NETX_COS_ACK flag in the host

communication flags acknowledging that the new protocol state has been read. At

initialization time, this flag is cleared.

4

Send Mailbox Acknowledge (NCF_SEND_MBX_ACK)

Both the NCF_SEND_MBX_ACK flag and the HCF_SEND_MBX_CMD flag are used

together to transfer non-cyclic packages between the protocol stack and the UMAC programs.

At initialization time, this flag is cleared.

5

Receive Mailbox Command (NCF_RECV_MBX_CMD)

Both the NCF_RECV_MBX_CMD flag and the HCF_RECV_MBX_ACK flag are used

together to transfer non-cyclic packages between the UMAC programs and the protocol stack.

At initialization time, this flag is cleared.

6

Process Data 0 Out Acknowledge (NCF_PD0_OUT_ACK)

Both the NCF_PD0_OUT_ACK flag and the HCF_PD0_OUT_CMD flag are used together to

transfer cyclic output data from the UMAC to the protocol stack. At initialization time, this

flag may be set, depending on the data exchanged mode.

7

Process Data 0 In Command (NCF_PD0_IN_CMD)

Both the NCF_PD0_IN_CMD flag and the HCF_PD0_IN_ACK flag are used together to

transfer cyclic input data from the protocol stack to the UMAC. At initialization time, this

flag may be set, depending on the data exchanged mode.

8

Process Data 1 Out Acknowledge (NCF_PD1_OUT_ACK, not supported yet)

Both the NCF_PD1_OUT_ACK flag and the HCF_PD1_OUT_CMD flag are used together to

transfer output cyclic data from the UMAC to the protocol stack. At initialization time, this

flag may be set, depending on the data exchanged mode.

9

Process Data 1 In Command (NCF_PD1_IN_CMD, not supported yet)

Both the NCF_PD1_IN_CMD flag and the HCF_PD1_IN_ACK flag are used together to

transfer cyclic input data from the protocol stack to the UMAC. At initialization time, this

flag may be set, depending on the data exchange mode.

10..15 Reserved, set to 0

ACC-72EX User Manual

DPRAM Memory Map 30

 Hilscher Documentation ACC-72EX Setup Assistant

n
et

X
 C

o
m

m
u

n
ic

at
io

n
 F

la
gs

H
an

d
sh

ak
e

R
eg

is
te

r

usNetxFlags HCCCx_usNetxFlags

NCF_COMMUNICATING HCCCx_NCF_COMMUNICATING

NCF_ERROR HCCCx_NCF_ERROR

NCF_HOST_COS_ACK HCCCx_NCF_HOST_COS_ACK

NCF_NETX_COS_CMD HCCCx_NCF_NETX_COS_CMD

NCF_SEND_MBX_ACK HCCCx_NCF_SEND_MBX_ACK

NCF_RECV_MBX_CMD HCCCx_NCF_RECV_MBX_CMD

NCF_PD0_OUT_ACK HCCCx_NCF_PDx_OUT_ACK

NCF_PD0_IN_CMD HCCCx_NCF_PDx_IN_CMD

NCF_PD1_OUT_ACK HCCCx_NCF_PD1_OUT_ACK

NCF_PD1_IN_CMD HCCCx_NCF_PD1_IN_CMD

Note: x in MACRO name is replaced by Communication Channel number 0 .. 3

Host Communication Flags
This flag register is organized as a bit field. UMAC writes to this register to control data synchronization

via the mailbox system and the process data image. The netX protocol stack reads this register.

Bit

Fu
n

ct
io

n

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

usHostFlags – UMAC writes, netX reads

U
n

u
se

d

H
C

F_
H

O
ST

_C
O

S_
C

M
D

H
C

F_
N

ET
X

_C
O

S_
A

C
K

H
C

F_
SE

N
D

_M
B

X
_C

M
D

H
C

F_
R

EC
V

_M
B

X
_A

C
K

Reserved

H
C

F_
P

D
0

_O
U

T_
C

M
D

H
C

F_
P

D
0

_I
N

_A
C

K

H
C

F_
P

D
1

_O
U

T_
C

M
D

(n
o

t
su

p
p

o
rt

ed
 y

et
)

H
C

F_
P

D
1

_I
N

_A
C

K
(n

o
t

su
p

p
o

rt
ed

 y
et

)

Communication Channel Flags usHostFlags (UMAC ACC-72EX)

ACC-72EX User Manual

DPRAM Memory Map 31

Bit No. Definition / Description

0, 1 Reserved, set to 0

2

Host Change Of State Command (HCF_HOST_COS_CMD)

The HCF_HOST_COS_CMD flag signals a change in the state of the UMAC. A new state

is set in the ulApplicationCOS variable in the communication control block. The protocol

stack on the netX then toggles the NCF_HOST_COS_ACK flag in the netX

communication flags back acknowledging that the new state has been read. At

initialization time, this flag is cleared.

3

Host Change Of State Acknowledge (HCF_NETX_COS_ACK)

The HCF_NETX_COS_ACK flag is used by UMAC to indicate that the new state of the

protocol stack has been read. At initialization time, this flag is cleared.

4

Send Mailbox Command (HCF_SEND_MBX_CMD)

Both the HCF_SEND_MBX_CMD flag and the NCF_SEND_MBX_ACK flag are used

together to transfer non-cyclic packages between the UMAC and the protocol stack. At

initialization time, this flag is cleared.

5

Receive Mailbox Acknowledge (HCF_RECV_MBX_ACK)

Both the HCF_RECV_MBX_ACK flag and the NCF_RECV_MBX_CMD flag are used

together to transfer non-cyclic packages between the protocol stack and the UMAC. At

initialization time, this flag is cleared.

6

Process Data 0 Out Command (HCF_PD0_OUT_CMD)

Both the HCF_PD0_OUT_CMD flag and the NCF_PD0_OUT_ACK flag are used

together to transfer cyclic output data from the UMAC to the protocol stack. At

initialization time, this flag may be set, depending on the data exchanged mode.

7

Process Data 0 In Acknowledge (HCF_PD0_IN_ACK)

Both the HCF_PD0_IN_ACK flag and the NCF_PD0_IN_CMD flag are used together to

transfer cyclic input data from the protocol stack to the UMAC. At initialization time, this

flag may be set, depending on the data exchanged mode.

8

Process Data 1 Out Command (HCF_PD1_OUT_CMD, not supported yet)

Both the HCF_PD1_OUT_CMD flag and the NCF_PD1_OUT_ACK flag are used

together to transfer cyclic output data from the UMAC to the protocol stack. At

initialization time, this flag may be set, depending on the data exchanged mode.

9

Process Data 1 In Acknowledge (HCF_PD1_IN_ACK, not supported yet)

Both the HCF_PD1_IN_ACK flag and the NCF_PD1_IN_CMD flag are used together to

transfer cyclic input data from the protocol stack to the UMAC. At initialization time, this

flag may be set, depending on the data exchanged mode.

10 ... 15 Reserved, set to 0

 Hilscher Documentation ACC-72EX Setup Assistant

H
o

st
 C

o
m

m
u

n
ic

at
io

n
 F

la
gs

H
an

d
sh

ak
e

R
eg

is
te

r

usHostFlags HCCCx_usHostFlags

HCF_HOST_COS_CMD HCCCx_HCF_HOST_COS_CMD

HCF_NETX_COS_ACK HCCCx_HCF_NETX_COS_ACK

HCF_SEND_MBX_CMD HCCCx_HCF_SEND_MBX_CMD

HCF_RECV_MBX_ACK HCCCx_HCF_RECV_MBX_ACK

HCF_PD0_OUT_CMD HCCCx_HCF_PDx_OUT_CMD

HCF_PD0_IN_ACK HCCCx_HCF_PDx_IN_ACK

HCF_PD1_OUT_CMD HCCCx_HCF_PD1_OUT_CMD

HCF_PD1_IN_ACK HCCCx_HCF_PD1_IN_ACK

Note: x in MACRO name is replaced by Communication Channel number 0 .. 3

ACC-72EX User Manual

DPRAM Memory Map 32

Application Handshake Cells
Although these cells are not supported yet, the following structure groups have been defined for backward

compatibility as a placeholder:

netX Communication Flags

Host Communication Flags

ACC-72EX User Manual

DPRAM Memory Map 33

Communication Channel
The communication channel structure is mainly dependent on the protocol firmware and COMX module.

However, there are common sub-block structures which are common to all protocols.

Control Block
The control block of a dual-port memory features a Watchdog function to allow the operating system

running on the netX to supervise the host application and vice versa. The control area is always present in

dual-port memory. This block can also be read using the mailbox interface.

Application Change of State Register
The Application Change of State Register is a bit field. The UMAC uses this field to send commands to

the communication channel. Changing flags in this register requires the UMAC to toggle the Host

Change of State Command flag in the Host Communication Flags register, and then the netX protocol

stack will recognize the change.

Bit

Fu
n

ct
io

n

31 30 29 ... 11 10 9 8 7 6 5 4 3 2 1 0

ulApplicationCOS – UMAC writes, netX reads

R
C

X
_A

P
P

_C
O

S_
B

U
S_

O
N

_E
N

A
B

LE

R
C

X
_A

P
P

_C
O

S_
IN

IT

R
C

X
_A

P
P

_C
O

S_
IN

IT
_E

N
A

B
LE

R
C

X
_A

P
P

_C
O

S_
LO

C
K

_C
O

N
FI

G

Reserved

R
C

X
_A

P
P

_C
O

S_
LO

C
K

_C
O

N
FI

G
_E

N
A

B
LE

R
C

X
_A

P
P

_C
O

S_
D

M
A

R
C

X
_A

P
P

_C
O

S_
D

M
A

_E
N

A
B

LE

R
C

X
_A

P
P

_C
O

S_
A

P
P

_R
EA

D
Y

R
C

X
_A

P
P

_C
O

S_
B

U
S_

O
N

Bit

No.

Definition / Description

0
Application Ready (RCX_APP_COS_APP_READY, not supported yet)

If set, the UMAC indicates to the protocol stack that its state is Ready.

1

Bus On (RCX_APP_COS_BUS_ON)

Using the Bus On flag, the UMAC allows or disallows the firmware to open network

connections. This flag is used with Bus On Enable flag below. If set, the netX firmware tries

to open network connections; if cleared, no connections are allowed, and open connections are

closed.

2

Bus On Enable (RCX_APP_COS_BUS_ON_ENABLE)

The Bus On Enable flag is used together with the Bus On flag above. If set, this flag enables

the execution of the Bus On command in the netX firmware.

3

Initialization (RCX_APP_COS_INIT)

Setting the Initialization flag the UMAC forces the protocol stack to restart and evaluate the

configuration parameter again. All network connections are interrupted immediately

regardless of their current state. If the database is locked, re-initializing the channel is not

allowed.

4

Initialization Enable (RCX_APP_COS_INIT_ENABLE)

The Initialization Enable flag is used together with the Initialization flag above. If set, this flag

enables the execution of the Initialization command in the netX firmware.

5

Lock Configuration (RCX_APP_COS_LOCK_CONFIG)

If set, UMAC does not allow the firmware to reconfigure the communication channel. The

database will be locked. The Configuration Locked flag in the channel status block shows if

the current database has been locked.

ACC-72EX User Manual

DPRAM Memory Map 34

Bit No. Definition / Description

6

Lock Configuration Enable (RCX_APP_COS_LOCK_CONFIG_ENABLE)

The Lock Configuration Enable flag is used together with the Lock Configuration flag

above. If set, this flag enables the execution of the Lock Configuration command in the netX

firmware.

7

Turn on DMA Mode (RCX_APP_COS_DMA)

The UMAC sets this flag in order to turn on the DMA mode for the cyclic process data input

/ output image 0 (abPd0Output and abPd0Input).

8

Turn on DMA Mode Enable (RCX_APP_COS_DMA_ENABLE)

The DMA Enable flag is used together with the DMA flag above. If set, this flag enables the

execution of the DMA command in the netX firmware.

9 ... 31 Reserved, set to 0

Device Watchdog Register
The protocol stack supervises the UMAC using a Watchdog function. If the UMAC fails to copy the

value from the host Watchdog location to the device Watchdog location, the protocol stack assumes that

the UMAC system has a problem and interrupts all network connections immediately, regardless of their

current state.

 Hilscher Documentation ACC-72EX Setup Assistant

C
o

m
m

u
n

ic
at

io
n

 C
o

n
tr

o
l B

lo
ck

RCX_APP_COS_APP_READY CCx_RCX_APP_COS_APP_READY

RCX_APP_COS_BUS_ON CCx_RCX_APP_COS_BUS_ON

RCX_APP_COS_BUS_ON_ENABLE CCx_RCX_APP_COS_BUS_ON_ENABLE

RCX_APP_COS_INIT CCx_RCX_APP_COS_INIT

RCX_APP_COS_INIT_ENABLE CCx_RCX_APP_COS_INIT_ENABLE

RCX_APP_COS_LOCK_CFG CCx_RCX_APP_COS_LOCK_CFG

RCX_APP_COS_LOCK_CFG_ENA CCx_RCX_APP_COS_LOCK_CFG_ENA

RCX_APP_COS_DMA CCx_RCX_APP_COS_DMA

RCX_APP_COS_DMA_ENABLE CCx_RCX_APP_COS_DMA_ENABLE

ulDeviceWatchdog CCx_ulDeviceWatchdog

Note: x in MACRO name is replaced by Application Channel number 0 ... 3

Common Status Block
The common status block contains information fields that are common to all protocol stacks. The status

block is always present in dual-port memory. This block can also be read using the mailbox interface.

Communication Change of State Register
The Communication Change of State register is a bit field. It contains information about the current

operating status of the communication channel and its firmware. Every time the status changes, the netX

protocol stack toggles the netX Change of State Command flag in the netX communication flags register.

The UMAC then has to toggle the netX Change of State Acknowledge flag back, acknowledging the new

state.

Bit

Fu
n

ct
io

n

31 30 29 ... 11 10 9 8 7 6 5 4 3 2 1 0

ulCommunicationCOS - netX writes, UMAC reads

R
C

X
_C

O
M

M
_C

O
S_

B
U

S_
O

N

R
C

X
_C

O
M

M
_C

O
S_

C
O

N
FI

G
_L

O
C

K
ED

R
C

X
_C

O
M

M
_C

O
S_

C
O

N
FI

G
_N

EW

R
C

X
_C

O
M

M
_C

O
S_

R
ES

TA
R

T_
R

EQ
U

IR
ED

Reserved

R
C

X
_C

O
M

M
_C

O
S_

R
ES

TA
R

T_
R

EQ
U

IR
ED

_E
N

A
B

LE

R
C

X
_C

O
M

M
_C

O
S_

D
M

A

R
C

X
_C

O
M

M
_C

O
S_

R
EA

D
Y

R
C

X
_C

O
M

M
_C

O
S_

R
U

N

ACC-72EX User Manual

DPRAM Memory Map 35

Bit No. Definition / Description

0

Ready (RCX_COMM_COS_READY)

The Ready flag is set as soon as the protocol stack is started properly. Then, the protocol

stack awaits a configuration. As soon as the protocol stack is configured properly, the

Running flag is set.

1

Running (RCX_COMM_COS_RUN)

The Running flag is set when the protocol stack has been configured properly. Then the

protocol stack awaits a network connection. Now, both the Ready flag and the Running flag

are set.

2

Bus On (RCX_COMM_COS_BUS_ON)

The Bus On flag is set to indicate to the UMAC whether or not the protocol stack has the

permission to open network connections. If set, the protocol stack has the permission to

communicate on the network; if cleared, the permission was denied and the protocol stack

will not open network connections.

3

Configuration Locked (RCX_COMM_COS_CONFIG_LOCKED)

The Configuration Locked flag is set if the communication channel firmware has locked the

configuration database against being overwritten. Reinitializing the channel is not allowed

in this state. To unlock the database, the application has to clear the Lock Configuration flag

in the control block.

4

Configuration New (RCX_COMM_COS_CONFIG_NEW)

The Configuration New flag is set by the protocol stack to indicate that a new configuration

became available, but has not yet been activated. This flag may be set together with the

Restart Required flag.

5

Restart Required (RCX_COMM_COS_RESTART_REQUIRED)

The Restart Required flag is set when the channel firmware requests to be restarted. This

flag is used together with the Restart Required Enable flag below. Restarting the channel

firmware may become necessary if a new configuration was downloaded from the UMAC

or if a configuration upload via the network took place.

6

Restart Required Enable (RCX_COMM_COS_RESTART_REQUIRED_ENABLE)

The Restart Required Enable flag is used together with the Restart Required flag above. If

set, this flag enables the execution of the Restart Required command in the netX firmware.

7

DMA Mode On (RCX_COMM_COS_DMA)

The protocol stack sets this flag in order to signal to the UMAC that the DMA mode is

turned on.

8 … 31 Reserved, set to 0

Communication State
The communication state field contains current device network communication status information.

Depending on the implementation, all or a subset of the definitions below is supported:

Value Definition / Description

$0 UNKNOWN

$1 OFFLINE

$2 STOP

$3 IDLE

$4 OPERATE

ACC-72EX User Manual

DPRAM Memory Map 36

Communication Channel Error
This field holds the current error code of the communication channel. If the cause of error is resolved, the

communication error field is set to zero (= RCX_S_OK) again. Not all of the error codes are supported in

every implementation.

Watchdog Timeout
This field holds the configured Watchdog timeout value in milliseconds. The UMAC may set its

Watchdog trigger interval accordingly. If the UMAC fails to copy the value from the host Watchdog

location to the device Watchdog location, the protocol stack will interrupt all network connections

immediately, regardless of their current state.

Handshake Mode
The protocol stack supports different handshake mechanisms to synchronize process data exchange with

the UMAC. Depending on the configured mode, this mechanism insures data consistency over the entire

data image and helps synchronize the UMAC with the network. This register holds the configured

handshake mode.

Value Definition / Description

$0
For compatibility reasons, this value is identical to 0x04 - Buffered Host Controlled IO

Data Transfer

$2 Buffered Device-Controlled I/O Data Transfer

$3 Uncontrolled Mode

$4 Buffered Host-Controlled IO Data Transfer

Host Watchdog
The protocol stack supervises the UMAC via the Watchdog function. If the UMAC fails to copy the value

from the device Watchdog location to the host Watchdog location, the protocol stack assumes that the

UMAC has a problem and shuts down all network connections.

Error Count (All Implementations)
This field holds the total number of errors detected since power-up or after a reset. The protocol stack

counts all sorts of errors in this field regardless if they were network-related or caused internally. The

counter is cleared after a power cycle, reset, or channel initialization.

Error Log Indicator (All Implementations)
Not supported yet; the error log indicator field holds the number of entries in the internal error log. The

field is set to zero if all entries are read from the log.

Number of Input Process Data Handshake Errors
TBD

Number of Output Process Data Handshake Errors
TBD

Number of Synchronization Handshake Errors
This counter will be incremented if the device detects a “not handled synchronization indication.” This

field is not supported yet.

Synchronization Status
This field is reserved for future use.

Slave State
The Slave State field indicates whether or not the master is in cyclic data exchange to all configured

slaves. If there is at least one slave missing or if the slave has a diagnostic request pending, the status

ACC-72EX User Manual

DPRAM Memory Map 37

changes to FAILED. For protocols that support non-cyclic communication only, the slave state is set to

OK as soon as a valid configuration is found.

Value Definition / Description

$0 UNDEFINED

$1 OK. No Fault.

$2 FAILED. At least one slave failed

Other values are reserved

Slave Error Log Indicator
Not supported yet: the error log indicator field holds the number of entries in the internal error log. The

field is set to zero if all entries are read from the log.

Number of Configured Slaves
The firmware maintains a list of slaves with which the master has to open a connection. This list is

derived from the configuration database created by SYCON.net. This field holds the number of

configured slaves.

Number of Active Slaves
The firmware maintains a list of slaves to which the master exchanges process data. This field holds the

number of active slaves. Ideally, the number of active slaves is equal to the number of configured slaves.

For certain fieldbus systems, it could be possible that a slave is shown as activated, but still has a problem

(i.e. a diagnostic issue).

Number of Faulted Slaves
The firmware maintains a list of slaves that are missing on the network, although they may be configured,

or are reporting a diagnostic issue. As long as those indications are pending and not serviced, the field

holds a nonzero value. If no more diagnostic information is pending, the field is set to zero again.

ACC-72EX User Manual

DPRAM Memory Map 38

 Hilscher Documentation ACC-72EX Setup Assistant

C
o

m
m

o
n

 S
ta

tu
s

B
lo

ck

RCX_COMM_COS_READY CCx_RCX_COMM_COS_READY

RCX_COMM_COS_RUN CCx_RCX_COMM_COS_RUN

RCX_COMM_COS_BUS_ON CCx_RCX_COMM_COS_BUS_ON

RCX_COMM_COS_CONFIG_LOCKED CCx_RCX_COMM_COS_CONFIG_LOCKED

RCX_COMM_COS_CONFIG_NEW CCx_RCX_COMM_COS_CONFIG_NEW

RCX_COMM_COS_RESTART_REQ CCx_RCX_COMM_COS_RESTART_REQ

RCX_COMM_COS_RESTART_REQ_ENA CCx_RCX_COMM_COS_RESTART_REQ_ENA

RCX_COMM_COS_DMA CCx_RCX_COMM_COS_DMA

ulCommunicationState CCx_ulCommunicationState

ulCommunicationError CCx_ulCommunicationError

usVersion CCx_usVersion

usWatchdogTime CCx_usWatchdogTime

bPDInHskMode CCx_bPDInHskMode

bPDInSource CCx_bPDInSource

bPDOutHskMode CCx_bPDOutHskMode

bPDOutSource CCx_bPDOutSource

ulHostWatchdog CCx_ulHostWatchdog

ulErrorCount CCx_ulErrorCount

bErrorLogInd CCx_bErrorLogInd

bErrorPDInCnt CCx_bErrorPDInCnt

bErrorPDOutCnt CCx_bErrorPDOutCnt

bErrorSyncCnt CCx_bErrorSyncCnt

bSyncHskMode CCx_bSyncHskMode

bSyncSource CCx_bSyncSource

ulSlaveState CCx_ulSlaveState

ulSlaveErrLogInd CCx_ulSlaveErrLogInd

ulNumOfConfigSlaves CCx_ulNumOfConfigSlaves

ulNumOfActiveSlaves CCx_ulNumOfActiveSlaves

ulNumOfDiagSlaves CCx_ulNumOfDiagSlaves

Note: x in MACRO name is replaced by Application Channel number 0 .. 3

Application Channel
The application channel is reserved for user specific implementations. An application channel is not yet

supported.

Auto-Generated Dual-Ported Memory Map
ACC-72EX Setup Assistant Software, designed for use with Turbo PMAC, provides some level of

automation in the identification of Hilscher COMX modules by generating a memory map file, suggested

M-Variable definitions for important registers, and appropriate macro names.

Address Converter
The Address Converter section of the software allows conversion of offset, bit, and width parameters to

PMAC memory addresses based on Hilscher documentation.

ACC-72EX User Manual

DPRAM Memory Map 39

Memory Map Generator
The Memory Map Generator section of the software identifies the ACC-72EX cards in a UMAC system

and generates both a memory map as a text file and M-Variable definition file with proper addressing,

both of which indicate the ACC-72EX-based address selection.

Reading the Memory Map Text File
The output file from the software is a text file which can be read with any text editor software. This file

includes generic information about the card.

Below is an example output file. Please see the notes in the right column for more information on

specific items.

ACC-72EX User Manual

DPRAM Memory Map 40

HilscherMemoryMap_$6C000.txt File Content Notes
Delta Tau Data Systems, Inc.

ACC-72EX Setup Assistant Auto-generated Memory Map

ACC-72EX Address: $6C000 Base address of the ACC-

72EX selected in the Memory

Map Generator section

netX Identification: netX The identification cookie

provided by the netX

firmware

Dual-Port Memory Size: 65536 bytes

Device Number: 1532100

Serial Number: 21456

Hardware Assembly Options:

 Port 0: ETHERNET (internal Phy)

 Port 1: ETHERNET (internal Phy)

 Port 2: NOT CONNECTED

 Port 3: NOT CONNECTED

Hilscher Module Production Date: Week 18 of 2012

Hilscher Module License Information: (PROFIBUS Master) (CANopen

Master) (DeviceNet Master) (AS-Interface Master) (PROFINET IO RT

Controller) (EtherCAT Master) (EtherNet/IP Scanner) (SERCOS III

Master) 1 Master License

Tool License Information: (SYCON.net)

Device Class: COMX 100

 + Block 0: Block information

 | Channel Type: System For all blocks

 | Size of Channel: 512 bytes

 | Channel Start Address: $6C000

 | Position of Handshake Cells: IN HANDSHAKE CHANNEL

 | netX System Flags Adress: X:$6C080,0,8 Calculates where the

 | Host System Flags Adress: X:$6C080,8,8 handshake registers are

 | Size of Handshake Cells: 8 BITS Located

 | Size of Mailbox: 256 bytes

 | Mailbox Start address: $6C040

 | Number of Subblocks: 5

 |

 |--- Subblock 0: COMMON STATUS Lists all channels’ Sub-

 | Size: 176 bytes Blocks

 | Start Offset: $6C000

 | Transfer Direction: IN - OUT (Bi-Directional)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNCONTROLLED

 | Handshake Bit: 0

 |

 |--- Subblock 1: CONTROL

 | Size: 8 bytes

 | Start Offset: $6C02E

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNCONTROLLED

 | Handshake Bit: 0

 |

 |--- Subblock 2: COMMON STATUS

 | Size: 64 bytes

 | Start Offset: $6C030

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNCONTROLLED

 | Handshake Bit: 0

 |

 |--- Subblock 3: MAILBOX

 | Size: 128 bytes

 | Start Offset: $6C040

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 4

 |

ACC-72EX User Manual

DPRAM Memory Map 41

 |--- Subblock 4: MAILBOX

 Size: 128 bytes

 Start Offset: $6C060

 Transfer Direction: IN (netX to Host System)

 Transfer Type: DPM (Dual-Port Memory)

 Handshake Mode: UNKNOWN

 Handshake Bit: 5

 + Block 1:

 | Channel Type: Handshake

 | Size of Channel: 256 bytes

 | Channel Start Address: $6C080

 + Block 2:

 | Channel Type: Communication

 | Size of Channel: 15616 bytes

 | Channel Start Address: $6C0C0

 | Position of Handshake Cells: IN HANDSHAKE CHANNEL

 | Size of Handshake Cells: 16 BITS

 | NetX Handshake Register: Y:$6C082,0,16

 | Host Handshake Register: X:$6C082,0,16

 | Communication Class: SCANNER

 | Protocol Class: IO-DEVICE

 | Conformance Class: 0

 | Number of Subblocks: 9

 |

 |--- Subblock 0: CONTROL

 | Size: 8 bytes

 | Start Offset: $6C0C2

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNCONTROLLED

 | Handshake Bit: 0

 |

 |--- Subblock 1: COMMON STATUS

 | Size: 64 bytes

 | Start Offset: $6C0C4

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNCONTROLLED

 | Handshake Bit: 0

 |

 |--- Subblock 2: EXTENDED STATUS

 | Size: 432 bytes

 | Start Offset: $6C0D4

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNCONTROLLED

 | Handshake Bit: 0

 |

 |--- Subblock 3: MAILBOX

 | Size: 1600 bytes

 | Start Offset: $6C140

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 4

 |

 |--- Subblock 4: MAILBOX

 | Size: 1600 bytes

 | Start Offset: $6C2D0

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNKNOWN

 | Handshake Bit: 5

 |

 |--- Subblock 5: PROCESS DATA IMAGE

 | Size: 5760 bytes

 | Start Offset: $6C4C0

ACC-72EX User Manual

DPRAM Memory Map 42

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 6

 |

 |--- Subblock 6: PROCESS DATA IMAGE

 | Size: 5760 bytes

 | Start Offset: $6CA60

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 7

 |

 |--- Subblock 7: HIGH PRIORITY DATA IMAGE

 | Size: 64 bytes

 | Start Offset: $6C460

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 8

 |

 |--- Subblock 8: HIGH PRIORITY DATA IMAGE

 Size: 64 bytes

 Start Offset: $6C470

 Transfer Direction: IN (netX to Host System)

 Transfer Type: DPM (Dual-Port Memory)

 Handshake Mode: BUFFERED, HOST CONTROLLED

 Handshake Bit: 9

 + Block 3:

 | Channel Type: Communication

 | Size of Channel: 15616 bytes

 | Channel Start Address: $6D000

 | Position of Handshake Cells: IN HANDSHAKE CHANNEL

 | Size of Handshake Cells: 16 BITS

 | NetX Handshake Register: Y:$6C083,0,16

 | Host Handshake Register: X:$6C083,0,16

 | Communication Class: MESSAGING

 | Protocol Class: UNDEFINED

 | Conformance Class: 0

 | Number of Subblocks: 9

 |

 |--- Subblock 0: CONTROL

 | Size: 8 bytes

 | Start Offset: $6D002

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNCONTROLLED

 | Handshake Bit: 0

 |

 |--- Subblock 1: COMMON STATUS

 | Size: 64 bytes

 | Start Offset: $6D004

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNCONTROLLED

 | Handshake Bit: 0

 |

 |--- Subblock 2: EXTENDED STATUS

 | Size: 432 bytes

 | Start Offset: $6D014

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNCONTROLLED

 | Handshake Bit: 0

 |

 |--- Subblock 3: MAILBOX

 | Size: 1600 bytes

 | Start Offset: $6D080

 | Transfer Direction: OUT (Host System to netX)

ACC-72EX User Manual

DPRAM Memory Map 43

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 4

 |

 |--- Subblock 4: MAILBOX

 | Size: 1600 bytes

 | Start Offset: $6D210

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNKNOWN

 | Handshake Bit: 5

 |

 |--- Subblock 5: PROCESS DATA IMAGE

 | Size: 5760 bytes

 | Start Offset: $6D400

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 6

 |

 |--- Subblock 6: PROCESS DATA IMAGE

 | Size: 5760 bytes

 | Start Offset: $6D9A0

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 7

 |

 |--- Subblock 7: HIGH PRIORITY DATA IMAGE

 | Size: 64 bytes

 | Start Offset: $6D3A0

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 8

 |

 |--- Subblock 8: HIGH PRIORITY DATA IMAGE

 Size: 64 bytes

 Start Offset: $6D3B0

 Transfer Direction: IN (netX to Host System)

 Transfer Type: DPM (Dual-Port Memory)

 Handshake Mode: BUFFERED, HOST CONTROLLED

 Handshake Bit: 9

 + Block 4:

 | Channel Type: Undefined

 | Size of Channel: 0 bytes

 | Channel Start Address: $6DF40

 | Position of Handshake Cells: BEGINNING OF CHANNEL

 | Size of Handshake Cells: NOT AVAILABLE

 | NetX Handshake Register: X:$6DF40

 | Host Handshake Register: X:$6DF40,8,0

 | Communication Class: UNDEFINED

 | Protocol Class: UNDEFINED

 | Conformance Class: 0

 | Number of Subblocks: 0

 |

 + Block 5:

 | Channel Type: Undefined

 | Size of Channel: 0 bytes

 | Channel Start Address: $6DF40

 | Position of Handshake Cells: BEGINNING OF CHANNEL

 | Size of Handshake Cells: NOT AVAILABLE

 | NetX Handshake Register: X:$6DF40

 | Host Handshake Register: X:$6DF40,8,0

 | Communication Class: UNDEFINED

 | Protocol Class: UNDEFINED

 | Conformance Class: 0

 | Number of Subblocks: 0

ACC-72EX User Manual

DPRAM Memory Map 44

Suggested M-Variable Definition File
Here is a sample macro name and suggested M-Variable definition file.

MacroNameDefinition_$6C000.h File Content
#define SI_abCookie_0_ M6000

#define SI_abCookie_1_ M6001

#define SI_abCookie_2_ M6002

#define SI_abCookie_3_ M6003

#define SI_ulDpmTotalSize M6004

#define SI_ulDeviceNumber M6005

#define SI_ulSerialNumber M6006

#define SI_ausHwOptions_0_ M6007

#define SI_ausHwOptions_1_ M6008

#define SI_ausHwOptions_2_ M6009

#define SI_ausHwOptions_3_ M6010

#define SI_usManufacturer M6011

#define SI_usProductionDate M6012

#define SI_ulLicenseFlags1 M6013

#define SI_ulLicenseFlags2 M6014

#define SI_usNetxLicenseID M6015

#define SI_usNetxLicenseFlags M6016

#define SI_usDeviceClass M6017

#define SI_bHwRevision M6018

#define SI_bHwCompatibility M6019

#define SI_bDevIdNumber M6020

#define SCI_bChannelType M6021

#define SCI_bSizePositionOfHandshake M6022

#define SCI_bNumberOfBlocks M6023

#define SCI_ulSizeOfChannel M6024

#define SCI_usSizeOfMailbox M6025

#define SCI_usMailboxStartOffset M6026

#define HCI_bChannelType M6027

#define HCI_ulSizeOfChannel M6028

#define CC0I_bChannelType M6029

#define CC0I_bChannelId M6030

#define CC0I_bSizePositionOfHandshake M6031

#define CC0I_bNumberOfBlocks M6032

#define CC0I_ulSizeOfChannel M6033

#define CC0I_usCommunicationClass M6034

#define CC0I_usProtocolClass M6035

#define CC0I_usConformanceClass M6036

#define CC1I_bChannelType M6037

#define CC1I_bChannelId M6038

#define CC1I_bSizePositionOfHandshake M6039

#define CC1I_bNumberOfBlocks M6040

#define CC1I_ulSizeOfChannel M6041

#define CC1I_usCommunicationClass M6042

#define CC1I_usProtocolClass M6043

#define CC1I_usConformanceClass M6044

#define CC2I_bChannelType M6045

#define CC2I_bChannelId M6046

#define CC2I_bSizePositionOfHandshake M6047

#define CC2I_bNumberOfBlocks M6048

#define CC2I_ulSizeOfChannel M6049

#define CC2I_usCommunicationClass M6050

#define CC2I_usProtocolClass M6051

#define CC2I_usConformanceClass M6052

#define CC3I_bChannelType M6053

#define CC3I_bChannelId M6054

#define CC3I_bSizePositionOfHandshake M6055

#define CC3I_bNumberOfBlocks M6056

#define CC3I_ulSizeOfChannel M6057

#define CC3I_usCommunicationClass M6058

#define CC3I_usProtocolClass M6059

#define CC3I_usConformanceClass M6060

#define AC0I_bChannelType M6061

#define AC0I_bChannelId M6062

#define AC0I_bSizePositionOfHandshake M6063

ACC-72EX User Manual

DPRAM Memory Map 45

#define AC0I_bNumberOfBlocks M6064

#define AC0I_ulSizeOfChannel M6065

#define AC1I_bChannelType M6066

#define AC1I_bChannelId M6067

#define AC1I_bSizePositionOfHandshake M6068

#define AC1I_bNumberOfBlocks M6069

#define AC1I_ulSizeOfChannel M6070

#define SCtrl_ulSystemCommandCOS M6071

#define SStat_ulSystemCOS M6072

#define SStat_ulSystemStatus M6073

#define SStat_ulSystemError M6074

#define SStat_ulBootError M6075

#define SStat_ulTimeSinceStart M6076

#define SStat_usCpuLoad M6077

#define SStat_ulHWFeatures M6078

#define SSMB_usPackagesAccepted M6079

#define SSMB_ulDest M6080

#define SSMB_ulSrc M6081

#define SSMB_ulDestId M6082

#define SSMB_ulSrcId M6083

#define SSMB_ulLen M6084

#define SSMB_ulId M6085

#define SSMB_ulState M6086

#define SSMB_ulCmd M6087

#define SSMB_ulExt M6088

#define SSMB_ulRout M6089

#define SSMB_ultData0 M6090

#define SSMB_ultData1 M6091

#define SSMB_ultData2 M6092

#define SSMB_ultData3 M6093

#define SSMB_ultData4 M6094

#define SSMB_ultData5 M6095

#define SSMB_ultData6 M6096

#define SSMB_ultData7 M6097

#define SSMB_ultData8 M6098

#define SSMB_ultData9 M6099

#define SSMB_ultData10 M6100

#define SSMB_ultData11 M6101

#define SSMB_ultData12 M6102

#define SSMB_ultData13 M6103

#define SSMB_ultData14 M6104

#define SSMB_ultData15 M6105

#define SSMB_ultData16 M6106

#define SSMB_ultData17 M6107

#define SSMB_ultData18 M6108

#define SSMB_ultData19 M6109

#define SSMB_ultData20 M6110

#define SRMB_usWaitingPackages M6111

#define SRMB_ulDest M6112

#define SRMB_ulSrc M6113

#define SRMB_ulDestId M6114

#define SRMB_ulSrcId M6115

#define SRMB_ulLen M6116

#define SRMB_ulId M6117

#define SRMB_ulState M6118

#define SRMB_ulCmd M6119

#define SRMB_ulExt M6120

#define SRMB_ulRout M6121

#define SRMB_ultData0 M6122

#define SRMB_ultData1 M6123

#define SRMB_ultData2 M6124

#define SRMB_ultData3 M6125

#define SRMB_ultData4 M6126

#define SRMB_ultData5 M6127

#define SRMB_ultData6 M6128

#define SRMB_ultData7 M6129

#define SRMB_ultData8 M6130

#define SRMB_ultData9 M6131

#define SRMB_ultData10 M6132

#define SRMB_ultData11 M6133

#define SRMB_ultData12 M6134

ACC-72EX User Manual

DPRAM Memory Map 46

#define SRMB_ultData13 M6135

#define SRMB_ultData14 M6136

#define SRMB_ultData15 M6137

#define SRMB_ultData16 M6138

#define SRMB_ultData17 M6139

#define SRMB_ultData18 M6140

#define SRMB_ultData19 M6141

#define SRMB_ultData20 M6142

#define HCSC_bNetxFlags M6143

#define HCSC_NSF_READY M6144

#define HCSC_NSF_ERROR M6145

#define HCSC_NSF_HOST_COS_ACK M6146

#define HCSC_NSF_NETX_COS_CMD M6147

#define HCSC_NSF_SEND_MBX_ACK M6148

#define HCSC_NSF_RECV_MBX_CMD M6149

#define HCSC_bHostFlags M6150

#define HCSC_HSF_RESET M6151

#define HCSC_HSF_BOOTSTART M6152

#define HCSC_HSF_HOST_COS_CMD M6153

#define HCSC_HSF_NETX_COS_ACK M6154

#define HCSC_HSF_SEND_MBX_CMD M6155

#define HCSC_HSF_RECV_MBX_ACK M6156

#define HCCC0_usNetxFlags M6157

#define HCCC0_NCF_COMMUNICATING M6158

#define HCCC0_NCF_ERROR M6159

#define HCCC0_NCF_HOST_COS_ACK M6160

#define HCCC0_NCF_NETX_COS_CMD M6161

#define HCCC0_NCF_SEND_MBX_ACK M6162

#define HCCC0_NCF_RECV_MBX_CMD M6163

#define HCCC0_NCF_PD0_OUT_ACK M6164

#define HCCC0_NCF_PD0_IN_CMD M6165

#define HCCC0_NCF_PD1_OUT_ACK M6166

#define HCCC0_NCF_PD1_IN_CMD M6167

#define HCCC0_usHostFlags M6168

#define HCCC0_HCF_HOST_COS_CMD M6169

#define HCCC0_HCF_NETX_COS_ACK M6170

#define HCCC0_HCF_SEND_MBX_CMD M6171

#define HCCC0_HCF_RECV_MBX_ACK M6172

#define HCCC0_HCF_PD0_OUT_CMD M6173

#define HCCC0_HCF_PD0_IN_ACK M6174

#define HCCC0_HCF_PD1_OUT_CMD M6175

#define HCCC0_HCF_PD1_IN_ACK M6176

#define HCCC1_usNetxFlags M6177

#define HCCC1_NCF_COMMUNICATING M6178

#define HCCC1_NCF_ERROR M6179

#define HCCC1_NCF_HOST_COS_ACK M6180

#define HCCC1_NCF_NETX_COS_CMD M6181

#define HCCC1_NCF_SEND_MBX_ACK M6182

#define HCCC1_NCF_RECV_MBX_CMD M6183

#define HCCC1_NCF_PD0_OUT_ACK M6184

#define HCCC1_NCF_PD0_IN_CMD M6185

#define HCCC1_NCF_PD1_OUT_ACK M6186

#define HCCC1_NCF_PD1_IN_CMD M6187

#define HCCC1_usHostFlags M6188

#define HCCC1_HCF_HOST_COS_CMD M6189

#define HCCC1_HCF_NETX_COS_ACK M6190

#define HCCC1_HCF_SEND_MBX_CMD M6191

#define HCCC1_HCF_RECV_MBX_ACK M6192

#define HCCC1_HCF_PD0_OUT_CMD M6193

#define HCCC1_HCF_PD0_IN_ACK M6194

#define HCCC1_HCF_PD1_OUT_CMD M6195

#define HCCC1_HCF_PD1_IN_ACK M6196

#define HCCC2_usNetxFlags M6197

#define HCCC2_NCF_COMMUNICATING M6198

#define HCCC2_NCF_ERROR M6199

#define HCCC2_NCF_HOST_COS_ACK M6200

#define HCCC2_NCF_NETX_COS_CMD M6201

#define HCCC2_NCF_SEND_MBX_ACK M6202

#define HCCC2_NCF_RECV_MBX_CMD M6203

#define HCCC2_NCF_PD0_OUT_ACK M6204

#define HCCC2_NCF_PD0_IN_CMD M6205

ACC-72EX User Manual

DPRAM Memory Map 47

#define HCCC2_NCF_PD1_OUT_ACK M6206

#define HCCC2_NCF_PD1_IN_CMD M6207

#define HCCC2_usHostFlags M6208

#define HCCC2_HCF_HOST_COS_CMD M6209

#define HCCC2_HCF_NETX_COS_ACK M6210

#define HCCC2_HCF_SEND_MBX_CMD M6211

#define HCCC2_HCF_RECV_MBX_ACK M6212

#define HCCC2_HCF_PD0_OUT_CMD M6213

#define HCCC2_HCF_PD0_IN_ACK M6214

#define HCCC2_HCF_PD1_OUT_CMD M6215

#define HCCC2_HCF_PD1_IN_ACK M6216

#define HCCC3_usNetxFlags M6217

#define HCCC3_NCF_COMMUNICATING M6218

#define HCCC3_NCF_ERROR M6219

#define HCCC3_NCF_HOST_COS_ACK M6220

#define HCCC3_NCF_NETX_COS_CMD M6221

#define HCCC3_NCF_SEND_MBX_ACK M6222

#define HCCC3_NCF_RECV_MBX_CMD M6223

#define HCCC3_NCF_PD0_OUT_ACK M6224

#define HCCC3_NCF_PD0_IN_CMD M6225

#define HCCC3_NCF_PD1_OUT_ACK M6226

#define HCCC3_NCF_PD1_IN_CMD M6227

#define HCCC3_usHostFlags M6228

#define HCCC3_HCF_HOST_COS_CMD M6229

#define HCCC3_HCF_NETX_COS_ACK M6230

#define HCCC3_HCF_SEND_MBX_CMD M6231

#define HCCC3_HCF_RECV_MBX_ACK M6232

#define HCCC3_HCF_PD0_OUT_CMD M6233

#define HCCC3_HCF_PD0_IN_ACK M6234

#define HCCC3_HCF_PD1_OUT_CMD M6235

#define HCCC3_HCF_PD1_IN_ACK M6236

#define HCAC0_usNetxFlags M6237

#define HCAC0_NCF_COMMUNICATING M6238

#define HCAC0_NCF_ERROR M6239

#define HCAC0_NCF_HOST_COS_ACK M6240

#define HCAC0_NCF_NETX_COS_CMD M6241

#define HCAC0_NCF_SEND_MBX_ACK M6242

#define HCAC0_NCF_RECV_MBX_CMD M6243

#define HCAC0_NCF_PD0_OUT_ACK M6244

#define HCAC0_NCF_PD0_IN_CMD M6245

#define HCAC0_NCF_PD1_OUT_ACK M6246

#define HCAC0_NCF_PD1_IN_CMD M6247

#define HCAC0_usHostFlags M6248

#define HCAC0_HCF_HOST_COS_CMD M6249

#define HCAC0_HCF_NETX_COS_ACK M6250

#define HCAC0_HCF_SEND_MBX_CMD M6251

#define HCAC0_HCF_RECV_MBX_ACK M6252

#define HCAC0_HCF_PD0_OUT_CMD M6253

#define HCAC0_HCF_PD0_IN_ACK M6254

#define HCAC0_HCF_PD1_OUT_CMD M6255

#define HCAC0_HCF_PD1_IN_ACK M6256

#define HCAC1_usNetxFlags M6257

#define HCAC1_NCF_COMMUNICATING M6258

#define HCAC1_NCF_ERROR M6259

#define HCAC1_NCF_HOST_COS_ACK M6260

#define HCAC1_NCF_NETX_COS_CMD M6261

#define HCAC1_NCF_SEND_MBX_ACK M6262

#define HCAC1_NCF_RECV_MBX_CMD M6263

#define HCAC1_NCF_PD0_OUT_ACK M6264

#define HCAC1_NCF_PD0_IN_CMD M6265

#define HCAC1_NCF_PD1_OUT_ACK M6266

#define HCAC1_NCF_PD1_IN_CMD M6267

#define HCAC1_usHostFlags M6268

#define HCAC1_HCF_HOST_COS_CMD M6269

#define HCAC1_HCF_NETX_COS_ACK M6270

#define HCAC1_HCF_SEND_MBX_CMD M6271

#define HCAC1_HCF_RECV_MBX_ACK M6272

#define HCAC1_HCF_PD0_OUT_CMD M6273

#define HCAC1_HCF_PD0_IN_ACK M6274

#define HCAC1_HCF_PD1_OUT_CMD M6275

#define HCAC1_HCF_PD1_IN_ACK M6276

ACC-72EX User Manual

DPRAM Memory Map 48

#define CC0_RCX_APP_COS_APP_READY M6277

#define CC0_RCX_APP_COS_BUS_ON M6278

#define CC0_RCX_APP_COS_BUS_ON_ENABLE M6279

#define CC0_RCX_APP_COS_INIT M6280

#define CC0_RCX_APP_COS_INIT_ENABLE M6281

#define CC0_RCX_APP_COS_LOCK_CFG M6282

#define CC0_RCX_APP_COS_LOCK_CFG_ENA M6283

#define CC0_RCX_APP_COS_DMA M6284

#define CC0_RCX_APP_COS_DMA_ENABLE M6285

#define CC0_ulDeviceWatchdog M6286

#define CC0_RCX_COMM_COS_READY M6287

#define CC0_RCX_COMM_COS_RUN M6288

#define CC0_RCX_COMM_COS_BUS_ON M6289

#define CC0_RCX_COMM_COS_CONFIG_LOCKED M6290

#define CC0_RCX_COMM_COS_CONFIG_NEW M6291

#define CC0_RCX_COMM_COS_RESTART_REQ M6292

#define CC0_RCX_COMM_COS_RESTART_REQ_ENA M6293

#define CC0_RCX_COMM_COS_DMA M6294

#define CC0_ulCommunicationState M6295

#define CC0_ulCommunicationError M6296

#define CC0_usVersion M6297

#define CC0_usWatchdogTime M6298

#define CC0_bPDInHskMode M6299

#define CC0_bPDInSource M6300

#define CC0_bPDOutHskMode M6301

#define CC0_bPDOutSource M6302

#define CC0_ulHostWatchdog M6303

#define CC0_ulErrorCount M6304

#define CC0_bErrorLogInd M6305

#define CC0_bErrorPDInCnt M6306

#define CC0_bErrorPDOutCnt M6307

#define CC0_bErrorSyncCnt M6308

#define CC0_bSyncHskMode M6309

#define CC0_bSyncSource M6310

#define CC0_ulSlaveState M6311

#define CC0_ulSlaveErrLogInd M6312

#define CC0_ulNumOfConfigSlaves M6313

#define CC0_ulNumOfActiveSlaves M6314

#define CC0_ulNumOfDiagSlaves M6315

#define CC1_RCX_APP_COS_APP_READY M6316

#define CC1_RCX_APP_COS_BUS_ON M6317

#define CC1_RCX_APP_COS_BUS_ON_ENABLE M6318

#define CC1_RCX_APP_COS_INIT M6319

#define CC1_RCX_APP_COS_INIT_ENABLE M6320

#define CC1_RCX_APP_COS_LOCK_CFG M6321

#define CC1_RCX_APP_COS_LOCK_CFG_ENA M6322

#define CC1_RCX_APP_COS_DMA M6323

#define CC1_RCX_APP_COS_DMA_ENABLE M6324

#define CC1_ulDeviceWatchdog M6325

#define CC1_RCX_COMM_COS_READY M6326

#define CC1_RCX_COMM_COS_RUN M6327

#define CC1_RCX_COMM_COS_BUS_ON M6328

#define CC1_RCX_COMM_COS_CONFIG_LOCKED M6329

#define CC1_RCX_COMM_COS_CONFIG_NEW M6330

#define CC1_RCX_COMM_COS_RESTART_REQ M6331

#define CC1_RCX_COMM_COS_RESTART_REQ_ENA M6332

#define CC1_RCX_COMM_COS_DMA M6333

#define CC1_ulCommunicationState M6334

#define CC1_ulCommunicationError M6335

#define CC1_usVersion M6336

#define CC1_usWatchdogTime M6337

#define CC1_bPDInHskMode M6338

#define CC1_bPDInSource M6339

#define CC1_bPDOutHskMode M6340

#define CC1_bPDOutSource M6341

#define CC1_ulHostWatchdog M6342

#define CC1_ulErrorCount M6343

#define CC1_bErrorLogInd M6344

#define CC1_bErrorPDInCnt M6345

#define CC1_bErrorPDOutCnt M6346

#define CC1_bErrorSyncCnt M6347

ACC-72EX User Manual

DPRAM Memory Map 49

#define CC1_bSyncHskMode M6348

#define CC1_bSyncSource M6349

#define CC1_ulSlaveState M6350

#define CC1_ulSlaveErrLogInd M6351

#define CC1_ulNumOfConfigSlaves M6352

#define CC1_ulNumOfActiveSlaves M6353

#define CC1_ulNumOfDiagSlaves M6354

MacroNameDefinition_$6C000.pmc File Content
CLOSE

END GAT

DEL GAT

#Include "MacroNameDefinition_$6C000.h"

SI_abCookie_0_->Y:$6C000,0,8

SI_abCookie_1_->Y:$6C000,8,8

SI_abCookie_2_->X:$6C000,0,8

SI_abCookie_3_->X:$6C000,8,8

SI_ulDpmTotalSize->DP:$6C001

SI_ulDeviceNumber->DP:$6C002

SI_ulSerialNumber->DP:$6C003

SI_ausHwOptions_0_->Y:$6C004,0,16

SI_ausHwOptions_1_->X:$6C004,0,16

SI_ausHwOptions_2_->Y:$6C005,0,16

SI_ausHwOptions_3_->X:$6C005,0,16

SI_usManufacturer->Y:$6C006,0,16

SI_usProductionDate->X:$6C006,0,16

SI_ulLicenseFlags1->DP:$6C007

SI_ulLicenseFlags2->DP:$6C008

SI_usNetxLicenseID->Y:$6C009,0,16

SI_usNetxLicenseFlags->X:$6C009,0,16

SI_usDeviceClass->Y:$6C00A,0,16

SI_bHwRevision->X:$6C00A,0,8

SI_bHwCompatibility->X:$6C00A,8,8

SI_bDevIdNumber->Y:$6C00B,0,8

SCI_bChannelType->Y:$6C00C,0,8

SCI_bSizePositionOfHandshake->X:$6C00C,0,8

SCI_bNumberOfBlocks->X:$6C00C,8,8

SCI_ulSizeOfChannel->DP:$6C00D

SCI_usSizeOfMailbox->Y:$6C00E,0,16

SCI_usMailboxStartOffset->X:$6C00E,0,16

HCI_bChannelType->Y:$6C010,0,8

HCI_ulSizeOfChannel->DP:$6C011

CC0I_bChannelType->Y:$6C014,0,8

CC0I_bChannelId->Y:$6C014,8,8

CC0I_bSizePositionOfHandshake->X:$6C014,0,8

CC0I_bNumberOfBlocks->X:$6C014,8,8

CC0I_ulSizeOfChannel->DP:$6C015

CC0I_usCommunicationClass->Y:$6C016,0,16

CC0I_usProtocolClass->X:$6C016,0,16

CC0I_usConformanceClass->Y:$6C017,0,16

CC1I_bChannelType->Y:$6C018,0,8

CC1I_bChannelId->Y:$6C018,8,8

CC1I_bSizePositionOfHandshake->X:$6C018,0,8

CC1I_bNumberOfBlocks->X:$6C018,8,8

CC1I_ulSizeOfChannel->DP:$6C019

CC1I_usCommunicationClass->Y:$6C01A,0,16

CC1I_usProtocolClass->X:$6C01A,0,16

CC1I_usConformanceClass->Y:$6C01B,0,16

CC2I_bChannelType->Y:$6C01C,0,8

CC2I_bChannelId->Y:$6C01C,8,8

CC2I_bSizePositionOfHandshake->X:$6C01C,0,8

CC2I_bNumberOfBlocks->X:$6C01C,8,8

CC2I_ulSizeOfChannel->DP:$6C01D

CC2I_usCommunicationClass->Y:$6C01E,0,16

CC2I_usProtocolClass->X:$6C01E,0,16

CC2I_usConformanceClass->Y:$6C01F,0,16

CC3I_bChannelType->Y:$6C020,0,8

CC3I_bChannelId->Y:$6C020,8,8

ACC-72EX User Manual

DPRAM Memory Map 50

CC3I_bSizePositionOfHandshake->X:$6C020,0,8

CC3I_bNumberOfBlocks->X:$6C020,8,8

CC3I_ulSizeOfChannel->DP:$6C021

CC3I_usCommunicationClass->Y:$6C022,0,16

CC3I_usProtocolClass->X:$6C022,0,16

CC3I_usConformanceClass->Y:$6C023,0,16

AC0I_bChannelType->Y:$6C024,0,8

AC0I_bChannelId->Y:$6C024,8,8

AC0I_bSizePositionOfHandshake->X:$6C024,0,8

AC0I_bNumberOfBlocks->X:$6C024,8,8

AC0I_ulSizeOfChannel->DP:$6C025

AC1I_bChannelType->Y:$6C028,0,8

AC1I_bChannelId->Y:$6C028,8,8

AC1I_bSizePositionOfHandshake->X:$6C028,0,8

AC1I_bNumberOfBlocks->X:$6C028,8,8

AC1I_ulSizeOfChannel->DP:$6C029

SCtrl_ulSystemCommandCOS->DP:$6C02E

SStat_ulSystemCOS->DP:$6C030

SStat_ulSystemStatus->DP:$6C031

SStat_ulSystemError->DP:$6C032

SStat_ulBootError->DP:$6C033

SStat_ulTimeSinceStart->DP:$6C034

SStat_usCpuLoad->Y:$6C035,0,16

SStat_ulHWFeatures->DP:$6C036

SSMB_usPackagesAccepted->Y:$6C040,0,16

SSMB_ulDest->DP:$6C041

SSMB_ulSrc->DP:$6C042

SSMB_ulDestId->DP:$6C043

SSMB_ulSrcId->DP:$6C044

SSMB_ulLen->DP:$6C045

SSMB_ulId->DP:$6C046

SSMB_ulState->DP:$6C047

SSMB_ulCmd->DP:$6C048

SSMB_ulExt->DP:$6C049

SSMB_ulRout->DP:$6C04A

SSMB_ultData0->DP:$6C04B

SSMB_ultData1->DP:$6C04C

SSMB_ultData2->DP:$6C04D

SSMB_ultData3->DP:$6C04E

SSMB_ultData4->DP:$6C04F

SSMB_ultData5->DP:$6C050

SSMB_ultData6->DP:$6C051

SSMB_ultData7->DP:$6C052

SSMB_ultData8->DP:$6C053

SSMB_ultData9->DP:$6C054

SSMB_ultData10->DP:$6C055

SSMB_ultData11->DP:$6C056

SSMB_ultData12->DP:$6C057

SSMB_ultData13->DP:$6C058

SSMB_ultData14->DP:$6C059

SSMB_ultData15->DP:$6C05A

SSMB_ultData16->DP:$6C05B

SSMB_ultData17->DP:$6C05C

SSMB_ultData18->DP:$6C05D

SSMB_ultData19->DP:$6C05E

SSMB_ultData20->DP:$6C05F

SRMB_usWaitingPackages->Y:$6C060,0,16

SRMB_ulDest->DP:$6C061

SRMB_ulSrc->DP:$6C062

SRMB_ulDestId->DP:$6C063

SRMB_ulSrcId->DP:$6C064

SRMB_ulLen->DP:$6C065

SRMB_ulId->DP:$6C066

SRMB_ulState->DP:$6C067

SRMB_ulCmd->DP:$6C068

SRMB_ulExt->DP:$6C069

SRMB_ulRout->DP:$6C06A

SRMB_ultData0->DP:$6C06B

SRMB_ultData1->DP:$6C06C

SRMB_ultData2->DP:$6C06D

SRMB_ultData3->DP:$6C06E

ACC-72EX User Manual

DPRAM Memory Map 51

SRMB_ultData4->DP:$6C06F

SRMB_ultData5->DP:$6C070

SRMB_ultData6->DP:$6C071

SRMB_ultData7->DP:$6C072

SRMB_ultData8->DP:$6C073

SRMB_ultData9->DP:$6C074

SRMB_ultData10->DP:$6C075

SRMB_ultData11->DP:$6C076

SRMB_ultData12->DP:$6C077

SRMB_ultData13->DP:$6C078

SRMB_ultData14->DP:$6C079

SRMB_ultData15->DP:$6C07A

SRMB_ultData16->DP:$6C07B

SRMB_ultData17->DP:$6C07C

SRMB_ultData18->DP:$6C07D

SRMB_ultData19->DP:$6C07E

SRMB_ultData20->DP:$6C07F

HCSC_bNetxFlags->X:$6C080,0,8

HCSC_NSF_READY->X:$6C080,0,1

HCSC_NSF_ERROR->X:$6C080,1,1

HCSC_NSF_HOST_COS_ACK->X:$6C080,2,1

HCSC_NSF_NETX_COS_CMD->X:$6C080,3,1

HCSC_NSF_SEND_MBX_ACK->X:$6C080,4,1

HCSC_NSF_RECV_MBX_CMD->X:$6C080,5,1

HCSC_bHostFlags->X:$6C080,8,8

HCSC_HSF_RESET->X:$6C080,8,1

HCSC_HSF_BOOTSTART->X:$6C080,9,1

HCSC_HSF_HOST_COS_CMD->X:$6C080,10,1

HCSC_HSF_NETX_COS_ACK->X:$6C080,11,1

HCSC_HSF_SEND_MBX_CMD->X:$6C080,12,1

HCSC_HSF_RECV_MBX_ACK->X:$6C080,13,1

HCCC0_usNetxFlags->Y:$6C082,0,16

HCCC0_NCF_COMMUNICATING->Y:$6C082,0,1

HCCC0_NCF_ERROR->Y:$6C082,1,1

HCCC0_NCF_HOST_COS_ACK->Y:$6C082,2,1

HCCC0_NCF_NETX_COS_CMD->Y:$6C082,3,1

HCCC0_NCF_SEND_MBX_ACK->Y:$6C082,4,1

HCCC0_NCF_RECV_MBX_CMD->Y:$6C082,5,1

HCCC0_NCF_PD0_OUT_ACK->Y:$6C082,6,1

HCCC0_NCF_PD0_IN_CMD->Y:$6C082,7,1

HCCC0_NCF_PD1_OUT_ACK->Y:$6C082,8,1

HCCC0_NCF_PD1_IN_CMD->Y:$6C082,9,1

HCCC0_usHostFlags->X:$6C082,0,16

HCCC0_HCF_HOST_COS_CMD->X:$6C082,2,1

HCCC0_HCF_NETX_COS_ACK->X:$6C082,3,1

HCCC0_HCF_SEND_MBX_CMD->X:$6C082,4,1

HCCC0_HCF_RECV_MBX_ACK->X:$6C082,5,1

HCCC0_HCF_PD0_OUT_CMD->X:$6C082,6,1

HCCC0_HCF_PD0_IN_ACK->X:$6C082,7,1

HCCC0_HCF_PD1_OUT_CMD->X:$6C082,8,1

HCCC0_HCF_PD1_IN_ACK->X:$6C082,9,1

HCCC1_usNetxFlags->Y:$6C083,0,16

HCCC1_NCF_COMMUNICATING->Y:$6C083,0,1

HCCC1_NCF_ERROR->Y:$6C083,1,1

HCCC1_NCF_HOST_COS_ACK->Y:$6C083,2,1

HCCC1_NCF_NETX_COS_CMD->Y:$6C083,3,1

HCCC1_NCF_SEND_MBX_ACK->Y:$6C083,4,1

HCCC1_NCF_RECV_MBX_CMD->Y:$6C083,5,1

HCCC1_NCF_PD0_OUT_ACK->Y:$6C083,6,1

HCCC1_NCF_PD0_IN_CMD->Y:$6C083,7,1

HCCC1_NCF_PD1_OUT_ACK->Y:$6C083,8,1

HCCC1_NCF_PD1_IN_CMD->Y:$6C083,9,1

HCCC1_usHostFlags->X:$6C083,0,16

HCCC1_HCF_HOST_COS_CMD->X:$6C083,2,1

HCCC1_HCF_NETX_COS_ACK->X:$6C083,3,1

HCCC1_HCF_SEND_MBX_CMD->X:$6C083,4,1

HCCC1_HCF_RECV_MBX_ACK->X:$6C083,5,1

HCCC1_HCF_PD0_OUT_CMD->X:$6C083,6,1

HCCC1_HCF_PD0_IN_ACK->X:$6C083,7,1

HCCC1_HCF_PD1_OUT_CMD->X:$6C083,8,1

HCCC1_HCF_PD1_IN_ACK->X:$6C083,9,1

ACC-72EX User Manual

DPRAM Memory Map 52

HCCC2_usNetxFlags->Y:$6C084,0,16

HCCC2_NCF_COMMUNICATING->Y:$6C084,0,1

HCCC2_NCF_ERROR->Y:$6C084,1,1

HCCC2_NCF_HOST_COS_ACK->Y:$6C084,2,1

HCCC2_NCF_NETX_COS_CMD->Y:$6C084,3,1

HCCC2_NCF_SEND_MBX_ACK->Y:$6C084,4,1

HCCC2_NCF_RECV_MBX_CMD->Y:$6C084,5,1

HCCC2_NCF_PD0_OUT_ACK->Y:$6C084,6,1

HCCC2_NCF_PD0_IN_CMD->Y:$6C084,7,1

HCCC2_NCF_PD1_OUT_ACK->Y:$6C084,8,1

HCCC2_NCF_PD1_IN_CMD->Y:$6C084,9,1

HCCC2_usHostFlags->X:$6C084,0,16

HCCC2_HCF_HOST_COS_CMD->X:$6C084,2,1

HCCC2_HCF_NETX_COS_ACK->X:$6C084,3,1

HCCC2_HCF_SEND_MBX_CMD->X:$6C084,4,1

HCCC2_HCF_RECV_MBX_ACK->X:$6C084,5,1

HCCC2_HCF_PD0_OUT_CMD->X:$6C084,6,1

HCCC2_HCF_PD0_IN_ACK->X:$6C084,7,1

HCCC2_HCF_PD1_OUT_CMD->X:$6C084,8,1

HCCC2_HCF_PD1_IN_ACK->X:$6C084,9,1

HCCC3_usNetxFlags->Y:$6C085,0,16

HCCC3_NCF_COMMUNICATING->Y:$6C085,0,1

HCCC3_NCF_ERROR->Y:$6C085,1,1

HCCC3_NCF_HOST_COS_ACK->Y:$6C085,2,1

HCCC3_NCF_NETX_COS_CMD->Y:$6C085,3,1

HCCC3_NCF_SEND_MBX_ACK->Y:$6C085,4,1

HCCC3_NCF_RECV_MBX_CMD->Y:$6C085,5,1

HCCC3_NCF_PD0_OUT_ACK->Y:$6C085,6,1

HCCC3_NCF_PD0_IN_CMD->Y:$6C085,7,1

HCCC3_NCF_PD1_OUT_ACK->Y:$6C085,8,1

HCCC3_NCF_PD1_IN_CMD->Y:$6C085,9,1

HCCC3_usHostFlags->X:$6C085,0,16

HCCC3_HCF_HOST_COS_CMD->X:$6C085,2,1

HCCC3_HCF_NETX_COS_ACK->X:$6C085,3,1

HCCC3_HCF_SEND_MBX_CMD->X:$6C085,4,1

HCCC3_HCF_RECV_MBX_ACK->X:$6C085,5,1

HCCC3_HCF_PD0_OUT_CMD->X:$6C085,6,1

HCCC3_HCF_PD0_IN_ACK->X:$6C085,7,1

HCCC3_HCF_PD1_OUT_CMD->X:$6C085,8,1

HCCC3_HCF_PD1_IN_ACK->X:$6C085,9,1

HCAC0_usNetxFlags->Y:$6C086,0,16

HCAC0_NCF_COMMUNICATING->Y:$6C086,0,1

HCAC0_NCF_ERROR->Y:$6C086,1,1

HCAC0_NCF_HOST_COS_ACK->Y:$6C086,2,1

HCAC0_NCF_NETX_COS_CMD->Y:$6C086,3,1

HCAC0_NCF_SEND_MBX_ACK->Y:$6C086,4,1

HCAC0_NCF_RECV_MBX_CMD->Y:$6C086,5,1

HCAC0_NCF_PD0_OUT_ACK->Y:$6C086,6,1

HCAC0_NCF_PD0_IN_CMD->Y:$6C086,7,1

HCAC0_NCF_PD1_OUT_ACK->Y:$6C086,8,1

HCAC0_NCF_PD1_IN_CMD->Y:$6C086,9,1

HCAC0_usHostFlags->X:$6C086,0,16

HCAC0_HCF_HOST_COS_CMD->X:$6C086,2,1

HCAC0_HCF_NETX_COS_ACK->X:$6C086,3,1

HCAC0_HCF_SEND_MBX_CMD->X:$6C086,4,1

HCAC0_HCF_RECV_MBX_ACK->X:$6C086,5,1

HCAC0_HCF_PD0_OUT_CMD->X:$6C086,6,1

HCAC0_HCF_PD0_IN_ACK->X:$6C086,7,1

HCAC0_HCF_PD1_OUT_CMD->X:$6C086,8,1

HCAC0_HCF_PD1_IN_ACK->X:$6C086,9,1

HCAC1_usNetxFlags->Y:$6C087,0,16

HCAC1_NCF_COMMUNICATING->Y:$6C087,0,1

HCAC1_NCF_ERROR->Y:$6C087,1,1

HCAC1_NCF_HOST_COS_ACK->Y:$6C087,2,1

HCAC1_NCF_NETX_COS_CMD->Y:$6C087,3,1

HCAC1_NCF_SEND_MBX_ACK->Y:$6C087,4,1

HCAC1_NCF_RECV_MBX_CMD->Y:$6C087,5,1

HCAC1_NCF_PD0_OUT_ACK->Y:$6C087,6,1

HCAC1_NCF_PD0_IN_CMD->Y:$6C087,7,1

HCAC1_NCF_PD1_OUT_ACK->Y:$6C087,8,1

HCAC1_NCF_PD1_IN_CMD->Y:$6C087,9,1

ACC-72EX User Manual

DPRAM Memory Map 53

HCAC1_usHostFlags->X:$6C087,0,16

HCAC1_HCF_HOST_COS_CMD->X:$6C087,2,1

HCAC1_HCF_NETX_COS_ACK->X:$6C087,3,1

HCAC1_HCF_SEND_MBX_CMD->X:$6C087,4,1

HCAC1_HCF_RECV_MBX_ACK->X:$6C087,5,1

HCAC1_HCF_PD0_OUT_CMD->X:$6C087,6,1

HCAC1_HCF_PD0_IN_ACK->X:$6C087,7,1

HCAC1_HCF_PD1_OUT_CMD->X:$6C087,8,1

HCAC1_HCF_PD1_IN_ACK->X:$6C087,9,1

CC0_RCX_APP_COS_APP_READY->Y:$6C0C2,0,1

CC0_RCX_APP_COS_BUS_ON->Y:$6C0C2,1,1

CC0_RCX_APP_COS_BUS_ON_ENABLE->Y:$6C0C2,2,1

CC0_RCX_APP_COS_INIT->Y:$6C0C2,3,1

CC0_RCX_APP_COS_INIT_ENABLE->Y:$6C0C2,4,1

CC0_RCX_APP_COS_LOCK_CFG->Y:$6C0C2,5,1

CC0_RCX_APP_COS_LOCK_CFG_ENA->Y:$6C0C2,6,1

CC0_RCX_APP_COS_DMA->Y:$6C0C2,7,1

CC0_RCX_APP_COS_DMA_ENABLE->Y:$6C0C2,8,1

CC0_ulDeviceWatchdog->DP:$6C0C3

CC0_RCX_COMM_COS_READY->Y:$6C0C4,0,1

CC0_RCX_COMM_COS_RUN->Y:$6C0C4,1,1

CC0_RCX_COMM_COS_BUS_ON->Y:$6C0C4,2,1

CC0_RCX_COMM_COS_CONFIG_LOCKED->Y:$6C0C4,3,1

CC0_RCX_COMM_COS_CONFIG_NEW->Y:$6C0C4,4,1

CC0_RCX_COMM_COS_RESTART_REQ->Y:$6C0C4,5,1

CC0_RCX_COMM_COS_RESTART_REQ_ENA->Y:$6C0C4,6,1

CC0_RCX_COMM_COS_DMA->Y:$6C0C4,7,1

CC0_ulCommunicationState->DP:$6C0C5

CC0_ulCommunicationError->DP:$6C0C6

CC0_usVersion->Y:$6C0C7,0,16

CC0_usWatchdogTime->X:$6C0C7,0,16

CC0_bPDInHskMode->Y:$6C0C8,0,8

CC0_bPDInSource->Y:$6C0C8,8,8

CC0_bPDOutHskMode->X:$6C0C8,0,8

CC0_bPDOutSource->X:$6C0C8,8,8

CC0_ulHostWatchdog->DP:$6C0C9

CC0_ulErrorCount->DP:$6C0CA

CC0_bErrorLogInd->Y:$6C0CB,0,8

CC0_bErrorPDInCnt->Y:$6C0CB,8,8

CC0_bErrorPDOutCnt->X:$6C0CB,0,8

CC0_bErrorSyncCnt->X:$6C0CB,8,8

CC0_bSyncHskMode->Y:$6C0CC,0,8

CC0_bSyncSource->Y:$6C0CC,8,8

CC0_ulSlaveState->DP:$6C0CE

CC0_ulSlaveErrLogInd->DP:$6C0CF

CC0_ulNumOfConfigSlaves->DP:$6C0D0

CC0_ulNumOfActiveSlaves->DP:$6C0D1

CC0_ulNumOfDiagSlaves->DP:$6C0D2

CC1_RCX_APP_COS_APP_READY->Y:$6D002,0,1

CC1_RCX_APP_COS_BUS_ON->Y:$6D002,1,1

CC1_RCX_APP_COS_BUS_ON_ENABLE->Y:$6D002,2,1

CC1_RCX_APP_COS_INIT->Y:$6D002,3,1

CC1_RCX_APP_COS_INIT_ENABLE->Y:$6D002,4,1

CC1_RCX_APP_COS_LOCK_CFG->Y:$6D002,5,1

CC1_RCX_APP_COS_LOCK_CFG_ENA->Y:$6D002,6,1

CC1_RCX_APP_COS_DMA->Y:$6D002,7,1

CC1_RCX_APP_COS_DMA_ENABLE->Y:$6D002,8,1

CC1_ulDeviceWatchdog->DP:$6D003

CC1_RCX_COMM_COS_READY->Y:$6D004,0,1

CC1_RCX_COMM_COS_RUN->Y:$6D004,1,1

CC1_RCX_COMM_COS_BUS_ON->Y:$6D004,2,1

CC1_RCX_COMM_COS_CONFIG_LOCKED->Y:$6D004,3,1

CC1_RCX_COMM_COS_CONFIG_NEW->Y:$6D004,4,1

CC1_RCX_COMM_COS_RESTART_REQ->Y:$6D004,5,1

CC1_RCX_COMM_COS_RESTART_REQ_ENA->Y:$6D004,6,1

CC1_RCX_COMM_COS_DMA->Y:$6D004,7,1

CC1_ulCommunicationState->DP:$6D005

CC1_ulCommunicationError->DP:$6D006

CC1_usVersion->Y:$6D007,0,16

CC1_usWatchdogTime->X:$6D007,0,16

CC1_bPDInHskMode->Y:$6D008,0,8

ACC-72EX User Manual

DPRAM Memory Map 54

CC1_bPDInSource->Y:$6D008,8,8

CC1_bPDOutHskMode->X:$6D008,0,8

CC1_bPDOutSource->X:$6D008,8,8

CC1_ulHostWatchdog->DP:$6D009

CC1_ulErrorCount->DP:$6D00A

CC1_bErrorLogInd->Y:$6D00B,0,8

CC1_bErrorPDInCnt->Y:$6D00B,8,8

CC1_bErrorPDOutCnt->X:$6D00B,0,8

CC1_bErrorSyncCnt->X:$6D00B,8,8

CC1_bSyncHskMode->Y:$6D00C,0,8

CC1_bSyncSource->Y:$6D00C,8,8

CC1_ulSlaveState->DP:$6D00E

CC1_ulSlaveErrLogInd->DP:$6D00F

CC1_ulNumOfConfigSlaves->DP:$6D010

CC1_ulNumOfActiveSlaves->DP:$6D011

CC1_ulNumOfDiagSlaves->DP:$6D012

ACC-72EX User Manual

DPRAM Data Processing 55

DPRAM DATA PROCESSING
Since there are two processors (i.e. UMAC and netX) attempting to access data registers in Dual-Ported

Memory simultaneously, several handshaking modes can be used to guarantee data consistency. Each

sub-block defines the type of handshaking, if any, it requires. The ACC-72EX Setup Assistant software

output file lists the type of handshaking required for each of the sub-blocks available on the COMX

module.

Should handshaking not be used, collision circuitry on the gateway will, in the very least, guarantee

consistency within single byte boundaries.

Non-Cyclic Data Exchange
The mailbox of a communication channel or system channel has two areas that are used for non-cyclic

message transfer to and from the netX.

▪ Send Mailbox (System / Communication Channel)

Packet transfer from UMAC to netX firmware

▪ Receive Mailbox (System / Communication Channel)

Packet transfer from netX firmware to UMAC

For a communication channel, send and receive mailbox areas are used by fieldbus protocols, providing a

non-cyclic data exchange mechanism. Another use of the mailbox system is to allow access to the

firmware running on the netX chip for diagnostic and identification purposes. The send mailbox is used

to transfer cyclic data to the network or to the netX. The receive mailbox is used to transfer cyclic data

from the network or from the netX. Modbus Plus or Ethernet TCP/IP is an example of a fieldbus

protocol which utilizes a non-cyclic data exchange.

Whether or not a mailbox is used depends on the function of the firmware.

Note

Each mailbox can hold one packet at a time. netX stores packets in an

internal packet queue; these packets are not retrieved by UMAC. This

queue has limited space and may fill up, so new packets may be lost.

To avoid these deadlock situations, it is strongly recommended to

empty the mailbox frequently, even if packets are not expected by the

UMAC program. Unexpected command packets should be returned to

the sender with an Unknown Command in the status field; unexpected

reply messages can be discarded.

Message or Packets
The non-cyclic packets obtained through the netX mailbox have the following structure:

 Hilscher Documentation ACC-72EX Setup Assistant

Sy
st

em
 B

lo
ck

 S
en

d
 M

ai
lb

o
x

usPackagesAccepted SSMB_usPackagesAccepted

ulDest SSMB_ulDest

ulSrc SSMB_ulSrc

ulDestId SSMB_ulDestId

ulSrcId SSMB_ulSrcId

ulLen SSMB_ulLen

ulId SSMB_ulId

ulState SSMB_ulState

ulCmd SSMB_ulCmd

ulExt SSMB_ulExt

ulRout SSMB_ulRout

… SSMB_ultData0 .. SSMB_ultData20

ACC-72EX User Manual

DPRAM Data Processing 56

 Hilscher Documentation ACC-72EX Setup Assistant

Sy
st

em
 B

lo
ck

 R
e

ce
iv

e
M

ai
lb

o
x

usWaitingPackages SRMB_usWaitingPackages

ulDest SRMB_ulDest

ulSrc SRMB_ulSrc

ulDestId SRMB_ulDestId

ulSrcId SRMB_ulSrcId

ulLen SRMB_ulLen

ulId SRMB_ulId

ulState SRMB_ulState

ulCmd SRMB_ulCmd

ulExt SRMB_ulExt

ulRout SRMB_ulRout

… SRMB_ultData0 .. SRMB_ultData20

The size of a packet is always at least 40 bytes. Depending on the command, a packet may or may not

have a payload in the data field (tData). If present, the contents of the data field are specific to the

command or reply.

▪ Destination Queue Handler

The ulDest field identifies a task queue in the context of the netX firmware. The task queue

represents the final receiver of the packet and is assigned to a protocol stack. The ulDest field has

to be filled out in any case; otherwise, the netX operating system cannot route the packet.

▪ Source Queue Handler

The ulSrc field identifies the sender of the packet. In the context of the netX firmware (inter-task

communication), this field holds the identifier of the sending task. Usually, a UMAC program

uses this field for its own handle, but it can hold any handle of the sending process. The receiving

task does not evaluate this field and will pass it back unchanged to the originator of the packet.

▪ Destination Identifier

The ulDestId field identifies the destination of an unsolicited packet from the netX firmware to

the UMAC. It can hold any handle that helps identify the receiver. Its use is mandatory for

unsolicited packets. The receiver of unsolicited packets has to register for this service (details are

yet to be determined).

▪ Source Identifier

The ulSrcId field identifies the originator of a packet. This field is used by a UMAC program

which passes a packet from an external process to an internal netX task. The ulSrcId field holds

the handle of the external process. When the netX operating system returns the packet, the

UMAC program can identify the packet, and returns it to the originating process. The receiving

task on the netX does not evaluate this field, and passes it back unchanged. For inter-task

communication, this field is not used.

▪ Length of Data Field

The ulLen field holds the size of the data field tData in bytes. It defines the total size of the

packet’s payload that follows the packet’s header. Note that the size of the header is not included

in ulLen. Depending on the command or reply, a data field may or may not be present in a packet.

If no data field is used, the length field is set to zero.

ACC-72EX User Manual

DPRAM Data Processing 57

▪ Identifier

The ulId field is used to identify a specific packet among others of the same kind. That way the

application or driver can match a specific reply or confirmation packet to a previous request

packet. The receiving task does not change this field and passes it back to the originator of the

packet. Its use is optional in most of cases, but it is mandatory for fragmented packets. Example:

downloading large amounts of data that do not fit into a single packet. For fragmented packets,

the identifier field is incremented by one for every new packet.

▪ Status / Error Code

The ulSta field is used in response or confirmation packets. It informs the originator of the packet

about success or failure of the execution of the command. The field may be also used to hold

status information in a request packet. Status and error codes that may be returned in ulSta are

outlined in Status and Error Code section.

▪ Command / Response

The ulCmd field holds the command code or the response code. The command/response is

specific to the receiving task. If a task is not able to execute certain commands, it will return the

packet with an error indication. A command is always even (the least significant bit is zero). In

the response packet, the command code is incremented by one indicating a confirmation to the

request packet.

▪ Extension

The extension field ulExt is used for controlling packets that are sent in a sequenced or

fragmented manner. The extension field indicates the first, last, or a packet of a sequence. If

fragmentation of packets is not required, the extension field is set to zero.

▪ Routing Information

The ulRout field is used internally by the netX firmware only. It has no meaning to a driver type

application and therefore is set to zero.

▪ User Data Field

The tData field contains the payload of the packet. Depending on the command or reply, a packet

may or may not have a data field. The length of the data field is given in the ulLen field.

ACC-72EX User Manual

DPRAM Data Processing 58

About System and Channel Mailbox
The preferred way to address the netX operating system, rcX, is through the system mailbox. The

preferred way to address a protocol stack is through its channel mailbox. All mailboxes, however, have a

mechanism to route packets to any communication channel or the system channel. Therefore, the

destination identifier ulDest in a packet header has to be filled in according to the targeted receiver (see

the following image).

The above figure and table below illustrate the use of the destination identifier ulDest.

Value Definition / Description

$0 Packet is passed to the netX operating system rcX

$1 Packet is passed to communication channel 0

$2 Packet is passed to communication channel 1

$3 Packet is passed to communication channel 2

$4 Packet is passed to communication channel 3

$20 Packet is passed to ‘local’ communication or system channel

Else Reserved, Do Not Use

In regards to the channel identifier 0x00000020 (= Channel Token), the Channel Token is valid for any

mailbox. That way, the UMAC program uses the same identifier for all packets without actually knowing

which mailbox or communication channel is applied. The packet stays “local.” The system mailbox is a

little bit different because it is used to communicate to the netX operating system, rcX. The rcX has its

own range of valid command codes and differs from the communication channels.

If there is a reply packet, the netX operating system returns it to the same mailbox that the request packet

went through. Consequently, the UMAC program has to return its reply packet to the mailbox from which

the request was received.

ACC-72EX User Manual

DPRAM Data Processing 59

Command and Acknowledge
To ensure data consistency over the content of a mailbox, the firmware uses a pair of flags, each for one

direction. Engaging these flags gives access rights alternating to either the user application or the netX

firmware. If both UMAC and netX firmware were to access the mailbox at the same time, it may cause

loss of data or inconsistency.

As a general rule, if both flags have the same value (both are set or both are cleared), the process which

intends to write has access rights. If they have a different value, the process which intends to read has

access rights. The following table illustrates this mechanism.

Send Mailbox CMD Flag ACK Flag

UMAC Has Write Access 0 0 netX Has NO Read Access

UMAC Has NO Write Access 0 1 netX Has Read Access

UMAC Has NO Write Access 1 0 netX Has Read Access

UMAC Has Write Access 1 1 netX Has NO Read Access

Receive Mailbox CMD Flag ACK Flag

UMAC Has NO Read Access 0 0 netX Has Write Access

UMAC Has Read Access 0 1 netX Has NO Write Access

UMAC Has Read Access 1 0 netX Has NO Write Access

UMAC Has NO Read Access 1 1 netX Has Write Access

ACC-72EX User Manual

DPRAM Data Processing 60

The following flowcharts illustrate how the transfer mechanism (send and receive packets) works. In

order to send a packet, first the function checks if the size of the packet to be sent exceeds the mailbox

size. If both the Host Send Mailbox Command flag and the netX Send Mailbox Acknowledge flag are

either set or cleared, the host application is allowed to send the packet. When copying data to the mailbox

is done, the host toggles the Host Send Mailbox Command flag to give control to the netX firmware.

ACC-72EX User Manual

DPRAM Data Processing 61

In order to receive a packet, the function checks if the netX Receive Mailbox Command flag and the Host

Receive Mailbox Acknowledge flag have different values. If so, the host application is allowed to access

the mailbox. When the host is done copying data from the mailbox, the host toggles the Host Receive

Mailbox Acknowledge flag to give control to the netX firmware.

ACC-72EX User Manual

DPRAM Data Processing 62

Using ulSrc and ulSrcId
Generally, a netX protocol stack is addressed through its communication channel mailbox. The example

below shows how a host application addresses a protocol stack running in the context of the netX chip.

The application is identified by a number (#444 in this example). The application consists of three

processes numbered #11, #22 and #33. These processes communicate through the channel mailbox to the

AP task of a protocol stack. See the following image:

Example:

This example applies to command messages imitated by a process in the context of the host application

identified by number #444. If the process #22 sends a packet through the channel mailbox to the AP task,

the packet header has to be filled in as follows:

Destination Queue Handler ulDest = 32; /* 0x20: local channel mailbox */

Source Queue Handler ulSrc = 444; /* host application */

Destination Identifier ulDestId = 0; /* not used */

Source Identifier ulSrcId = 22; /* process number */

For packets through the channel mailbox, the application uses 32 (= 0x20, Channel Token) for the

destination queue handler ulDest. The source queue handler ulSrc and the source identifier ulSrcId are

used to identify the originator of a packet. The destination identifier ulDestId can be used to address

certain resources in the protocol stack. It is not used in this example. The source queue handler ulSrc

must have an entry, and therefore its use is mandatory; the use of ulSrcId is optional.

The netX operating system passes the request packet to the protocol stack’s AP task. The protocol stack

then builds a reply to the packet and returns it to the mailbox. The application has to make sure that the

packet finds its way back to the originator (process #22 in the example).

How to Route rcX Packets
To route an rcX packet, the source identifier ulSrcId and the source queues handler ulSrc in the packet

header hold the identification of the originating process. The router saves the original handle from ulSrcId

and ulSrc. It uses handles of its own choice for ulSrcId and ulSrc before it sends the packet to the

receiving process. That way, the router can identify the corresponding reply packet and match the handle

from that packet with the one stored earlier. Lastly, the router replaces its handles with the original

handles and returns the packet to the originating process.

ACC-72EX User Manual

DPRAM Data Processing 63

Client/Server Mechanism
Depending on the message destination or packet protocol, the UMAC program or application can act as a

client or a server. This section explains both methods, but selection of the appropriate method depends on

the destination or protocol option.

Application as Client
The host application may send request packets to the netX firmware at any time (transition 1 2).

Depending on the protocol stack running on the netX, parallel packets are not permitted (see protocol

specific manual for details). The netX firmware sends a confirmation packet in return, signaling success

or failure (transition 3 4) while processing the request.

The host application has to register with the netX firmware in order to receive indication packets

(transition 5 6). Depending on the protocol stack, this is done either implicitly (if application opens a

TCP/UDP socket) or explicitly (if application wants to receive unsolicited DPV1 packets). Details on

when and how to register for certain events is described in the protocol specific manual. Depending on the

command code of the indication packet, a response packet to the netX firmware may or may not be

required (transition 7 8).

Application as Server
The host application has to register with the netX firmware in order to receive indication packets

(unsolicited telegrams). Depending on the protocol stack, this is done either implicitly (if the application

opens a TCP/UDP socket) or explicitly (if the application wants to receive unsolicited DPV1 packets).

Details on when and how to register for certain events is described in the protocol-specific manual.

When an appropriate event occurs and the host application is registered to receive such a notification, the

netX firmware passes an indication packet through the mailbox (transition 1 2). The host application is

expected to send a response packet back to the netX firmware (transition 3 4).

ACC-72EX User Manual

DPRAM Data Processing 64

Input/Output Data Image
Hilscher products support two methods for accessing the Input/Output Data Image:

▪ DPM (Dual-Ported Memory) Mode

▪ DMA (Direct Memory Access) Mode

However, the modules used in ACC-72EX only support the DPM mode, and only Hilscher PCI cards

support DMA mode.

In DPM Mode, handshaking between the UMAC (host) program and netX is required for any data

transfer.

Process Data Handshake Modes
The netX firmware allows controlling the transfer of data independently for inputs and outputs. Therefore,

the process data handshake is carried out individually for input and output image. The handshake cells are

located in the handshake channel.

Mode Controlled by Consistency Supported by

Buffered Host (Application/Driver) Yes Master & Slave Firmware

Buffered, Host Controlled Mode
The Buffered data transfer mode can be used for both master- and slave- type devices. In “buffered”

mode, the protocol stack handles the exchange of data between internal buffers and the process data

images in the dual-port memory with the application via a handshake mechanism. Once copied from/into

the input/output area, the host application gives control over the dual-port memory to the protocol stack.

Control is given back to the host application when the protocol stack has finished copying, and so on.

Note

The network cycle and the task cycle of the host application are not

synchronized, but are consistent.

If the host application is faster than the network cycle, it might be

possible that data in the output buffers is overwritten without ever

being sent to the network. As for the other direction, the host

application may read the same input values over several read cycles.

If the host application is slower than the network cycle, the protocol

stack overwrites the input buffer with new data received from the

network, which were never received by the host application. The

output data on the network will be the same over several network

cycles.

For each valid bus cycle, the protocol stack updates the process data in the internal input buffer. When the

application toggles the appropriate input handshake bit, the protocol stack copies the data from the

internal IN buffer into the input data image of the dual-port memory. Now the application can copy data

from the dual-port memory and then give control back to the protocol stack by toggling the appropriate

input handshake bit. When the application/driver toggles the output handshake bit, the protocol stack

copies the data from the output data image of the dual-port memory into the internal buffer. From there,

the data is transferred to the network. The protocol stack toggles the appropriate handshake bits back,

indicating to the application that the transfer is finished and a new data exchange cycle may start. This

mode guarantees data consistency over both the input and output areas.

ACC-72EX User Manual

DPRAM Data Processing 65

Step-by-Step Procedure

Step 1 The protocol stack sends data from the internal OUT buffer to the network and receives data

from the network in the internal IN buffer.

Step 2 The application has control over the dual-port memory and exchanges data with the input

and output data images in the dual-port memory. The application then toggles the

handshake bits, giving control over the dual-port memory to the protocol stack

Step 3 The protocol stack copies the content of the output data image into the internal OUT buffer,

and from the IN buffer to the input data image.

Step 4 The protocol stack toggles the handshake bits, giving control back to the application. Now,

the protocol stack uses the new output data image from the OUT buffer to send it to the

network, and receives data into the internal IN buffer, and then the cycle repeats.

ACC-72EX User Manual

DPRAM Data Processing 66

Time-Related View
The following figure shows the procedure in a time-related view.

Output Data Exchange

1. The protocol stack constantly transmits data from the buffer to the network.

2. The application has control over the dual-port memory and can copy data to the output data

image.

3. The application then toggles the handshake bits, giving control over the dual-port memory to the

protocol stack.

4. The protocol stack copies the content of the output data image into the internal OUT buffer.

5. The protocol stack toggles the handshake bits, giving control back to the application.

6. Once updated, the protocol stack uses the new data from the internal buffer and sends it to the

network. The cycle repeats with step 1.

Input Data Exchange

1. The protocol stack constantly receives data from the network into the buffer.

2. The application has control over the dual-port memory input data image and exchanges data with

the input data image in the dual-port memory.

3. The application then toggles the handshake bits, giving control over the dual-port memory to the

netX protocol stack.

4. The protocol stack copies the latest content of the internal IN buffer to the input data image of the

dual-port memory.

5. The protocol stack then toggles the handshake bits, giving control back to the application.

1. The protocol stack receives data from the network into the buffer (i.e. the cycle starts over with

the first step).

ACC-72EX User Manual

DPRAM Data Processing 67

Note

In case of a network fault (e.g. disconnected network cable), a slave

firmware keeps the last state of the input data image. As soon as the

firmware detects the network fault, it clears the Communicating flag

in the netX communication flags. The input data should then no longer

be evaluated.

Start / Stop Communication

Controlled or Automatic Start
The firmware has the option to start network communication after power up automatically. Whether or

not the network communication will be started automatically is configurable. However, the preferred

option is called “Controlled Start of Communication.” This option forces the channel firmware to wait for

the host application to allow network connection being opened by setting the Bus On flag in the

Application Change of State register in the channel’s control block. Consequently, the protocol stack will

not allow the opening of network connections and does not exchange any cyclic process data until the Bus

On flag is set.

The second option enables the channel firmware to open network connections automatically without

interacting with the host application. It is called “Automatic Start of Communication.” This method is

not recommended because the host application has no control over the network connection status. In this

case, the Bus On flag is not evaluated.

Note

The Controlled Start of communication is the default method used for

the default dual-port memory layout.

Start / Stop Communication through Dual-Port Memory

(Re-)Start Communication
To allow the protocol stack to open connections or to allow connections to be opened, the application sets

the Bus On flag in the Application Change of State register in the channel’s control block. When

firmware has established a cyclic connection to at least one network mode, the channel firmware sets the

Communicating flag in the netX Communication Flags register.

Stop Communication
To force the channel firmware to disable all network connections, the host application clears the Bus On

flag in the “Application Change of State” register in the channel’s control block. The firmware then

closes all open network connections. A slave protocol stack would reject attempts to reopen a connection

until the application allows opening network connections again (Bus On flag is set). When all

connections are closed, the channel firmware clears the Communicating flag in the netX Communication

Flags register.

ACC-72EX User Manual

DPRAM Data Processing 68

Reset Command

System Reset vs. Channel Initialization
There are several methods to restart the netX firmware. The first is called “System Reset.” The System

Reset affects the netX operating system, rcX, and the protocol stacks. It forces the chip to immediately

stop all running protocol stacks and the rcX itself. During the system reset, the netX is performing an

internal memory check and other functions to insure the integrity of the netX chip itself.

The Channel Initialization, as the second method, affects a communication channel only. The channel

firmware then reads and evaluates the configuration settings (or SYCON.net database, if available) again.

The operating system is not affected. There are no particular tests performed during a channel

initialization.

A third method to reset the netX chip is called Boot Start. No firmware is started when a System Reset is

executed with the boot start flag set. The netX remains in boot loader mode.

Note

A System Reset, Channel Initialization, and boot start may cause all

network connection to be interrupted immediately, regardless of their

current state.

During a HW-Reset and the time when the 2nd stage loader starts the

Firmware, the content of the dual port memory can be 0xFFFF or

0x0BAD for a short period of time.

When used with Turbo PMAC2 CPU, it is necessary to reset the

COMX module for proper functionality after initial power up, cycle

power, or a $$$ or $$$*** command.

Resetting netX through Dual-Port Memory
To reset the entire netX firmware, the host application has to set the HSF_RESET bit in the

bHostSysFlags register to perform a system-wide reset and respectively the APP_COS_INIT flag for a

channel initialization in the ulApplicationCOS variable in the control block of the channel. The system

reset and the channel initialization are handled differently by the firmware (see above).

System Reset
To reset the netX operating system rcX and all communication channels, the host application has to write

$55AA55AA (System Reset Cookie) to the ulSystemCommandCOS variable in the system control block.

Then, the HSF_RESET flag in bHostSysFlags has to be set. If the operating system does not find

$55AA55AA in the ulSystemCommandCOS variable, the reset command will be ignored.

The operating system clears the NSF_READY flag in bNetxFlags in the system handshake register,

indicating that the system-wide reset is in progress. During the reset, all communication channel tasks are

stopped, regardless of their current state. The rcX operating system flushes the entire dual-port memory

and writes all memory locations to zero. After the reset, if rcX is finished without complications, and all

protocol stacks are started properly, the NSF_READY flag is set again. Otherwise, the NSF_ERROR flag

in bNetxFlags in the system handshake register is set, and an error code is written in ulSystemError in the

system status block (see page 46), which helps identify possible problems.

ACC-72EX User Manual

DPRAM Data Processing 69

Value Definition/Description

$55AA55AA System reset cookie

The image below illustrates the steps the host application has to perform in order to execute a systemwide

reset on the netX chip through the dual-port memory.

System Reset

Timing
The duration of the reset outlined above depends on the firmware. Typically, the NSF_READY flag is

cleared within around 100 – 500 ms after the HSF_RESET Flag was set. When cleared, the

NSF_READY bit will be set again after around 0.5 – 5 s. Generally, the reset should not take more than

6 seconds.

Channel Initialization
In order to force the protocol stack to restart and evaluate the configuration parameter again, the

application can set the APP_COS_INIT flag in the ulApplicationCOS register in the control block or send

a reset packet to the communication channel. All open network connections are interrupted immediately,

regardless of their current state. Reinitializing the channel is not allowed if the database is locked.

Changing flags in the ulApplicationCOS register requires the application also to toggle the host change of

state command flag in the host communication flags register. Only then, the netX protocol stack

recognizes the reset command.

ACC-72EX User Manual

DPRAM Data Processing 70

Below is the sequence:

CC0_RCX_APP_COS_INIT=1

CC0_RCX_APP_COS_INIT_ENABLE=1

HCCC0_HCF_HOST_COS_CMD=1

During channel initialization, the RCX_COMM_COS_READY flag and the RCX_COMM_COS_RUN

flag are cleared together. The RCX_COMM_COS_READY flag stays cleared for at least 20 ms before it

is set again, indicating that the initialization has finished. The RCX_COMM_COS_RUN flag is set if a

valid configuration was found. Otherwise, it stays cleared.

After the initialization process has finished, the protocol stack checks ulApplicationCOS register. If the

RCX_APP_COS_BUS_ON flag and the RCX_APP_COS_BUS_ON_ENABLE flags are set, network

communication will be restored automatically. The same is true for the Lock Configuration feature

(RCX_APP_COS_LOCK_CONFIG / RCX_APP_COS_LOCK_CONFIG_ENABLE) and the DMA data

transfer mechanism (RCX_APP_COS_DMA / RCX_APP_COS_DMA_ENABLE).

The image below illustrates the steps the host application has to perform in order to execute a channel

initialization on the protocol stack through the dual-port memory.

ACC-72EX User Manual

DPRAM Data Processing 71

System Reset through Packets
The netX chip can be reset using a packet instead of the dual-port memory. The request packet is passed

through the system mailbox. All open network connections are interrupted immediately, regardless of

their current state. Reinitializing the channel is not allowed if the database is locked.

For detailed information about reset message settings, please see Hilscher documentation.

ACC-72EX User Manual

Software setup 72

SOFTWARE SETUP
ACC-72EX supports multiple protocols, and setting up each protocol can be a bit different, as described

in the protocol specific documentation provided by Hilscher. In this section, most of the generic steps are

covered with the help of examples and screenshots.

Required Software Packages
Two software packages are required for setting up ACC-72EX:

1. SYCON.NET (V1.0310.x.x or newer), available through Hilscher’s website.

a. If using newer ACC-72Ex modules, V1.0500.230227.42617 is required.

2. ACC-72EX Setup Assistant Software.

Both software packages have to be installed on the PC used for initial setup of the system and

commissioning of the machine. Notice that neither of these software packages is required after the initial

setup and the unit can work as a standalone setup.

SyCon.NET Software Setup
SYCON.net is a tool for the configuration of Fieldbus and Real-Time Ethernet systems. It is based on the

standardized FDT / DTM technology. Online diagnostic indicators and auto-scan function for the reading

of network participants assist in the commissioning of the network. SYCON.NET is provided with the

gateway module under license from Hilscher Corporation.

As of May 2023, the Profibus Slave and DeviceNet Slave options have changed slightly due to a change

in the underlying module, from the COMX10 module to the COMX52 module. Setup and configuration

are nearly identical, though users may require a newer version of the Sycon.Net software to support this.

Version V1.0500.230227.42617 of the Sycon.Net software is available from the Knowledge Base on

Hilscher’s website and has been tested as compatible.

Where setup varies, new screenshots and descriptions have been provided below.

With the power off, plug the ACC-72EX into the UBUS backplane and turn on the power to the UMAC

rack. Connect the diagnostic port to a USB port on the PC using a micro-USB type cable.

Launch the SYCON.NET software on the PC.

Enter the password:

ACC-72EX User Manual

Software setup 73

Start a new project or load an existing project from the File menu:

Select the COMX module to which the USB is connected from the Fieldbus protocol list. In this

example, an EtherNet/IP module has been selected:

ACC-72EX User Manual

Software setup 74

If using the COMX52 module as a Stand-Alone DeviceNet Slave, select that item from the “Gateway /

Stand-Alone Slave” folder.

If using the COMX52 module as a slave device (and another Hilscher module as a master device), select

that item from the “Slave” folder.

ACC-72EX User Manual

Software setup 75

For Profibus, there is no option for a “COMX-52” module in either the “Gateway / Stand-Alone Slave” or

“Slave” folders, so instead select “COMX-DP/DPS” from the appropriate location if using this module.

Drag and drop the module onto the BusLine in the netDevice window (notice that the module can only be

inserted on the BusLine).

Establish USB communication to the COMX gateway by right-clicking on the device icon and selecting

“Configuration…”:

ACC-72EX User Manual

Software setup 76

In the netDevice Configuration window, select the Driver folder under Settings folder in the

NavigationArea, check the checkmark box for netX Driver on the driver list, and click Apply:

If a “netX SPM USB Driver” is also available, select it, too.

ACC-72EX User Manual

Software setup 77

Select the netXDriver node under the Driver folder in the Navigation Area and select the port resembling

the USB connection to the COMX module. Click Save and Apply (just click OK if Apply is grayed out).

ACC-72EX User Manual

Software setup 78

Note

Check Windows Device Manager in order to identify which COM

port provides the connection to the Hilscher COMX module.

ACC-72EX User Manual

Software setup 79

Click Device Assignment under the Driver folder in the Navigation Area. Assign the netX Driver to the

detected COMX module by checking the checkmark box next to the detected device, and click Apply.

Note

When used with Turbo PMAC, the reset line is released too fast for

some Hilscher COMX modules, which puts them in a boot mode.

This can prevent the device from being detected by Sycon.NET

software. Make sure the device receives a system-wide reset using the

PMAC suggested M-Variables ulSystemCommandCOS and

HSF_RESET registers as shown here.

SCtrl_ulSystemCommandCOS=$55AA55AA

HCSC_HSF_RESET=1

Note that ACC-72EX Setup Assistant software automatically resets

the cards if it cannot detect the identification cookie.

The rest of the steps are protocol/module dependent, and it is strongly recommended to follow the

directions for these modules in Hilscher documentation available through their website. The current

example will be continued with specifics to EtherNet/IP Scanner/Adapter setup.

ACC-72EX User Manual

Software setup 80

Now that the COMX driver for communication between the PC and COMX module using the diagnostic

port has been set up, go through protocol specific setup parameters under the Configuration folder in the

Navigation Area.

ACC-72EX User Manual

Software setup 81

After finishing modifying the settings for the device, press the OK button.

Back in the netDevice tree, right click on the device icon, and select Connect (as shown below).

Once connected, right click on the device icon one more time and select Download (as shown below).

This will download all the configurations from PC to COMX module.

Once the configuration is downloaded to the COMX module, make sure to save the SYCON.net project

for later use.

ACC-72EX User Manual

Software setup 82

The Hilscher slave module (COMX_RE_IES) above was dragged and dropped from the fieldbus protocol

list. Third party slave modules can be added to that list by going to “Import Device Descriptions…” in

the Network tab:

See Appendix C for an example setup using an ACC-72EX Ethernet IP slave with a third party Ethernet

IP master PLC controller.

ACC-72EX Setup Assistant
The next step is to generate the memory map and suggested M-Variables for the Hilscher module. Run

the ACC-72EX Setup Assistant. In the Memory Map Generator groupbox, click the Connect to PMAC

button, and select the UMAC where the ACC-72EX is installed. Once connected, the software will detect

any available ACC-72EX(s) in the rack and list it based upon the base address(es).

ACC-72EX User Manual

Software setup 83

Select the starting number for M-Variable assignment, and click the“Generate M-Variable Definitions”

button. The program asks for a folder location to save the M-Variable definition and memory map files.

This will generate three files which are named based upon the ACC-72EX base address.

The M-variable definition and its header file can be used in writing PLCs and motion programs in PMAC.

The memory map file is useful for identifying the process data image locations.

ACC-72EX User Manual

Software setup 84

Turbo PMAC Setup for Using ACC-72EX
All interactions between PMAC and ACC-72EX occur through M-variables. Most of the important

registers which are required are mapped in the suggested M-Variable definition files generated by ACC-

72EX Setup Assistant software. The generated files can be included in the header section of the project

files in PEWIN32PRO2.

Note

If multiple ACC-72EX cards are in the same UMAC rack, the M-

variable macro names will be identical for both files, despite the file

name difference based upon the ACC-72EX base address. Make sure

to add a prefix or suffix to the macro names both in the header file and

definition file in order to distinguish the proper macro names for

different ACC-72EXs. Note that no macro name should be longer

than 32 characters.

There are multiple steps in getting the COMX module working with the network/fieldbus. Some of these

steps are protocol-specific, and it is recommended to follow the requirements based upon each protocol

manual provided by Hilscher.

Initialization PLC
Recall that ACC-72EX requires a reset after each power up, power cycle, $$$ (reset), or $$$*** (factory

default reset). This can be achieved with a startup (or initialization) PLC. Example:

CLOSE

END GAT

DEL GAT

#include "M-VariableDefinition_$6C000.pmc"

#include "M-VariableDefinition_$74000.pmc"

#define CommErrorFlag P1

OPEN PLC 1 CLEAR

DISABLE PLC 2..31 // Disable all other tasks

SCtrl_ulSystemCommandCOS=$55AA55AA // Reset token for MASTER Unit

HCSC_HSF_RESET=1 // Reset bit, token required for reset to complete

S_SCtrl_ulSystemCommandCOS=$55AA55AA // Reset token for SLAVE Unit

S_HCSC_HSF_RESET=1 // Reset bit, token required for reset to complete

CommErrorFlag=0

timer = 1000 msec // Reset Time-out Timer

WHILE (CommErrorFlag=0 AND HCSC_NSF_READY=0) // Wait for reset to complete

 IF (timer<0) // Check for reset timeout

 CommErrorFlag = 1

 ENDIF

ENDWHILE

IF (CommErrorFlag=0) //

 WHILE (CC0_RCX_COMM_COS_RUN=0 OR S_CC0_RCX_COMM_COS_RUN=0) // wait for comm tasks to

 // start on COMX modules

 HCCC0_HCF_NETX_COS_ACK = HCCC0_HCF_NETX_COS_ACK ^ 1

 // Toggle Communication Channel 0’s Change of State Acknowledge bit in

 // order to read the CC0_RCX_COMM_COS_RUN which is a part of Communication

 // Channel 0 State Register

 S_HCCC0_HCF_NETX_COS_ACK = S_HCCC0_HCF_NETX_COS_ACK ^ 1

 ENDWHILE

 ENABLE PLC 28

 ENABLE PLC 10

 ENABLE PLC 11

ENDIF

DISABLE PLC 1

CLOSE

ACC-72EX User Manual

Software setup 85

Watchdog Function
The host Watchdog and the device Watchdog cells in the control block of each of the communication

channels allow the operating system running on the netX to supervise the host or UMAC application and

vice versa. There is no Watchdog function for the system block or for the handshake channel. The

Watchdog for the channels is located in the control block of the status block of each communication

channel.

The netX firmware reads the contents of the device Watchdog cell, increments the value by one, and

copies it back into the host Watchdog location. Then, the application has to copy the new value from the

host Watchdog location into the device Watchdog location. Copying the host Watchdog cell to the device

Watchdog cell has to happen in the configured Watchdog time. When the overflow occurs, the firmware

starts over and “1” appears in the host Watchdog cell. A zero turns off the Watchdog and therefore never

appears in the host Watchdog cell in the regular process.

The minimum Watchdog time is 20 ms. The application can start the Watchdog function by copying any

value unequal to zero into device Watchdog cell. A zero in the device Watchdog location stops the

Watchdog function. The Watchdog timeout is configurable in SYCON.net and can be downloaded to the

netX firmware.

If the application fails to copy the value from the host Watchdog location to the device Watchdog location

within the configured Watchdog time, the protocol stack will interrupt all network connections

immediately, regardless of their current state. If the Watchdog tripped, then power cycling, channel reset,

or channel initialization will allow the communication channel to open network connections again.

Here is sample code for copying the host Watchdog location to the device Watchdog location:

CLOSE

END GAT

DEL GAT

#include "M-VariableDefinition_$6C000.pmc"

#include "M-VariableDefinition_$74000.pmc"

OPEN PLC 28 CLEAR

CC0_ulDeviceWatchdog = CC0_ulHostWatchdog // copies the host Watchdog content

 // to device Watchdog cell

 // for the 1st ACC-72EX

S_CC0_ulDeviceWatchdog = S_CC0_ulHostWatchdog // copies the host Watchdog content

 // to device Watchdog cell

 // for the 2nd ACC-72EX

CLOSE

Enabling the Communication Bus
Using the Bus On flag (CCx_RCX_APP_COS_BUS_ON, where x is the communication channel

number), the host or UMAC application allows or disallows the netX firmware to open network

connections. This flag is used together with the Bus On Enable flag

(CCx_RCX_APP_COS_BUS_ON_ENABLE, where x is the communication channel number). If set, the

netX firmware tries to open network connections; if cleared, no connections are allowed, and open

connections are closed. If the Bus On Enable flag is set, it enables the execution of the Bus On command

in the netX firmware:

CC0_RCX_APP_COS_BUS_ON=1 // Setting the Bus On flag for 1st ACC-72EX

CC0_RCX_APP_COS_BUS_ON_ENABLE=1 // Enabling the execution of Bus On Flag for 1st ACC-72EX

S_CC0_RCX_APP_COS_BUS_ON=1 // Setting the Bus On flag for 2nd ACC-72EX

S_CC0_RCX_APP_COS_BUS_ON_ENABLE=1 // Enabling the execution of Bus On Flag for 2nd ACC-72EX

ACC-72EX User Manual

Software setup 86

Locating the Input/Output Data Image in PMAC
Although the ACC-72EX Setup Assistant software defines M-Variables for accessing setup registers and

flags in COMX modules, it does not assign any M-Variables for input/output data images. However,

starting address and size of each input/output processed data image in’s PMAC memory addressing

format are calculated and included as a part of the memory map file that is generated. The following is an

example from an EtherNet/IP option. The highlighted sections show the addressing for the processed data

images:

+ Block 2:

 | Channel Type: Communication

 | Size of Channel: 15616 bytes

 | Channel Start Address: $6C0C0

 | Position of Handshake Cells: IN HANDSHAKE CHANNEL

 | Size of Handshake Cells: 16 BITS

 | NetX Handshake Register: Y:$6C082,0,16

 | Host Handshake Register: X:$6C082,0,16

 | Communication Class: SCANNER

 | Protocol Class: IO-DEVICE

 | Conformance Class: 0

 | Number of Subblocks: 9

 |

 |--- Subblock 0: CONTROL

 | Size: 8 bytes

 | Start Offset: $6C0C2

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNCONTROLLED

 | Handshake Bit: 0

 |

 |--- Subblock 1: COMMON STATUS

 | Size: 64 bytes

 | Start Offset: $6C0C4

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNCONTROLLED

 | Handshake Bit: 0

 |

 |--- Subblock 2: EXTENDED STATUS

 | Size: 432 bytes

 | Start Offset: $6C0D4

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNCONTROLLED

 | Handshake Bit: 0

 |

 |--- Subblock 3: MAILBOX

 | Size: 1600 bytes

 | Start Offset: $6C140

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 4

 |

 |--- Subblock 4: MAILBOX

 | Size: 1600 bytes

 | Start Offset: $6C2D0

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: UNKNOWN

 | Handshake Bit: 5

 |

 |--- Subblock 5: PROCESS DATA IMAGE

 | Size: 5760 bytes

 | Start Offset: $6C4C0

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 6

ACC-72EX User Manual

Software setup 87

 |

 |--- Subblock 6: PROCESS DATA IMAGE

 | Size: 5760 bytes

 | Start Offset: $6CA60

 | Transfer Direction: IN (netX to Host System)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 7

 |

 |--- Subblock 7: HIGH PRIORITY DATA IMAGE

 | Size: 64 bytes

 | Start Offset: $6C460

 | Transfer Direction: OUT (Host System to netX)

 | Transfer Type: DPM (Dual-Port Memory)

 | Handshake Mode: BUFFERED, HOST CONTROLLED

 | Handshake Bit: 8

 |

 |--- Subblock 8: HIGH PRIORITY DATA IMAGE

 Size: 64 bytes

 Start Offset: $6C470

 Transfer Direction: IN (netX to Host System)

 Transfer Type: DPM (Dual-Port Memory)

 Handshake Mode: BUFFERED, HOST CONTROLLED

 Handshake Bit: 9

Depending on the protocol, users might be interested in:

- Processed Data Images

- High Priority Data Images

- Mailboxes

Also listed in the memory map are starting address, size of each of these memory blocks, handshake

method, and flag.

Reading/Writing from/to Input/Output Data Images
There are two methods for accessing processed data images:

1. Direct M-Variable definition to each register

This method is useful if the number of I/O data variables is small enough

2. Indirect M-Variable access

This method is mostly used if the number of I/O data count is greater than a comfortable

level which can be handled by the direct M-Variable definition method. Refer to the

Turbo PMAC Users Manual for detailed information on how to utilize the indirect

addressing method.

ACC-72EX User Manual

Software setup 88

This example demonstrates a 16-bit integer register transfer. Notice that only the first 16-bit portion of the

integer in P200 will be transferred.

CLOSE

END GAT

DEL GAT

#include "M-VariableDefinition_$6C000.pmc"

#include "M-VariableDefinition_$74000.pmc"

#define Master_OutputData1 M2000

#define Master_InputData1 M2001

#define Slave_OutputData1 M2002

#define Slave_InputData1 M2003

Master_OutputData1->Y:$6C4C0,0,16,S // Pointer to byte 0 and 1 of Output Data Image

 // of Communication Channel 0 on Master COMX module

Master_InputData1->Y:$6CA60,0,16,S // Pointer to byte 0 and 1 of Input Data Image

 // of Communication Channel 0 on Master COMX module

Slave_OutputData1->Y:$744C0,0,16,S // Pointer to byte 0 and 1 of Output Data Image

 // of Communication Channel 0 on Slave COMX module

Slave_InputData1->Y:$74A60,0,16,S // Pointer to byte 0 and 1 of Input Data Image

 // of Communication Channel 0 on Slave COMX module

P200=0

OPEN PLC 10 CLEAR

IF (HCCC0_HCF_PD0_OUT_CMD = HCCC0_NCF_PD0_OUT_ACK) // Making sure the ACK flag matches the CMD

 // flag before writing the value to the

 // output data image register

 P200=P200+1

 Master_OutputData1 = P200 // Copy the value to register

 HCCC0_HCF_PD0_OUT_CMD = HCCC0_HCF_PD0_OUT_CMD^1 // Toggle the CMD flag (^: XOR)

ENDIF

CLOSE

In a similar approach the data can be read from an input data image:

OPEN PLC 11 CLEAR

IF (HCCC0_NCF_PD0_IN_CMD = HCCC0_HCF_PD0_IN_ACK) // If CMD flag and ACK flags are

 // equal, then the input data image

 // register can be read

 P201=M2003 // read the input data image register

 HCCC0_HCF_PD0_IN_ACK = HCCC0_HCF_PD0_IN_ACK ^ 1 // toggle the acknowledge bit

 // indicating read completion

EndIF

CLOSE

Notice that depending on M-Variable definition, different types of data formats can be transferred over

the DPR and network:

Mxx->X/Y:$[address],[start],[width],[format] // Short Word M-Variable Definition

 // access to 1, 4, 8, 16 bits of data

 // is possible

Mxx->DP:$[address] // Dual-Ported RAM Fixed-Point M-Variable Definition

Mxx->F:$[address] // Dual-Ported RAM Floating-Point M-Variable Definition

ACC-72EX User Manual

Software setup 89

Power PMAC Setup for Using ACC-72EX
Power PMAC has full support for ACC-72EX and all its fieldbus communication variations. Due to built-

in data structures for accessing ACC-72EX dual ported RAM from Power PMAC, no additional software

is required for memory mapping and/or identification in comparison to Turbo PMAC.

This section of the manual covers Power PMAC’s built in data structures for ACC-72EX in addition to

providing examples for header files, start-up and handshaking PLCs.

ACC72EX[i]. Non-Saved Data Structures
All of the interactions with ACC-72EX can be achieved through data structures defined specifically for

ACC-72EX in Power PMAC firmware. The following structures allow access to the DPRAM in bit, byte,

2-byte and 4-byte wide access modes. The bit-wise read and write is only supported through

Acc72EX[i].Udata16[j] data structure.

Acc72EX[i].Data8[j]
Description: Dual Ported RAM “unsigned 8-bit integer” data array element

Range: 0 .. 28-1

Units: address dependent

Power-on default: address dependent

Acc72Ex[i].Data8[j] is the “jth” unsigned 8-bit integer data array element in the Acc72EX[i] dual-ported

RAM. Each of these elements occupies one byte in the DPRAM, and is located starting at j addresses past

the beginning of the buffer (which is located at the address in Acc72EX[i].a). This array is defined based

upon the Hilscher ComX memory map.

Index values j in the square brackets can be integer constants in the range 0 to 524,287, or local L-

variables. No expressions or non-integer constants are permitted. The size of the DPRAM is dependent on

the ACC-72EX communication option and installed Hilscher ComX module.

Acc72Ex[i].Data8[j] is located in the same registers as Acc72Ex[i].Idata16[j/2],

Acc72Ex[i].Udata16[j/2], Acc72Ex[i].Idata32[j/4], Acc72Ex[i].Idata32[j/4] and

Acc72Ex[i].Udata32[j/4]. It is the user’s responsibility to prevent possible multiple uses of the same

register.

In C, this element should be accessed through the C functions ACC72EX_GetData8 and

ACC72EX_SetData8 described later in this manual.

Acc72EX[i].Idata16[j]
Description: Dual Ported RAM “signed 16-bit integer” data array element

Range: -215 .. 215-1

Units: address dependent

Power-on default: address dependent

Acc72Ex[i].Idata16[j] is the “jth” signed 16-bit integer data array element in the Acc72EX[i] dual-ported

RAM. Each of these elements occupies two bytes in the DPRAM, and is located starting at 2*j addresses

past the beginning of the buffer (which is located at the address in Acc72EX[i].a). This array is defined

based upon the Hilscher ComX memory map.

Index values j in the square brackets can be integer constants in the range 0 to 262,143, or local L-

variables. No expressions or non-integer constants are permitted. The size of the DPRAM is dependent on

the ACC-72EX communication option and installed Hilscher ComX module.

ACC-72EX User Manual

Software setup 90

Acc72Ex[i].Idata16[j] is located in the same registers as Acc72Ex[i].Data8[2*j] to

Acc72Ex[i].Data8[2*j+1], Acc72Ex[i].Udata16[j], Acc72Ex[i].Idata32[j/2] and

Acc72Ex[i].Udata32[j/2]. It is the user’s responsibility to prevent possible multiple uses of the same

register.

In C, this element should be accessed through the C functions ACC72EX_GetIdata16 and

ACC72EX_SetIdata16 described later in this manual.

Acc72EX[i].Udata16[j]
Description: Dual Ported RAM “unsigned 16-bit integer” data array element

Range: 0 .. 216-1

Units: address dependent

Power-on default: address dependent

Acc72Ex[i].Udata16[j] is the “jth” unsigned 16-bit integer data array element in the Acc72EX[i] dual-

ported RAM. Each of these elements occupies two bytes in the DPRAM, and is located starting at 2*j

addresses past the beginning of the buffer (which is located at the address in Acc72EX[i].a). This array is

defined based upon the Hilscher ComX memory map.

Index values j in the square brackets can be integer constants in the range 0 to 262,143, or local L-

variables. No expressions or non-integer constants are permitted. The size of the DPRAM is dependent on

the ACC-72EX communication option and installed Hilscher ComX module.

Acc72Ex[i].Udata16[j] is located in the same registers as Acc72Ex[i].Data8[2*j] to

Acc72Ex[i].Data8[2*j+1], Acc72Ex[i].Idata16[j], Acc72Ex[i].Idata32[j/2] and

Acc72Ex[i].Udata32[j/2]. It is the user’s responsibility to prevent possible multiple uses of the same

register.

In C, this element should be accessed through the C functions ACC72EX_GetUdata16 and

ACC72EX_SetUdata16 described later in this manual.

Acc72EX[i].Idata32[j]
Description: Dual Ported RAM “signed 32-bit integer” data array element

Range: -231 .. 231-1

Units: address dependent

Power-on default: address dependent

Acc72Ex[i].Idata32[j] is the “jth” signed 32-bit integer data array element in the Acc72EX[i] dual-ported

RAM. Each of these elements occupies four bytes in the DPRAM, and is located starting at 4*j addresses

past the beginning of the buffer (which is located at the address in Acc72EX[i].a). This array is defined

based upon the Hilscher ComX memory map.

Index values j in the square brackets can be integer constants in the range 0 to 131,072, or local L-

variables. No expressions or non-integer constants are permitted. The size of the DPRAM is dependent on

the ACC-72EX communication option and installed Hilscher ComX module.

Acc72Ex[i].Idata32[j] is located in the same registers as Acc72Ex[i].Data8[4*j] to

Acc72Ex[i].Data8[4*j+5], Acc72Ex[i].Idata16[2*j] to Acc72Ex[i].Idata16[2*j+1],

Acc72Ex[i].Udata16[2*j] to Acc72Ex[i].Udata16[2*j+1] and Acc72Ex[i].Udata32[j]. It is the user’s

responsibility to prevent possible multiple uses of the same register.

In C, this element should be accessed through the C functions ACC72EX_GetIdata32 and

ACC72EX_SetIdata32 described later in this manual.

ACC-72EX User Manual

Software setup 91

Acc72EX[i].Udata32[j]
Description: Dual Ported RAM “unsigned 16-bit integer” data array element

Range: 0 .. 232-1

Units: address dependent

Power-on default: address dependent

Acc72Ex[i].Udata32[j] is the “jth” unsigned 32-bit integer data array element in the Acc72EX[i] dual

ported RAM. Each of these elements occupies four bytes in the DPRAM, and is located starting at 4*j

addresses past the beginning of the buffer (which is located at the address in Acc72EX[i].a). This array is

defined based upon the Hilscher ComX memory map.

Index values j in the square brackets can be integer constants in the range 0 to 262,143, or local L-

variables. No expressions or non-integer constants are permitted. The size of the DPRAM is dependent on

the ACC-72EX communication option and installed Hilscher ComX module.

Acc72Ex[i].Udata32[j] is located in the same registers as Acc72Ex[i].Data8[4*j] to

Acc72Ex[i].Data8[4*j+5], Acc72Ex[i].Idata16[2*j] to Acc72Ex[i].Idata16[2*j+1],

Acc72Ex[i].Udata16[2*j] to Acc72Ex[i].Udata16[2*j+1] and Acc72Ex[i].Idata32[j]. It is the user’s

responsibility to prevent possible multiple uses of the same register.

In C, this element should be accessed through the C functions ACC72EX_GetUdata32 and

ACC72EX_SetUdata32 described later in this manual.

ACC-72EX User Manual

Software setup 92

C Programming Access to ACC-72EX Structures
One can use the following header file full of functions to read from and write to the aforementioned

Acc72EX[i] structures from a C program. The input argument CardIndex is i and ArrayIndex is j as

above. Use the “Get” functions to retrieve the structure values; use the “Set” functions to write to the

structures. In the “Set” functions, the Input argument is the value to which to set the structure.

int Acc72EX_GetIdata32(unsigned int CardIndex, unsigned int ArrayIndex);

unsigned int Acc72EX_GetUdata32(unsigned int CardIndex, unsigned int ArrayIndex);

short Acc72EX_GetIdata16(unsigned int CardIndex, unsigned int ArrayIndex);

char Acc72EX_GetData8(unsigned int CardIndex, unsigned int ArrayIndex);

unsigned short Acc72EX_GetUdata16(unsigned int CardIndex, unsigned int ArrayIndex);

void Acc72EX_SetIdata16(unsigned int CardIndex, unsigned int ArrayIndex, short Input);

void Acc72EX_SetUdata16(unsigned int CardIndex, unsigned int ArrayIndex, unsigned short Input);

void Acc72EX_SetIdata32(unsigned int CardIndex, unsigned int ArrayIndex, int Input);

void Acc72EX_SetUdata32(unsigned int CardIndex, unsigned int ArrayIndex, unsigned int Input);

void Acc72EX_SetData8(unsigned int CardIndex, unsigned int ArrayIndex, char Input);

short Acc72EX_GetIdata16(unsigned int CardIndex, unsigned int ArrayIndex)

{

 unsigned int *myptr = (unsigned int *)piom + (DPRCSBase + CardIndex * 0x100000) / 4;

 return (short)((myptr[ArrayIndex] << 8) >> 16);

}

unsigned short Acc72EX_GetUdata16(unsigned int CardIndex, unsigned int ArrayIndex)

{

 unsigned int *myptr = (unsigned int *)piom + (DPRCSBase + CardIndex * 0x100000) / 4;

 return (unsigned short)((myptr[ArrayIndex] << 8) >> 16);

}

char Acc72EX_GetData8(unsigned int CardIndex, unsigned int ArrayIndex)

{

 unsigned int *myptr = (unsigned int *)piom + (DPRCSBase + CardIndex * 0x100000) / 4;

 return (myptr[ArrayIndex / 2] << (16 / (1 + (ArrayIndex % 4) % 2))) >> 24;

}

unsigned int Acc72EX_GetUdata32(unsigned int CardIndex, unsigned int ArrayIndex)

{

 unsigned int i = ArrayIndex * 4, j, k = 0;

 unsigned int out = 0;

 for(j = i; j <= i + 3; j++)

 {

 out |= (unsigned int)((unsigned int)Acc72EX_GetData8(CardIndex, j) << (8 * k));

 k++;

 }

 return out;

}

int Acc72EX_GetIdata32(unsigned int CardIndex, unsigned int ArrayIndex)

{

 return (int)Acc72EX_GetUdata32(CardIndex, ArrayIndex);

}

void Acc72EX_SetIdata16(unsigned int CardIndex, unsigned int ArrayIndex, short Input)

{

 unsigned int *myptr = (unsigned int *)piom + (DPRCSBase + CardIndex * 0x100000) / 4;

 myptr[ArrayIndex] = (Input << 8) & 0x00FFFF00;

}

void Acc72EX_SetUdata16(unsigned int CardIndex, unsigned int ArrayIndex, unsigned short Input)

{

 unsigned int *myptr = (unsigned int *)piom + (DPRCSBase + CardIndex * 0x100000) / 4;

 myptr[ArrayIndex] = (Input << 8) & 0x00FFFF00;

}

ACC-72EX User Manual

Software setup 93

void Acc72EX_SetIdata32(unsigned int CardIndex, unsigned int ArrayIndex, int Input)

{

 unsigned int *myptr = (unsigned int *)piom + (DPRCSBase + CardIndex * 0x100000) / 4;

 myptr[ArrayIndex] = ((Input << 16) >> 8);

 myptr[ArrayIndex + 1] = ((Input >> 16) << 8);

}

void Acc72EX_SetUdata32(unsigned int CardIndex, unsigned int ArrayIndex, unsigned int Input){

 unsigned int *myptr = (unsigned int *)piom + (DPRCSBase + CardIndex * 0x100000) / 4;

 myptr[ArrayIndex] = (Input << 16) >> 8;

 myptr[ArrayIndex + 1] = ((Input >> 16) << 8);

}

void Acc72EX_SetData8(unsigned int CardIndex, unsigned int ArrayIndex, char Input){

 unsigned int *myptr = (unsigned int *)piom + (DPRCSBase + CardIndex * 0x100000) / 4;

 unsigned int shift = (8 * (1 + ArrayIndex % 2));

 unsigned int ind = ArrayIndex / 2;

 myptr[ind] &= ~(0x000000FF << shift);

 myptr[ind] |= (Input << shift);

}

ACC-72EX User Manual

Software setup 94

Global Header for Power PMAC Projects
This section provides example for header files which allow use of native netX variable names rather than

using Power PMAC structures. The following header file is written as generically as possible allowing

access to most used registers in System, Handshake and Communication Channels.

/***/

/* ACC-72EX Power PMAC Project Header

/* This header file provides macro definitions for most common registers in Hilsche COMX modules

/* used in ACC-72EX.

/*

/* Instructions:

/* Uncomment the related #define depending on ACC-72EX option

/*

/***/

//#define __PROFIBUS_DP_Master__

//#define __PROFIBUS_DP_Slave__

//#define __DeviceNet_Master__

//#define __DeviceNet_Slave__

//#define __CANopen_Master__

//#define __CANopen_Slave__

//#define __CC_Link_Slave__

//#define __EtherCAT_Master__

//#define __EtherCAT_Slave__

//#define __EtherNetIP_Scanner_Master__

//#define __EtherNetIP_Adapter_Slave__

#define __Open_Modbus_TCP__

//#define __PROFINET_IO_Controller_Master__

//#define __PROFINET_IO_Device_Slave__

// System Information Block Structure

 #define SI_abCookie_0_ Acc72Ex[0].Data8[0]

 #define SI_abCookie_1_ Acc72Ex[0].Data8[1]

 #define SI_abCookie_2_ Acc72Ex[0].Data8[2]

 #define SI_abCookie_3_ Acc72Ex[0].Data8[3]

 #define SI_ulDpmTotalSize Acc72Ex[0].Udata32[1]

 #define SI_ulDeviceNumber Acc72Ex[0].Udata32[2]

 #define SI_ulSerialNumber Acc72Ex[0].Udata32[3]

 #define SI_ausHwOptions_0_ Acc72Ex[0].Udata16[8]

 #define SI_ausHwOptions_1_ Acc72Ex[0].Udata16[9]

 #define SI_ausHwOptions_2_ Acc72Ex[0].Udata16[10]

 #define SI_ausHwOptions_3_ Acc72Ex[0].Udata16[11]

 #define SI_usManufacturer Acc72Ex[0].Udata16[12]

 #define SI_usProductionDate Acc72Ex[0].Udata16[13]

 #define SI_ulLicenseFlags1 Acc72Ex[0].Udata32[7]

 #define SI_ulLicenseFlags2 Acc72Ex[0].Udata32[8]

 #define SI_usNetxLicenseID Acc72Ex[0].Udata16[18]

 #define SI_usNetxLicenseFlags Acc72Ex[0].Udata16[19]

 #define SI_usDeviceClass Acc72Ex[0].Udata16[20]

 #define SI_bHwRevision Acc72Ex[0].Data8[42]

 #define SI_bHwCompatibility Acc72Ex[0].Data8[43]

 #define SI_bDevIdNumber Acc72Ex[0].Data8[44]

// System Channel Information Structure

 #define SCI_bChannelType Acc72Ex[0].Data8[48]

 #define SCI_bSizePositionOfHandshake Acc72Ex[0].Data8[50]

 #define SCI_bNumberOfBlocks Acc72Ex[0].Data8[51]

 #define SCI_ulSizeOfChannel Acc72Ex[0].Udata32[13]

 #define SCI_usSizeOfMailbox Acc72Ex[0].Udata16[28]

 #define SCI_usMailboxStartOffset Acc72Ex[0].Udata16[29]

// Handshake Channel Information Structure

 #define HCI_bChannelType Acc72Ex[0].Data8[64]

 #define HCI_ulSizeOfChannel Acc72Ex[0].Udata32[17]

// Communication Channel 0 Information Structure

 #define CC0I_bChannelType Acc72Ex[0].Data8[80]

 #define CC0I_bChannelId Acc72Ex[0].Data8[81]

 #define CC0I_bSizePositionOfHandshake Acc72Ex[0].Data8[82]

ACC-72EX User Manual

Software setup 95

 #define CC0I_bNumberOfBlocks Acc72Ex[0].Data8[83]

 #define CC0I_ulSizeOfChannel Acc72Ex[0].Udata32[21]

 #define CC0I_usCommunicationClass Acc72Ex[0].Udata16[44]

 #define CC0I_usProtocolClass Acc72Ex[0].Udata16[45]

 #define CC0I_usConformanceClass Acc72Ex[0].Udata16[46]

// Communication Channel 1 Information Structure

 #define CC1I_bChannelType Acc72Ex[0].Data8[96]

 #define CC1I_bChannelId Acc72Ex[0].Data8[97]

 #define CC1I_bSizePositionOfHandshake Acc72Ex[0].Data8[98]

 #define CC1I_bNumberOfBlocks Acc72Ex[0].Data8[99]

 #define CC1I_ulSizeOfChannel Acc72Ex[0].Udata32[25]

 #define CC1I_usCommunicationClass Acc72Ex[0].Udata16[52]

 #define CC1I_usProtocolClass Acc72Ex[0].Udata16[53]

 #define CC1I_usConformanceClass Acc72Ex[0].Udata16[54]

// Communication Channel 0 Information Structure

 #define CC2I_bChannelType Acc72Ex[0].Data8[112]

 #define CC2I_bChannelId Acc72Ex[0].Data8[113]

 #define CC2I_bSizePositionOfHandshake Acc72Ex[0].Data8[114]

 #define CC2I_bNumberOfBlocks Acc72Ex[0].Data8[115]

 #define CC2I_ulSizeOfChannel Acc72Ex[0].Udata32[29]

 #define CC2I_usCommunicationClass Acc72Ex[0].Udata16[60]

 #define CC2I_usProtocolClass Acc72Ex[0].Udata16[61]

 #define CC2I_usConformanceClass Acc72Ex[0].Udata16[62]

// Communication Channel 1 Information Structure

 #define CC3I_bChannelType Acc72Ex[0].Data8[128]

 #define CC3I_bChannelId Acc72Ex[0].Data8[129]

 #define CC3I_bSizePositionOfHandshake Acc72Ex[0].Data8[130]

 #define CC3I_bNumberOfBlocks Acc72Ex[0].Data8[131]

 #define CC3I_ulSizeOfChannel Acc72Ex[0].Udata32[33]

 #define CC3I_usCommunicationClass Acc72Ex[0].Udata16[68]

 #define CC3I_usProtocolClass Acc72Ex[0].Udata16[69]

 #define CC3I_usConformanceClass Acc72Ex[0].Udata16[70]

// Application Channel 0 Information Structure

 #define AC0I_bChannelType Acc72Ex[0].Data8[144]

 #define AC0I_bChannelId Acc72Ex[0].Data8[145]

 #define AC0I_bSizePositionOfHandshake Acc72Ex[0].Data8[146]

 #define AC0I_bNumberOfBlocks Acc72Ex[0].Data8[147]

 #define AC0I_ulSizeOfChannel Acc72Ex[0].Udata32[37]

// Application Channel 1 Information Structure

 #define AC1I_bChannelType Acc72Ex[0].Data8[160]

 #define AC1I_bChannelId Acc72Ex[0].Data8[161]

 #define AC1I_bSizePositionOfHandshake Acc72Ex[0].Data8[162]

 #define AC1I_bNumberOfBlocks Acc72Ex[0].Data8[163]

 #define AC1I_ulSizeOfChannel Acc72Ex[0].Udata32[41]

// System Control Block Structure

 #define SCtrl_ulSystemCommandCOS Acc72Ex[0].Udata32[46]

// System Status Block Structure

 #define SStat_ulSystemCOS Acc72Ex[0].Udata32[48]

 #define SStat_ulSystemStatus Acc72Ex[0].Udata32[49]

 #define SStat_ulSystemError Acc72Ex[0].Udata32[50]

 #define SStat_ulBootError Acc72Ex[0].Udata32[51]

 #define SStat_ulTimeSinceStart Acc72Ex[0].Udata32[52]

 #define SStat_usCpuLoad Acc72Ex[0].Udata16[106]

 #define SStat_ulHWFeatures Acc72Ex[0].Udata16[108]

// NETX_SYSTEM_SEND_MAILBOX

 #define SSMB_usPackagesAccepted Acc72Ex[0].Udata16[128]

 #define SSMB_ulDest Acc72Ex[0].Udata32[65]

 #define SSMB_ulSrc Acc72Ex[0].Udata32[66]

 #define SSMB_ulDestId Acc72Ex[0].Udata32[67]

 #define SSMB_ulSrcId Acc72Ex[0].Udata32[68]

 #define SSMB_ulLen Acc72Ex[0].Udata32[69]

 #define SSMB_ulId Acc72Ex[0].Udata32[70]

ACC-72EX User Manual

Software setup 96

 #define SSMB_ulState Acc72Ex[0].Udata32[71]

 #define SSMB_ulCmd Acc72Ex[0].Udata32[72]

 #define SSMB_ulExt Acc72Ex[0].Udata32[73]

 #define SSMB_ulRout Acc72Ex[0].Udata32[74]

ptr SSMB_Data8(84)->*;

ptr SSMB_Data16(42)->*;

ptr SSMB_Data32(21)->*;

// NETX_SYSTEM_RECEIVE_MAILBOX

 #define SRMB_usWaitingPackages Acc72Ex[0].Udata16[192]

 #define SRMB_ulDest Acc72Ex[0].Udata32[97]

 #define SRMB_ulSrc Acc72Ex[0].Udata32[98]

 #define SRMB_ulDestId Acc72Ex[0].Udata32[99]

 #define SRMB_ulSrcId Acc72Ex[0].Udata32[100]

 #define SRMB_ulLen Acc72Ex[0].Udata32[101]

 #define SRMB_ulId Acc72Ex[0].Udata32[102]

 #define SRMB_ulState Acc72Ex[0].Udata32[103]

 #define SRMB_ulCmd Acc72Ex[0].Udata32[104]

 #define SRMB_ulExt Acc72Ex[0].Udata32[105]

 #define SRMB_ulRout Acc72Ex[0].Udata32[106]

ptr SRMB_Data8(84)->*;

ptr SRMB_Data16(42)->*;

ptr SRMB_Data32(21)->*;

// SC_bNetxFlags

 #define HCSC_NSF_READY Acc72Ex[0].Udata16[257].0

 #define HCSC_NSF_ERROR Acc72Ex[0].Udata16[257].1

 #define HCSC_NSF_HOST_COS_ACK Acc72Ex[0].Udata16[257].2

 #define HCSC_NSF_NETX_COS_CMD Acc72Ex[0].Udata16[257].3

 #define HCSC_NSF_SEND_MBX_ACK Acc72Ex[0].Udata16[257].4

 #define HCSC_NSF_RECV_MBX_CMD Acc72Ex[0].Udata16[257].5

// SC_bHostFlags

 #define HCSC_HSF_RESET Acc72Ex[0].Udata16[257].8

 #define HCSC_HSF_BOOTSTART Acc72Ex[0].Udata16[257].9

 #define HCSC_HSF_HOST_COS_CMD Acc72Ex[0].Udata16[257].10

 #define HCSC_HSF_NETX_COS_ACK Acc72Ex[0].Udata16[257].11

 #define HCSC_HSF_SEND_MBX_CMD Acc72Ex[0].Udata16[257].12

 #define HCSC_HSF_RECV_MBX_ACK Acc72Ex[0].Udata16[257].13

// CC0 usNetxFlags

 #define HCCC0_usNetxFlags Acc72Ex[0].Udata16[260]

 #define HCCC0_NCF_COMMUNICATING Acc72Ex[0].Udata16[260].0

 #define HCCC0_NCF_ERROR Acc72Ex[0].Udata16[260].1

 #define HCCC0_NCF_HOST_COS_ACK Acc72Ex[0].Udata16[260].2

 #define HCCC0_NCF_NETX_COS_CMD Acc72Ex[0].Udata16[260].3

 #define HCCC0_NCF_SEND_MBX_ACK Acc72Ex[0].Udata16[260].4

 #define HCCC0_NCF_RECV_MBX_CMD Acc72Ex[0].Udata16[260].5

 #define HCCC0_NCF_PD0_OUT_ACK Acc72Ex[0].Udata16[260].6

 #define HCCC0_NCF_PD0_IN_CMD Acc72Ex[0].Udata16[260].7

 #define HCCC0_NCF_PD1_OUT_ACK Acc72Ex[0].Udata16[260].8

 #define HCCC0_NCF_PD1_IN_CMD Acc72Ex[0].Udata16[260].9

// CC0 usHostFlags

 #define HCCC0_usHostFlags Acc72Ex[0].Udata16[261]

 #define HCCC0_HCF_HOST_COS_CMD Acc72Ex[0].Udata16[261].2

 #define HCCC0_HCF_NETX_COS_ACK Acc72Ex[0].Udata16[261].3

 #define HCCC0_HCF_SEND_MBX_CMD Acc72Ex[0].Udata16[261].4

 #define HCCC0_HCF_RECV_MBX_ACK Acc72Ex[0].Udata16[261].5

 #define HCCC0_HCF_PD0_OUT_CMD Acc72Ex[0].Udata16[261].6

 #define HCCC0_HCF_PD0_IN_ACK Acc72Ex[0].Udata16[261].7

 #define HCCC0_HCF_PD1_OUT_CMD Acc72Ex[0].Udata16[261].8

 #define HCCC0_HCF_PD1_IN_ACK Acc72Ex[0].Udata16[261].9

// CC1 usNetxFlags

 #define HCCC1_usNetxFlags Acc72Ex[0].Udata16[262]

 #define HCCC1_NCF_COMMUNICATING Acc72Ex[0].Udata16[262].0

 #define HCCC1_NCF_ERROR Acc72Ex[0].Udata16[262].1

 #define HCCC1_NCF_HOST_COS_ACK Acc72Ex[0].Udata16[262].2

 #define HCCC1_NCF_NETX_COS_CMD Acc72Ex[0].Udata16[262].3

 #define HCCC1_NCF_SEND_MBX_ACK Acc72Ex[0].Udata16[262].4

 #define HCCC1_NCF_RECV_MBX_CMD Acc72Ex[0].Udata16[262].5

ACC-72EX User Manual

Software setup 97

 #define HCCC1_NCF_PD0_OUT_ACK Acc72Ex[0].Udata16[262].6

 #define HCCC1_NCF_PD0_IN_CMD Acc72Ex[0].Udata16[262].7

 #define HCCC1_NCF_PD1_OUT_ACK Acc72Ex[0].Udata16[262].8

 #define HCCC1_NCF_PD1_IN_CMD Acc72Ex[0].Udata16[262].9

// CC1 usHostFlags

 #define HCCC1_usHostFlags Acc72Ex[0].Udata16[263]

 #define HCCC1_HCF_HOST_COS_CMD Acc72Ex[0].Udata16[263].2

 #define HCCC1_HCF_NETX_COS_ACK Acc72Ex[0].Udata16[263].3

 #define HCCC1_HCF_SEND_MBX_CMD Acc72Ex[0].Udata16[263].4

 #define HCCC1_HCF_RECV_MBX_ACK Acc72Ex[0].Udata16[263].5

 #define HCCC1_HCF_PD0_OUT_CMD Acc72Ex[0].Udata16[263].6

 #define HCCC1_HCF_PD0_IN_ACK Acc72Ex[0].Udata16[263].7

 #define HCCC1_HCF_PD1_OUT_CMD Acc72Ex[0].Udata16[263].8

 #define HCCC1_HCF_PD1_IN_ACK Acc72Ex[0].Udata16[263].9

// CC2 usNetxFlags

 #define HCCC2_usNetxFlags Acc72Ex[0].Udata16[264]

 #define HCCC2_NCF_COMMUNICATING Acc72Ex[0].Udata16[264].0

 #define HCCC2_NCF_ERROR Acc72Ex[0].Udata16[264].1

 #define HCCC2_NCF_HOST_COS_ACK Acc72Ex[0].Udata16[264].2

 #define HCCC2_NCF_NETX_COS_CMD Acc72Ex[0].Udata16[264].3

 #define HCCC2_NCF_SEND_MBX_ACK Acc72Ex[0].Udata16[264].4

 #define HCCC2_NCF_RECV_MBX_CMD Acc72Ex[0].Udata16[264].5

 #define HCCC2_NCF_PD0_OUT_ACK Acc72Ex[0].Udata16[264].6

 #define HCCC2_NCF_PD0_IN_CMD Acc72Ex[0].Udata16[264].7

 #define HCCC2_NCF_PD1_OUT_ACK Acc72Ex[0].Udata16[264].8

 #define HCCC2_NCF_PD1_IN_CMD Acc72Ex[0].Udata16[264].9

// CC2 usHostFlags

 #define HCCC2_usHostFlags Acc72Ex[0].Udata16[265]

 #define HCCC2_HCF_HOST_COS_CMD Acc72Ex[0].Udata16[265].2

 #define HCCC2_HCF_NETX_COS_ACK Acc72Ex[0].Udata16[265].3

 #define HCCC2_HCF_SEND_MBX_CMD Acc72Ex[0].Udata16[265].4

 #define HCCC2_HCF_RECV_MBX_ACK Acc72Ex[0].Udata16[265].5

 #define HCCC2_HCF_PD0_OUT_CMD Acc72Ex[0].Udata16[265].6

 #define HCCC2_HCF_PD0_IN_ACK Acc72Ex[0].Udata16[265].7

 #define HCCC2_HCF_PD1_OUT_CMD Acc72Ex[0].Udata16[265].8

 #define HCCC2_HCF_PD1_IN_ACK Acc72Ex[0].Udata16[265].9

// CC3 usNetxFlags

 #define HCCC3_usNetxFlags Acc72Ex[0].Udata16[266]

 #define HCCC3_NCF_COMMUNICATING Acc72Ex[0].Udata16[266].0

 #define HCCC3_NCF_ERROR Acc72Ex[0].Udata16[266].1

 #define HCCC3_NCF_HOST_COS_ACK Acc72Ex[0].Udata16[266].2

 #define HCCC3_NCF_NETX_COS_CMD Acc72Ex[0].Udata16[266].3

 #define HCCC3_NCF_SEND_MBX_ACK Acc72Ex[0].Udata16[266].4

 #define HCCC3_NCF_RECV_MBX_CMD Acc72Ex[0].Udata16[266].5

 #define HCCC3_NCF_PD0_OUT_ACK Acc72Ex[0].Udata16[266].6

 #define HCCC3_NCF_PD0_IN_CMD Acc72Ex[0].Udata16[266].7

 #define HCCC3_NCF_PD1_OUT_ACK Acc72Ex[0].Udata16[266].8

 #define HCCC3_NCF_PD1_IN_CMD Acc72Ex[0].Udata16[266].9

// CC3 usHostFlags

 #define HCCC3_usHostFlags Acc72Ex[0].Udata16[267]

 #define HCCC3_HCF_HOST_COS_CMD Acc72Ex[0].Udata16[267].2

 #define HCCC3_HCF_NETX_COS_ACK Acc72Ex[0].Udata16[267].3

 #define HCCC3_HCF_SEND_MBX_CMD Acc72Ex[0].Udata16[267].4

 #define HCCC3_HCF_RECV_MBX_ACK Acc72Ex[0].Udata16[267].5

 #define HCCC3_HCF_PD0_OUT_CMD Acc72Ex[0].Udata16[267].6

 #define HCCC3_HCF_PD0_IN_ACK Acc72Ex[0].Udata16[267].7

 #define HCCC3_HCF_PD1_OUT_CMD Acc72Ex[0].Udata16[267].8

 #define HCCC3_HCF_PD1_IN_ACK Acc72Ex[0].Udata16[267].9

// CC0_Control Block

 #define CC0_RCX_APP_COS_APP_READY Acc72Ex[0].Udata16[388].0

 #define CC0_RCX_APP_COS_BUS_ON Acc72Ex[0].Udata16[388].1

 #define CC0_RCX_APP_COS_BUS_ON_ENABLE Acc72Ex[0].Udata16[388].2

 #define CC0_RCX_APP_COS_INIT Acc72Ex[0].Udata16[388].3

 #define CC0_RCX_APP_COS_INIT_ENABLE Acc72Ex[0].Udata16[388].4

 #define CC0_RCX_APP_COS_LOCK_CFG Acc72Ex[0].Udata16[388].5

 #define CC0_RCX_APP_COS_LOCK_CFG_ENA Acc72Ex[0].Udata16[388].6

 #define CC0_RCX_APP_COS_DMA Acc72Ex[0].Udata16[388].7

 #define CC0_RCX_APP_COS_DMA_ENABLE Acc72Ex[0].Udata16[388].8

 #define CC0_ulDeviceWatchdog Acc72Ex[0].Udata32[195]

ACC-72EX User Manual

Software setup 98

// CC0_CommunicationCOS

 #define CC0_RCX_COMM_COS_READY Acc72Ex[0].Udata16[392].0

 #define CC0_RCX_COMM_COS_RUN Acc72Ex[0].Udata16[392].1

 #define CC0_RCX_COMM_COS_BUS_ON Acc72Ex[0].Udata16[392].2

 #define CC0_RCX_COMM_COS_CONFIG_LOCKED Acc72Ex[0].Udata16[392].3

 #define CC0_RCX_COMM_COS_CONFIG_NEW Acc72Ex[0].Udata16[392].4

 #define CC0_RCX_COMM_COS_RESTART_REQ Acc72Ex[0].Udata16[392].5

 #define CC0_RCX_COMM_COS_RESTART_REQ_ENA Acc72Ex[0].Udata16[392].6

 #define CC0_RCX_COMM_COS_DMA Acc72Ex[0].Udata16[392].7

// CC0_Status Block

 #define CC0_ulCommunicationState Acc72Ex[0].Udata32[197]

 #define CC0_ulCommunicationError Acc72Ex[0].Udata32[198]

 #define CC0_usVersion Acc72Ex[0].Udata16[398]

 #define CC0_usWatchdogTime Acc72Ex[0].Udata16[399]

 #define CC0_bPDInHskMode Acc72Ex[0].Data8[800]

 #define CC0_bPDInSource Acc72Ex[0].Data8[801]

 #define CC0_bPDOutHskMode Acc72Ex[0].Data8[802]

 #define CC0_bPDOutSource Acc72Ex[0].Data8[803]

 #define CC0_ulHostWatchdog Acc72Ex[0].Udata32[201]

 #define CC0_ulErrorCount Acc72Ex[0].Udata32[202]

 #define CC0_bErrorLogInd Acc72Ex[0].Data8[812]

 #define CC0_bErrorPDInCnt Acc72Ex[0].Data8[813]

 #define CC0_bErrorPDOutCnt Acc72Ex[0].Data8[814]

 #define CC0_bErrorSyncCnt Acc72Ex[0].Data8[815]

 #define CC0_bSyncHskMode Acc72Ex[0].Data8[816]

 #define CC0_bSyncSource Acc72Ex[0].Data8[817]

// CC1_Control Block

 #define CC1_RCX_APP_COS_APP_READY Acc72Ex[0].Udata16[8196].0

 #define CC1_RCX_APP_COS_BUS_ON Acc72Ex[0].Udata16[8196].1

 #define CC1_RCX_APP_COS_BUS_ON_ENABLE Acc72Ex[0].Udata16[8196].2

 #define CC1_RCX_APP_COS_INIT Acc72Ex[0].Udata16[8196].3

 #define CC1_RCX_APP_COS_INIT_ENABLE Acc72Ex[0].Udata16[8196].4

 #define CC1_RCX_APP_COS_LOCK_CFG Acc72Ex[0].Udata16[8196].5

 #define CC1_RCX_APP_COS_LOCK_CFG_ENA Acc72Ex[0].Udata16[8196].6

 #define CC1_RCX_APP_COS_DMA Acc72Ex[0].Udata16[8196].7

 #define CC1_RCX_APP_COS_DMA_ENABLE Acc72Ex[0].Udata16[8196].8

 #define CC1_ulDeviceWatchdog Acc72Ex[0].Udata32[4099]

// CC1_CommunicationCOS

 #define CC1_RCX_COMM_COS_READY Acc72Ex[0].Udata16[8200].0

 #define CC1_RCX_COMM_COS_RUN Acc72Ex[0].Udata16[8200].1

 #define CC1_RCX_COMM_COS_BUS_ON Acc72Ex[0].Udata16[8200].2

 #define CC1_RCX_COMM_COS_CONFIG_LOCKED Acc72Ex[0].Udata16[8200].3

 #define CC1_RCX_COMM_COS_CONFIG_NEW Acc72Ex[0].Udata16[8200].4

 #define CC1_RCX_COMM_COS_RESTART_REQ Acc72Ex[0].Udata16[8200].5

 #define CC1_RCX_COMM_COS_RESTART_REQ_ENA Acc72Ex[0].Udata16[8200].6

 #define CC1_RCX_COMM_COS_DMA Acc72Ex[0].Udata16[8200].7

// CC1_Status Block

 #define CC1_ulCommunicationState Acc72Ex[0].Udata32[4101]

 #define CC1_ulCommunicationError Acc72Ex[0].Udata32[4102]

 #define CC1_usVersion Acc72Ex[0].Udata16[8206]

 #define CC1_usWatchdogTime Acc72Ex[0].Udata16[8207]

 #define CC1_bPDInHskMode Acc72Ex[0].Data8[16416]

 #define CC1_bPDInSource Acc72Ex[0].Data8[16417]

 #define CC1_bPDOutHskMode Acc72Ex[0].Data8[16418]

 #define CC1_bPDOutSource Acc72Ex[0].Data8[16419]

 #define CC1_ulHostWatchdog Acc72Ex[0].Udata32[4105]

 #define CC1_ulErrorCount Acc72Ex[0].Udata32[4106]

 #define CC1_bErrorLogInd Acc72Ex[0].Data8[16428]

 #define CC1_bErrorPDInCnt Acc72Ex[0].Data8[16429]

 #define CC1_bErrorPDOutCnt Acc72Ex[0].Data8[16430]

 #define CC1_bErrorSyncCnt Acc72Ex[0].Data8[16431]

 #define CC1_bSyncHskMode Acc72Ex[0].Data8[16432]

 #define CC1_bSyncSource Acc72Ex[0].Data8[16433]

// CC2_Control Block

 #define CC2_RCX_APP_COS_APP_READY Acc72Ex[0].Udata16[16004].0

 #define CC2_RCX_APP_COS_BUS_ON Acc72Ex[0].Udata16[16004].1

ACC-72EX User Manual

Software setup 99

 #define CC2_RCX_APP_COS_BUS_ON_ENABLE Acc72Ex[0].Udata16[16004].2

 #define CC2_RCX_APP_COS_INIT Acc72Ex[0].Udata16[16004].3

 #define CC2_RCX_APP_COS_INIT_ENABLE Acc72Ex[0].Udata16[16004].4

 #define CC2_RCX_APP_COS_LOCK_CFG Acc72Ex[0].Udata16[16004].5

 #define CC2_RCX_APP_COS_LOCK_CFG_ENA Acc72Ex[0].Udata16[16004].6

 #define CC2_RCX_APP_COS_DMA Acc72Ex[0].Udata16[16004].7

 #define CC2_RCX_APP_COS_DMA_ENABLE Acc72Ex[0].Udata16[16004].8

 #define CC2_ulDeviceWatchdog Acc72Ex[0].Udata32[8003]

// CC2_CommunicationCOS

 #define CC2_RCX_COMM_COS_READY Acc72Ex[0].Udata16[16008].0

 #define CC2_RCX_COMM_COS_RUN Acc72Ex[0].Udata16[16008].1

 #define CC2_RCX_COMM_COS_BUS_ON Acc72Ex[0].Udata16[16008].2

 #define CC2_RCX_COMM_COS_CONFIG_LOCKED Acc72Ex[0].Udata16[16008].3

 #define CC2_RCX_COMM_COS_CONFIG_NEW Acc72Ex[0].Udata16[16008].4

 #define CC2_RCX_COMM_COS_RESTART_REQ Acc72Ex[0].Udata16[16008].5

 #define CC2_RCX_COMM_COS_RESTART_REQ_ENA Acc72Ex[0].Udata16[16008].6

 #define CC2_RCX_COMM_COS_DMA Acc72Ex[0].Udata16[16008].7

// CC2_Status Block

 #define CC2_ulCommunicationState Acc72Ex[0].Udata32[8005]

 #define CC2_ulCommunicationError Acc72Ex[0].Udata32[8006]

 #define CC2_usVersion Acc72Ex[0].Udata16[16014]

 #define CC2_usWatchdogTime Acc72Ex[0].Udata16[16015]

 #define CC2_bPDInHskMode Acc72Ex[0].Data8[32032]

 #define CC2_bPDInSource Acc72Ex[0].Data8[32033]

 #define CC2_bPDOutHskMode Acc72Ex[0].Data8[32034]

 #define CC2_bPDOutSource Acc72Ex[0].Data8[32035]

 #define CC2_ulHostWatchdog Acc72Ex[0].Udata32[8009]

 #define CC2_ulErrorCount Acc72Ex[0].Udata32[8010]

 #define CC2_bErrorLogInd Acc72Ex[0].Data8[32044]

 #define CC2_bErrorPDInCnt Acc72Ex[0].Data8[32045]

 #define CC2_bErrorPDOutCnt Acc72Ex[0].Data8[32046]

 #define CC2_bErrorSyncCnt Acc72Ex[0].Data8[32047]

 #define CC2_bSyncHskMode Acc72Ex[0].Data8[32048]

 #define CC2_bSyncSource Acc72Ex[0].Data8[32049]

// CC3_Control Block

 #define CC3_RCX_APP_COS_APP_READY Acc72Ex[0].Udata16[23812].0

 #define CC3_RCX_APP_COS_BUS_ON Acc72Ex[0].Udata16[23812].1

 #define CC3_RCX_APP_COS_BUS_ON_ENABLE Acc72Ex[0].Udata16[23812].2

 #define CC3_RCX_APP_COS_INIT Acc72Ex[0].Udata16[23812].3

 #define CC3_RCX_APP_COS_INIT_ENABLE Acc72Ex[0].Udata16[23812].4

 #define CC3_RCX_APP_COS_LOCK_CFG Acc72Ex[0].Udata16[23812].5

 #define CC3_RCX_APP_COS_LOCK_CFG_ENA Acc72Ex[0].Udata16[23812].6

 #define CC3_RCX_APP_COS_DMA Acc72Ex[0].Udata16[23812].7

 #define CC3_RCX_APP_COS_DMA_ENABLE Acc72Ex[0].Udata16[23812].8

 #define CC3_ulDeviceWatchdog Acc72Ex[0].Udata32[11907]

// CC3_CommunicationCOS

 #define CC3_RCX_COMM_COS_READY Acc72Ex[0].Udata16[23816].0

 #define CC3_RCX_COMM_COS_RUN Acc72Ex[0].Udata16[23816].1

 #define CC3_RCX_COMM_COS_BUS_ON Acc72Ex[0].Udata16[23816].2

 #define CC3_RCX_COMM_COS_CONFIG_LOCKED Acc72Ex[0].Udata16[23816].3

 #define CC3_RCX_COMM_COS_CONFIG_NEW Acc72Ex[0].Udata16[23816].4

 #define CC3_RCX_COMM_COS_RESTART_REQ Acc72Ex[0].Udata16[23816].5

 #define CC3_RCX_COMM_COS_RESTART_REQ_ENA Acc72Ex[0].Udata16[23816].6

 #define CC3_RCX_COMM_COS_DMA Acc72Ex[0].Udata16[23816].7

// CC3_Status Block

 #define CC3_ulCommunicationState Acc72Ex[0].Udata32[11909]

 #define CC3_ulCommunicationError Acc72Ex[0].Udata32[11910]

 #define CC3_usVersion Acc72Ex[0].Udata16[23822]

 #define CC3_usWatchdogTime Acc72Ex[0].Udata16[23823]

 #define CC3_bPDInHskMode Acc72Ex[0].Data8[47648]

 #define CC3_bPDInSource Acc72Ex[0].Data8[47649]

 #define CC3_bPDOutHskMode Acc72Ex[0].Data8[47650]

 #define CC3_bPDOutSource Acc72Ex[0].Data8[47651]

 #define CC3_ulHostWatchdog Acc72Ex[0].Udata32[11913]

 #define CC3_ulErrorCount Acc72Ex[0].Udata32[11914]

 #define CC3_bErrorLogInd Acc72Ex[0].Data8[47660]

ACC-72EX User Manual

Software setup 100

 #define CC3_bErrorPDInCnt Acc72Ex[0].Data8[47661]

 #define CC3_bErrorPDOutCnt Acc72Ex[0].Data8[47662]

 #define CC3_bErrorSyncCnt Acc72Ex[0].Data8[47663]

 #define CC3_bSyncHskMode Acc72Ex[0].Data8[47664]

 #define CC3_bSyncSource Acc72Ex[0].Data8[47665]

#ifdef __PROFIBUS_DP_Master__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 2880

#define CC0_PD0_IN_OFFSET_2BYTE $14C0

#define CC0_PD0_IN_SIZE_2BYTE 2880

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

#ifdef __PROFIBUS_DP_Slave__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 768

#define CC0_PD0_IN_OFFSET_2BYTE $C80

#define CC0_PD0_IN_SIZE_2BYTE 768

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

#ifdef __DeviceNet_Master__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 2880

#define CC0_PD0_IN_OFFSET_2BYTE $14C0

#define CC0_PD0_IN_SIZE_2BYTE 2880

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

#ifdef __DeviceNet_Slave__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 768

#define CC0_PD0_IN_OFFSET_2BYTE $C80

#define CC0_PD0_IN_SIZE_2BYTE 768

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

#ifdef __CANopen_Master__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 2880

#define CC0_PD0_IN_OFFSET_2BYTE $14C0

#define CC0_PD0_IN_SIZE_2BYTE 2880

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

#ifdef __CANopen_Slave__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 768

#define CC0_PD0_IN_OFFSET_2BYTE $C80

#define CC0_PD0_IN_SIZE_2BYTE 768

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

ACC-72EX User Manual

Software setup 101

#endif

#ifdef __CC_Link_Slave__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 768

#define CC0_PD0_IN_OFFSET_2BYTE $C80

#define CC0_PD0_IN_SIZE_2BYTE 768

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

#ifdef __EtherCAT_Master__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 2880

#define CC0_PD0_IN_OFFSET_2BYTE $14C0

#define CC0_PD0_IN_SIZE_2BYTE 2880

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

#ifdef __EtherCAT_Slave__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 2880

#define CC0_PD0_IN_OFFSET_2BYTE $14C0

#define CC0_PD0_IN_SIZE_2BYTE 2880

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

#ifdef __EtherNetIP_Scanner_Master__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 2880

#define CC0_PD0_IN_OFFSET_2BYTE $14C0

#define CC0_PD0_IN_SIZE_2BYTE 2880

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

#ifdef __EtherNetIP_Adapter_Slave__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 2880

#define CC0_PD0_IN_OFFSET_2BYTE $14C0

#define CC0_PD0_IN_SIZE_2BYTE 2880

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

#ifdef __Open_Modbus_TCP__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 2880

#define CC0_PD0_IN_OFFSET_2BYTE $14C0

#define CC0_PD0_IN_SIZE_2BYTE 2880

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

#ifdef __PROFINET_IO_Controller_Master__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 2880

ACC-72EX User Manual

Software setup 102

#define CC0_PD0_IN_OFFSET_2BYTE $14C0

#define CC0_PD0_IN_SIZE_2BYTE 2880

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

#ifdef __PROFINET_IO_Device_Slave__

#define CC0_PD0_OUT_OFFSET_2BYTE $980

#define CC0_PD0_OUT_SIZE_2BYTE 2880

#define CC0_PD0_IN_OFFSET_2BYTE $14C0

#define CC0_PD0_IN_SIZE_2BYTE 2880

#define CC0_PD1_OUT_OFFSET_2BYTE $8C0

#define CC0_PD1_OUT_SIZE_2BYTE 32

#define CC0_PD1_IN_OFFSET_2BYTE $8E0

#define CC0_PD1_IN_SIZE_2BYTE 32

#endif

ptr CC0_PD0_OUT16(CC0_PD0_OUT_SIZE_2BYTE)->*;

ptr CC0_PD0_IN16(CC0_PD0_IN_SIZE_2BYTE)->*;

ptr CC0_PD1_OUT16(CC0_PD1_OUT_SIZE_2BYTE)->*;

ptr CC0_PD1_IN16(CC0_PD1_IN_SIZE_2BYTE)->*;

ACC-72EX User Manual

Software setup 103

/***/

/* ACC-72EX requires different wait states compared to default wait state settings in Power PMAC

/* Write added wait state 60 nanoseconds

/* Delay of write line going low after chip select goes low 10 nanoseconds

/* Take write line high 20 nanosecond earlier FALSE

/* Read added wait state 60 nanoseconds

/* Delay of read line going low after chip select goes low 10 nanoseconds

/***/

Sys.BusCtrl[14]=$4646

Sys.BusCtrl[15]=$4646

global CommErrorFlag=0;

Initialization PLC
Recall that ACC-72EX requires a reset after each power up, power cycle, $$$ (reset), or $$$*** (factory

default reset). This can be achieved with a startup (or initialization) PLC. Example:

// ACC-72EX initialization PLC

/**/

open plc Acc72EX_StartupPLC

local endtime;

disable plc 2..31 // Disable all other tasks

// Defining pointers for system channel mailboxes

L0=0

while(L0<84)

{

 CMD"SSMB_Data8(%d)->Acc72Ex[0].Data8[%d]",L0,L0+300

 sendallcmds

 L0++

}

L0=0

while(L0<42)

{

 CMD"SSMB_Data16(%d)->Acc72Ex[0].uData16[%d]",L0,L0+150

 sendallcmds

 L0++

}

L0=0

while(L0<21)

{

 CMD"SSMB_Data32(%d)->Acc72Ex[0].uData32[%d]",L0,L0+75

 sendallcmds

 L0++

}

L0=0

while(L0<84)

{

 CMD"SRMB_Data8(%d)->Acc72Ex[0].Data8[%d]",L0,L0+428

 sendallcmds

 L0++

}

L0=0

while(L0<42)

{

 CMD"SRMB_Data16(%d)->Acc72Ex[0].uData16[%d]",L0,L0+214

 sendallcmds

ACC-72EX User Manual

Software setup 104

 L0++

}

L0=0

while(L0<21)

{

 CMD"SRMB_Data32(%d)->Acc72Ex[0].uData32[%d]",L0,L0+107

 sendallcmds

 L0++

}

// Defining pointers to Out/In PDOs

L0=0

while(L0<CC0_PD0_OUT_SIZE_2BYTE)

{

 CMD"CC0_PD0_OUT16(%d)->Acc72Ex[0].uData16[%d]",L0,L0+CC0_PD0_OUT_OFFSET

_2BYTE;

 sendallcmds

 L0++

}

L0=0

while(L0< CC0_PD0_IN_SIZE_2BYTE)

{

 CMD"CC0_PD0_IN16(%d)->Acc72Ex[0].uData16[%d]",L0,L0+CC0_PD0_IN_OFFSET_2

BYTE

 sendallcmds

 L0++

}

L0=0

while(L0<CC0_PD1_OUT_SIZE_2BYTE)

{

 CMD"CC0_PD1_OUT16(%d)->Acc72Ex[0].uData16[%d]",L0,L0+CC0_PD1_OUT_OFFSET

_2BYTE

 sendallcmds

 L0++

}

L0=0

while(L0< CC0_PD1_IN_SIZE_2BYTE)

{

 CMD"CC0_PD1_IN16(%d)->Acc72Ex[0].uData16[%d]",L0,L0+

CC0_PD1_IN_OFFSET_2BYTE

 sendallcmds

 L0++

}

SCtrl_ulSystemCommandCOS=$55AA55AA // Reset token for MASTER Unit

HCSC_HSF_RESET=1 // Reset bit, token required for reset to

complete

CommErrorFlag=0;

endtime = Sys.Time + 2; // Reset Time-out Timer

while (CommErrorFlag==0 && HCSC_NSF_READY==0) // Wait for reset to complete

{

 if (endtime<Sys.Time) // Check for reset timeout

 {

 CommErrorFlag = 1;

 }

}

call Timer(0.100); // 100 msec

ACC-72EX User Manual

Software setup 105

// Toggle Communication Channel 0’s Change of State Acknowledge bit in

// order to read the CC0_RCX_COMM_COS_RUN which is a part of Communication

// Channel 0 State Register

HCCC0_HCF_NETX_COS_ACK = HCCC0_HCF_NETX_COS_ACK ^ 1

if (CommErrorFlag==0)

{

 while ((CC0_RCX_COMM_COS_RUN) == 0) // Wait for comm tasks to

 {

 // start on COMX modules

 // Repeating the toggle action for next while loop read

 HCCC0_HCF_NETX_COS_ACK = HCCC0_HCF_NETX_COS_ACK ^ 1

 call Timer(0.010); // 10 msec

 }

 enable plc Acc72EX_WatchdogPLC // Enable the Watchdog plc

 enable plc Acc72EX_PDO_WritePLC // Enable the write plc

 enable plc Acc72EX_PDO_ReadPLC // Enable the read plc

}

disable plc Acc72EX_StartupPLC

close

The above PLC uses a Timer subprogram call that must be added to the PMAC Script

Language→Libraries folder of the IDE project:

open subprog Timer(wait_duration) // wait_duration in seconds

local EndTime = Sys.Time + wait_duration;

while(Sys.Time < EndTime){}

close

Startup
To enable this startup PLC at power-up or reset, add the following line to pp_startup.txt in the

Configuration folder:

enable plc Acc72EX_StartupPLC

Watchdog Function
The host Watchdog and the device Watchdog cells in the control block of each of the communication

channels allow the operating system running on the netX to supervise the host or UMAC application and

vice versa. There is no Watchdog function for the system block or for the handshake channel. The

Watchdog for the channels is located in the control block of the status block of each communication

channel.

The netX firmware reads the content of the device Watchdog cell, increments the value by one and copies

it back into the host Watchdog location. Then, the application has to copy the new value from the host

Watchdog location into the device Watchdog location. Copying the host Watchdog cell to the device

Watchdog cell has to happen in the configured Watchdog time. When the overflow occurs, the firmware

starts over and a one appears in the host Watchdog cell. A zero turns off the Watchdog and therefore

never appears in the host Watchdog cell in the regular process.

The minimum Watchdog time is 20 ms. The application can start the Watchdog function by copying any

value unequal to zero into device Watchdog cell. A zero in the device Watchdog location stops the

Watchdog function. The Watchdog timeout is configurable in SYCON.net and downloaded to the netX

firmware.

If the application fails to copy the value from the host Watchdog location to the device Watchdog location

within the configured Watchdog time, the protocol stack will interrupt all network connections

ACC-72EX User Manual

Software setup 106

immediately, regardless of their current state. If the Watchdog tripped, then power cycling, channel reset,

or channel initialization will allow the communication channel to open network connections again.

Here is sample code for copying the host Watchdog location to the device Watchdog location:

/**/

// ACC-72EX Watchdog PLC

/**/

open plc Acc72EX_WatchdogPLC

CC0_ulDeviceWatchdog = CC0_ulHostWatchdog // copies the host Watchdog content

 // to device Watchdog cell

 // for the ACC-72EX

close

Enabling the Communication Bus
Using the Bus On flag (CCx_RCX_APP_COS_BUS_ON, where x is the communication channel

number), the host or UMAC application allows or disallows the netX firmware to open network

connections. This flag is used together with the Bus On Enable flag

(CCx_RCX_APP_COS_BUS_ON_ENABLE, where x is the communication channel number). If set, the

netX firmware tries to open network connections; if cleared, no connections are allowed, and open

connections are closed. If the Bus On Enable flag is set, it enables the execution of the Bus On command

in the netX firmware.

CC0_RCX_APP_COS_BUS_ON=1 // Setting the Bus On flag for 1st ACC-72EX

CC0_RCX_APP_COS_BUS_ON_ENABLE=1 // Enabling the execution of Bus On Flag for 1st ACC-72EX

S_CC0_RCX_APP_COS_BUS_ON=1 // Setting the Bus On flag for 2nd ACC-72EX

S_CC0_RCX_APP_COS_BUS_ON_ENABLE=1 // Enabling the execution of Bus On Flag for 2nd ACC-72EX

Locating the Input/Output Data Image in PMAC
The header file provided for use with ACC-72EX provides proper addressing and offsets for each of the

PDOs available for each communication module. There are also pointers declared in the header file and

are defined as a part of the initialization PLC shown above. These pointers will be used to access different

PDOs defined by SYCON.net software.

The following example PLCs are for reference only in order to demonstrate the proper handshaking

necessary for reading and writing data to ACC-72EX from Power PMAC.

/**/

// ACC-72EX Writing to PDO Sample PLC

/**/

open plc Acc72EX_PDO_WritePLC

if (HCCC0_HCF_PD0_OUT_CMD == HCCC0_NCF_PD0_OUT_ACK) {

// Making sure the ACK flag matches the CMD

// flag before writing the value to the

// output data image register

 P200=P200+1

 CC0_PD0_OUT16(0)= P200; // write the output data image register

 // Toggle the CMD flag (^: XOR)

 HCCC0_HCF_PD0_OUT_CMD = HCCC0_HCF_PD0_OUT_CMD^1

 // indicating write completion

}

close

/**/

// ACC-72EX Reading from PDO Sample PLC

/**/

ACC-72EX User Manual

Software setup 107

open plc Acc72EX_PDO_ReadPLC

if(HCCC0_NCF_PD0_IN_CMD == HCCC0_HCF_PD0_IN_ACK)

// If CMD flag and ACK flags are

// equal, then the input data image

// register can be read

{

 P201=CC0_PD0_IN16(0); // read the input data image register

 HCCC0_HCF_PD0_IN_ACK = HCCC0_HCF_PD0_IN_ACK ^ 1

 // toggle the acknowledge bit

 // indicating read completion

}

close

ACC-72EX User Manual

Diagnostics 108

DIAGNOSTICS

LEDs
There is one system LED (SYS LED) per ACC-72EX. SYS LED is always present as described below.

There are up to 4 LEDs per communication and application channel. These LEDs, like the

communication channel LED (COM LED), are network-specific and are described separately.

SYS LED
The system status LED (SYS LED) is always available. It indicates the state of the system and its

protocol stacks. The following blink patterns are defined:

Color State Meaning

Yellow Flashing Cyclically at 1 Hz netX is in Boot Loader Mode and is Waiting for Firmware
Download

 Solid netX is in Boot Loader Mode, but an Error Occurred

Green Solid netX Operating System is Running and a Firmware is Started

Vellow /
Green

Flashing Alternating 2nd Stage Bootloader is active

Off N/A netX has no Power Supply or Hardware Defect Detected

PROFIBUS-DP – Master – OPT10
The following table describes the meaning of the LEDs for the comX PROFIBUS-DP Master

communication modules (COMX 100CA-DP/ COMX100CN-DP) when the firmware of the PROFIBUS

DP Master protocol is loaded to the comX communication module:

COM LED (COM0)
Color State Meaning

Green Flashing acyclic No configuration or stack error

Green Flashing cyclic Profibus is configured, but bus communication is not yet released from the
application

Green On Communication to all Slaves is established

Red Flashing cyclic Communication to at least one Slave is disconnected

Red On Communication to one/all Slaves is disconnected

PROFIBUS-DP – Slave – OPT11
The subsequent table describes the meaning of the LEDs for the comX PROFIBUS-DP Slave

communication modules (COMX CA-DP/ COMX CNDP) when the firmware of the PROFIBUS DP

Slave protocol is loaded to the comX communication module.

COM LED (COM0)
Color State Meaning

Green On RUN, cyclic communication

Red Flashing cyclic STOP, no communication, connection error

Red Flashing acyclic not configured

ACC-72EX User Manual

Diagnostics 109

DeviceNet – Master – OPT20
The following table describes the meaning of the LEDs for the comX communication modules when the

firmware of the DeviceNet Master protocol is loaded to the comX communication module:

MNS LED (COM0)
Color State Meaning

Green On Device is online and has established one or more
connections

Green Flashing Device is online and has established no connection

Green/Red Green/Red/Off Self-test after power on:
Green on for 0,25 s, then red on for 0,25 s, then off

Red Flashing Connection timeout

Red On Critical connection failure; device has detected a network error: duplicate MAC-
ID or severe error in CAN network (CAN-bus off)

Red Off After start of the device and during duplicate MAC-ID check

DeviceNet – Slave – OPT21
The following table describes the meaning of the LEDs for the comX communication modules when the

firmware of the DeviceNet Slave protocol is loaded to the comX communication module:

MNS LED (COM0)
Color State Meaning

Green On Device is online and has established one or more
connections

Green Flashing Device is online and has established no connection

Green/Red Green/Red/Off Self-test after power on:
Green on for 0,25 s, then red on for 0,25 s, then off

Red Flashing Connection timeout

Red On Critical connection failure; device has detected a network error: duplicate MAC-
ID or severe error in CAN network (CAN-bus off)

Red Off After start of the device and during duplicate MAC-ID check

CANopen – Master – OPT30
The following table describes the meaning of the LEDs for the comX CANopen Master communication

modules (COMX-CA-CO/ COMX-CNCOM) when the firmware of the CANopen Master protocol is

loaded to the comX communication module:

CAN LED (COM0)
Color State Meaning

Green Off The device is executing a reset

Green Single Flash STOPPED: The Device is in STOPPED state

Green Blinking PREOPERATIONAL: The Device is in the PREOPERATIONAL state
The indicator turns on and off with a frequency of 2,5 Hz: on for 200 ms,
followed by off for 200 ms.

Green On OPERATIONAL: The Device is in the OPERATIONAL state

Red Single flash Warning Limit reached: At least one of the error counters of the CAN controller
has reached or exceeded the warning level (too many error frames).
The indicator shows one short flash (200 ms) followed by a long off phase
(1,000 ms).

Red Double flash Error Control Event: A guard event (NMT Slave or NMTmaster) or a heartbeat
event (Heartbeat consumer) has occurred.
The indicator shows a sequence of two short flashes (each 200 ms), separated
by a short off phase (200 ms). The sequence is finished by a long off phase
(1,000 ms).

Red On Bus Off: The CAN controller is bus off

ACC-72EX User Manual

Diagnostics 110

CANopen – Slave – OPT31
The following table describes the meaning of the LEDs for the comX CANopen Slave communication

modules (COMX-CA-CO/ COMX-CNCOS) when the firmware of the CANopen Slave protocol is loaded

to the comX communication module:

CAN LED (COM0)
Color State Meaning

Green Off The device is executing a reset

Green Single Flash STOPPED: The Device is in STOPPED state

Green Blinking PREOPERATIONAL: The Device is in the PREOPERATIONAL state
The indicator turns on and off with a frequency of 2,5 Hz: on for 200 ms,
followed by off for 200 ms.

Green On OPERATIONAL: The Device is in the OPERATIONAL state

Red Off No Error: The Device is in working condition

Red Single flash Warning Limit reached: At least one of the error counters of the CAN controller
has reached or exceeded the warning level (too many error frames).
The indicator shows one short flash (200 ms) followed by a long off phase
(1,000 ms).

Red Double flash Error Control Event: A guard event (NMT Slave or NMTmaster) or a heartbeat
event (Heartbeat consumer) has occurred.
The indicator shows a sequence of two short flashes (each 200 ms), separated
by a short off phase (200 ms). The sequence is finished by a long off phase
(1,000 ms).

Red On Bus Off: The CAN controller is bus off

CC-Link – Slave – OPT51
The following table describes the meaning of the LEDs for the comX CCLink Slave communication

modules (COMX 100CA-CCS/ COMX 100CNCCS) when the firmware of the CC-Link Slave protocol is

loaded to the comX communication module:

RUN/ERR LED (COM0)
Color State Meaning

Green Off 1. Before participating in the network
2. Unable to detect carrier
3. Timeout
4. Resetting hardware

Green On Receive both refresh and polling signals or just the refresh signal normally, after
participating in the network.

Red Off 1. Normal communication
2. Resetting hardware

Red Blinking The switch setting has been changed from the setting at the reset cancellation
(blinks for 0.4 sec.).

Red On 1. CRC error
2. Address parameter error (0, 65 or greater is set including the number of
occupied stations)
3. Baud rate switch setting error during cancellation of reset (5 or greater)

ACC-72EX User Manual

Diagnostics 111

EtherCAT – Master – OPT60
The following table describes the meaning of the LEDs for the comX Real-Time Ethernet communication

modules (COMX 100CA-RE/ COMX 100CN-RE) when the firmware of the EtherCAT Master protocol

is loaded to the comX communication module:

RUN LED (COM0)
Color State Meaning

Green Off INIT: The device is in state INIT

Green Blinking PRE-OPERATIONAL: The device is in PREOPERATIONAL state

Green Flickering BOOT: Device is in BOOT state

Green Single Flash SAFE-OPERATIONAL: The device is in SAFE-OPERATIONAL state

Green On OPERATIONAL: The device is in OPERATIONAL state

ERR LED (COM1)
Color State Meaning

Red Off Master has no errors

Red On Master has detected a communication error. The error is indicated in the DPM

LINK LED
Green LED on ETH0 connector

Color State Meaning

Green On A link is established

Green Off No link established

ACT LED
Yellow LED on ETH0 connector

Color State Meaning

Yellow Flashing The device sends/receives Ethernet frames

LED State Definition for EtherCAT Master for the RUN and ERR LEDs
Color Meaning

On The indicator is constantly on.

Off The indicator is constantly off.

Blinking The indicator turns on and off with a frequency of 2,5 Hz: on for 200 ms, followed by off for 200 ms.

Flickering The indicator turns on and off with a frequency of approximately 10 Hz: on for approximately 50 ms, followed
by off for 50 ms.

Single Flash The indicator shows one short flash (200 ms) followed by a long off phase (1,000 ms).

Double Flash The indicator shows a sequence of two short flashes (each 200 ms), separated by a short off phase (200 ms).
The sequence is finished by a long off phase (1,000 ms).

ACC-72EX User Manual

Diagnostics 112

EtherCAT – Slave – OPT61
The following table describes the meaning of the LEDs for the comX Real-Time Ethernet communication

modules (COMX 100CA-RE/ COMX 100CN-RE) when the firmware of the EtherCAT Slave protocol is

loaded to the comX communication module:

RUN LED (COM0)
Color State Meaning

Green Off INIT: The device is in state INIT

Green Blinking PRE-OPERATIONAL: The device is in PREOPERATIONAL state

Green Flickering BOOT: Device is in BOOT state

Green Single Flash SAFE-OPERATIONAL: The device is in SAFE-OPERATIONAL state

Green On OPERATIONAL: The device is in OPERATIONAL state

ERR LED (COM1)
Color State Meaning

Red Off No error: The EtherCAT communication of the device is in working condition

Red Blinking Invalid Configuration: General Configuration Error Possible reason: State change
commanded by master is impossible due to register or object settings.

Red Single Flash Local Error: Slave device application has changed the EtherCAT state
autonomously.
Possible reason 1: A host Watchdog timeout has occurred.
Possible reason 2: Synchronization Error, device enters Safe-Operational
automatically.

Red Double Flash Application Watchdog Timeout: An application Watchdog timeout has occurred.
Possible reason: Sync Manager Watchdog timeout.

LINK/ACT LED
Green LED on ETH0(IN) / ETH1(OUT) connectors:

Color State Meaning

Green On A link is established

Green Flashing The device sends/receives Ethernet frames

Green Off No link established

Yellow LED on ETH0 / ETH1 connectors:

Color State Meaning

Yellow - -

LED State Definition for EtherCAT Slave for the RUN and ERR LEDs
Color Meaning

On The indicator is constantly on.

Off The indicator is constantly off.

Blinking The indicator turns on and off with a frequency of 2,5 Hz: on for 200 ms, followed by off for 200 ms.

Single Flash The indicator shows one short flash (200 ms) followed by a long off phase (1,000 ms).

Double Flash The indicator shows a sequence of two short flashes (each 200 ms), separated by a short off phase (200 ms).
The sequence is finished by a long off phase (1,000 ms).

ACC-72EX User Manual

Diagnostics 113

EtherNet/IP – Scanner/Master – OPT70
The following table describes the meaning of the LEDs for the comX Real-Time Ethernet communication

modules (COMX-CA-RE/ COMX-CNRE) when the firmware of the EtherNet/IP Scanner (Master)

protocol is loaded to the comX communication module:

MS LED (COM0)
Color State Meaning

Green On Device operational: If the device is operating correctly, the module status
indicator shall be steady green.

Green Flashing Standby: If the device has not been configured, the module status indicator
shall be flashing green.

Red On Major fault: If the device has detected a non-recoverable major fault, the
module status indicator shall be steady red.

Green Flashing Minor fault: If the device has detected a recoverable minor fault, the module
status indicator shall be flashing red. NOTE: An incorrect or inconsistent
configuration would be considered a minor fault.

Red/Green Flashing Self-test: While the device is performing its power up testing, the module status
indicator shall be flashing green/red.

- Off No power: If no power is supplied to the device, the module status indicator
shall be steady off.

NS LED (COM1)
Color State Meaning

Green On Connected: If the device has at least one established connection (even to the
Message Router), the network status indicator shall be steady green.

Green Flashing No connections: If the device has no established connections, but has obtained
an IP address, the network status indicator shall be flashing green.

Red On Duplicate IP: If the device has detected that its IP address is already in use, the
network status indicator shall be steady red.

Red Flashing Connection timeout: If one or more of the connections in which this device is
the target has timed out, the network status indicator shall be flashing red. This
shall be left only if all timed out connections are reestablished or if the device is
reset.

Red/Green Flashing Self-test: While the device is performing its power up testing, the network
status indicator shall be flashing green/red.

- Off Not powered, no IP address: If the device does not have an IP address (or is
powered off), the network status indicator shall be steady off.

LINK LED
Green LED on ETH0 / ETH1 connectors:

Color State Meaning

Green On A connection to the Ethernet exists

Green Off The device has no connection to the Ethernet

ACT LED
Yellow LED on ETH0 / ETH1 connectors:

Color State Meaning

Yellow Flashing The device sends/receives Ethernet frames

ACC-72EX User Manual

Diagnostics 114

EtherNet/IP – Adaptor/Slave – OPT71
The following table describes the meaning of the LEDs for the comX Real-Time Ethernet communication

modules (COMX-CA-RE/ COMX-CNRE) when the firmware of the EtherNet/IP Adapter (Slave)

protocol is loaded to the comX communication module:

MS LED (COM0)
Color State Meaning

Green On Device operational: If the device is operating correctly, the module status
indicator shall be steady green.

Green Flashing Standby: If the device has not been configured, the module status indicator
shall be flashing green.

Red On Major fault: If the device has detected a non-recoverable major fault, the
module status indicator shall be steady red.

Green Flashing Minor fault: If the device has detected a recoverable minor fault, the module
status indicator shall be flashing red. NOTE: An incorrect or inconsistent
configuration would be considered a minor fault.

Red/Green Flashing Self-test: While the device is performing its power up testing, the module status
indicator shall be flashing green/red.

- Off No power: If no power is supplied to the device, the module status indicator
shall be steady off.

NS LED (COM1)
Color State Meaning

Green On Connected: If the device has at least one established connection (even to the
Message Router), the network status indicator shall be steady green.

Green Flashing No connections: If the device has no established connections, but has obtained
an IP address, the network status indicator shall be flashing green.

Red On Duplicate IP: If the device has detected that its IP address is already in use, the
network status indicator shall be steady red.

Red Flashing Connection timeout: If one or more of the connections in which this device is
the target has timed out, the network status indicator shall be flashing red. This
shall be left only if all timed out connections are reestablished or if the device is
reset.

Red/Green Flashing Self-test: While the device is performing its power up testing, the network
status indicator shall be flashing green/red.

- Off Not powered, no IP address: If the device does not have an IP address (or is
powered off), the network status indicator shall be steady off.

LINK LED
Green LED on ETH0 / ETH1 connectors:

Color State Meaning

Green On A connection to the Ethernet exists

Green Off The device has no connection to the Ethernet

ACT LED
Yellow LED on ETH0 / ETH1 connectors:

Color State Meaning

Yellow Flashing The device sends/receives Ethernet frames

ACC-72EX User Manual

Diagnostics 115

Open Modbus/TCP – OPT80
The following table describes the meaning of the LEDs for the comX Real-Time Ethernet communication

modules (COMX 100CA-RE/ COMX 100CN-RE) when the firmware of the Open Modbus/TCP protocol

is loaded to the comX communication module:

RUN LED (COM0)
Color State Meaning

Green Off Not Ready
OMB task is not ready

Green Flashing cyclic with 1Hz Ready, not configured yet
OMB task is ready and not configured yet

Green Flashing cyclic with 5Hz Waiting for Communication:
OMB task is configured

Green On Connected:
OMB task has communication – at least one TCP connection is established

ERR LED (COM1)
Color State Meaning

Red Off No communication error

Red Flashing cyclic with 2Hz
(On/Off ratio 25%)

System error

Red/Green On Communication error active

LINK LED
Green LED on ETH0 / ETH1 connectors:

Color State Meaning

Green On A connection to the Ethernet exists

Green Off The device has no connection to the Ethernet

ACT LED
Yellow LED on ETH0 / ETH1 connectors:

Color State Meaning

Yellow Flashing The device sends/receives Ethernet frames

ACC-72EX User Manual

Diagnostics 116

PROFINET IO – Controller – OPT90
The following table describes the meaning of the LEDs for the comX Real-Time Ethernet communication

modules (COMX 100CA-RE/ COMX 100CN-RE) when the firmware of the PROFINET IO-RT

Controller protocol is loaded to the comX communication module:

SF LED (COM0)
Color State Meaning

Red On (together with BF „red ON“) No valid Master license

Red Flashing cyclic with 2Hz System error: Invalid configuration, Watchdog error or internal error

Red Off No error

BF LED (COM1)
Color State Meaning

Red On No Connection: No Link or (together with SF „red ON“)
No valid Master license

Red Flashing cyclic with 2Hz Configuration fault: not all configured IO-Devices are connected.

Red Off No error

LINK LED
Green LED on ETH0 / ETH1 connectors:

Color State Meaning

Green On A connection to the Ethernet exists

Green Off The device has no connection to the Ethernet

ACT LED
Yellow LED on ETH0 / ETH1 connectors:

Color State Meaning

Yellow Flashing The device sends/receives Ethernet frames

ACC-72EX User Manual

Diagnostics 117

PROFINET IO – Device – OPT91
The following table describes the meaning of the LEDs for the comX Real-Time Ethernet communication

modules (COMX-CA-RE/ COMX-CNRE) when the firmware of the PROFINET IO-RT-Device protocol

is loaded to the comX communication module:

SF LED (COM0)
Color State Meaning

Red On Watchdog timeout; channel, generic or extended diagnosis present; system
error

Red Flashing cyclic with 2Hz
(for 3 seconds)

DCP signal service is initiated via the bus

Red Off No error

BF LED (COM1)
Color State Meaning

Red On No configuration; or low speed physical link; or no physical link

Red Flashing cyclic with 2Hz No data exchange

Red Off No error

LINK LED
Green LED on ETH0 / ETH1 connectors

Color State Meaning

Green On A connection to the Ethernet exists

Green Off The device has no connection to the Ethernet

ACT LED
Yellow LED on ETH0 / ETH1 connectors

Color State Meaning

Yellow Flashing The device sends/receives Ethernet frames

ACC-72EX User Manual

Appendix A – Setup Examples 118

APPENDIX A – SETUP EXAMPLES

SYCON.net Setup
The following is a sample setup using an ACC-72EX Ethernet IP slave with an Allen-Bradley

CompactLogix controller (1769-L18ERM-BB1B) as a master. SYCON.net for netX 1.310 was used in

this example.

With the power off, plug the ACC-72EX into the UBUS backplane, and then power the UMAC rack.

Connect the diagnostic port to a USB port on the PC using a micro-USB type cable.

Launch the SYCON.NET software on the PC.

Enter the password:

Start a new project or load an existing project from the File menu:

ACC-72EX User Manual

Appendix A – Setup Examples 119

Select the COMX module, to which the USB is connected, from the Fieldbus protocol list:

Drag and drop the module onto the BusLine in the netDevice window (notice that the module can only be

inserted on the BusLine):

ACC-72EX User Manual

Appendix A – Setup Examples 120

Establish USB communications to the COMX gateway by right clicking on the device icon and selecting

“Configuration…”:

In the netDevice Configuration window, select the Driver folder under Settings folder in the Navigation

Area, check the checkmark box for netX Driver on the driver list, and click Apply:

ACC-72EX User Manual

Appendix A – Setup Examples 121

Select the netX Driver node in Driver folder in the Navigation Area, and select the port for the USB

connection to the COMX module. Click Save and Apply (just click OK if Apply is grayed out):

Note: You can Check Windows Device Manager in order to identify which COM port provides the

connection to the Hilscher COMX module:

ACC-72EX User Manual

Appendix A – Setup Examples 122

Click the Device Assignment under Driver folder in the Navigation Area. Assign the netX Driver to the

detected COMX module by checking the checkmark box next to the detected device, and click Apply:

Note

When used with Turbo PMAC, the reset line is released too fast for

some Hilscher COMX modules, which puts them in a boot mode.

This can prevent the device from being detected by Sycon.NET

software. Make sure the device receives a system wide reset using the

PMAC suggested M-variables ulSystemCommandCOS and

HSF_RESET registers as shown here.

SCtrl_ulSystemCommandCOS=$55AA55AA

HCSC_HSF_RESET=1

Note that ACC-72EX Setup Assistant software automatically resets

the cards if it cannot detect the identification cookie.

ACC-72EX User Manual

Appendix A – Setup Examples 123

Set the IP address for the COMX module in the General Configuration window:

Set Connections:

ACC-72EX User Manual

Appendix A – Setup Examples 124

Set Instance IDs and Data lengths in the Assembly window. 240 is the maximum length for the

CompactLogix 1769-L18ERM-BB1B controller.

RSLogix 5000 Setup
RSLogix 5000 version 20 is used in this example.

Launch RSLogix, and click on Who Active in the Communications pull down menu to find the

CompactLogix controller:

ACC-72EX User Manual

Appendix A – Setup Examples 125

Select the controller, and click the Go Online button to test communication:

The Controller OK indicator box should change to green like below:

Next, install the EDS file for the Hilscher COMX slave of the ACC-72EX. Go to the Tools pull down

menu, and select EDS Hardware Installation Tool:

ACC-72EX User Manual

Appendix A – Setup Examples 126

Click Next:

Select the Register an EDS file(s) radial button:

Browse to and select the Hilsher EDS file. EDS files can be downloaded at hilscher.com at

http://www.hilscher.com/hcuk/support_software.html . Click Next.

http://www.hilscher.com/hcuk/support_software.html

ACC-72EX User Manual

Appendix A – Setup Examples 127

Follow the directions in the remaining windows for finishing the EDS installation.

The next step will apply the EDS installation, but first the controller needs to be offline. Click the Go

Offline selection under the Communications tab (Go Offline is displayed when the controller is online,

and Go Online is displayed when offline). Under I/O Configuration in the Controller Organizer, right-

click on Ethernet, and select New Module…:

Scroll down to and select the COMX slave module, and press Create:

ACC-72EX User Manual

Appendix A – Setup Examples 128

The created entry should appear under Ethernet in the Control Organizer. Right-click on it, and select

Properties:

Under the General tab, set the IP address of the ACC-72EX:

ACC-72EX User Manual

Appendix A – Setup Examples 129

Check the settings under the Connection tab:

Double-click on Controller Tags, and open the Monitor Tags tab:

ACC-72EX User Manual

Appendix A – Setup Examples 130

Click on “+” to expand the input data entries. Now input values from the ACC-72EX can be seen in the

Value column (controller must be online).

Click on “+” to expand the output data entries. The values seen in the Value column should now be seen

as inputs in the ACC-72EX. Values can be changed here manually, or in program logic such as in the

ladder logic example that follows.

ACC-72EX User Manual

Appendix A – Setup Examples 131

The following is an example which uses a “Copy” function to transfer all of the input values into

corresponding output values. Double-click on MainRoutine:

Click to select the top rung:

Click on the right arrow as needed to bring into view the File/Misc. ladder entries tab:

Click on the File/Misc. tab, and then drag and drop COP (copy) onto a rung. Look for a green dot to

appear on the left side of the rung when the cursor is hovered there, and then drop the COP function. To

copy all the ACC-72EX inputs into corresponding CopactLogix outputs, set Source to

COMX_RE_EIS:I.Data[0], Dest to COMX_RE_EIS:O.Data[0], and Length to 240:

ACC-72EX User Manual

Appendix A – Setup Examples 132

COMX Test PLC
The following Turbo PMAC PLCs can be used to test the communication of the COMX module. Run

PLC 1 and check the variable M_CommErrorFlag. If it is =0 after PLC 1 finishes, the COMX module is

communicating properly.

CLOSE

END GAT

DEL GAT

#include "M-VariableDefinition_$6C000.pmc"

#define M_CommErrorFlag P1

#define timer i6612

#define msec *8388608/i10while(i6612>0)endwhile

OPEN PLC 1 CLEAR

DISABLE PLC 2..31 // Disable all other tasks

M_SCtrl_ulSystemCommandCOS=$55AA55AA // Reset token for MASTER Unit

M_HCSC_HSF_RESET=1 // Reset bit, token required for reset to complete

M_CommErrorFlag=0

timer = 4000 msec // Reset Time-out Timer

WHILE (M_CommErrorFlag=0 AND M_HCSC_NSF_READY=0) // Wait for reset to complete

IF (timer<0) // Check for reset timeout

M_CommErrorFlag = 1

ENDIF

ENDWHILE

IF (M_CommErrorFlag=0) //

WHILE (M_CC0_RCX_COMM_COS_RUN=0) // wait for comm tasks to

// start on COMX modules

M_HCCC0_HCF_NETX_COS_ACK = M_HCCC0_HCF_NETX_COS_ACK ^ 1

// Toggle Communication Channel 0’s Change of State Acknowledge bit in

// order to read the CC0_RCX_COMM_COS_RUN which is a part of Communication

// Channel 0 State Register

enable plc 2

ENDWHILE

ENDIF

DISABLE PLC 1

CLOSE

open plc2 clr

timer =4000 msec // Reset Time-out Timer

//M_CC0_RCX_APP_COS_APP_READY=1

IF (M_HCSC_HSF_HOST_COS_CMD = M_HCSC_NSF_HOST_COS_ACK)

 M_CC0_RCX_APP_COS_BUS_ON=1 // Setting the Bus On flag for 1st ACC-72EX

 M_CC0_RCX_APP_COS_BUS_ON_ENABLE=1

 M_HCSC_HSF_HOST_COS_CMD = M_HCSC_HSF_HOST_COS_CMD^1

ENDIF

timer = 1000 msec // Reset Time-out Timer

ENABLE PLC 28

ENABLE PLC 10

ENABLE PLC 11

ENABLE PLC 26

disable plc2

close

OPEN PLC 28 CLEAR

M_CC0_ulDeviceWatchdog = M_CC0_ulHostWatchdog // copies the host watchdog content

CLOSE

OPEN PLC 10 CLEAR

IF (M_HCCC0_HCF_PD0_OUT_CMD = M_HCCC0_NCF_PD0_OUT_ACK) // Making sure the ACK flag matches the

CMD

ACC-72EX User Manual

Appendix A – Setup Examples 133

 M_HCCC0_HCF_PD0_OUT_CMD = M_HCCC0_HCF_PD0_OUT_CMD^1 // Toggling the CMD flag (^: XOR)

ENDIF

CLOSE

OPEN PLC 11 CLEAR

IF (M_HCCC0_NCF_PD0_IN_CMD = M_HCCC0_HCF_PD0_IN_ACK) // If CMD flag and ACK flags are

 M_HCCC0_HCF_PD0_IN_ACK = M_HCCC0_HCF_PD0_IN_ACK ^ 1 // toggle the acknowledge bit

EndIF

CLOSE

i5=2

Ena plc1

M90->y:$6C4C0,0,16 ;Write Address

m91->x:$6C4C0,0,16 ;Write Address

M92->y:$6CA60,0,16 ;Read Address

m93->x:$6CA60,0,16 ;Read Address

M94->Y:$00405A,0,20 ;address of M90

m95->Y:$00405B,0,20 ;address of m91

M96->Y:$00405C,0,20 ;address of M92

m97->Y:$00405D,0,20 ;address of m93

The above PLCs require the following header files:

// MacroNameDefinition_$6C000.h

#define M_SI_abCookie_0_ M5000

#define M_SI_abCookie_1_ M5001

#define M_SI_abCookie_2_ M5002

#define M_SI_abCookie_3_ M5003

#define M_SI_ulDpmTotalSize M5004

#define M_SI_ulDeviceNumber M5005

#define M_SI_ulSerialNumber M5006

#define M_SI_ausHwOptions_0_ M5007

#define M_SI_ausHwOptions_1_ M5008

#define M_SI_ausHwOptions_2_ M5009

#define M_SI_ausHwOptions_3_ M5010

#define M_SI_usManufacturer M5011

#define M_SI_usProductionDate M5012

#define M_SI_ulLicenseFlags1 M5013

#define M_SI_ulLicenseFlags2 M5014

#define M_SI_usNetxLicenseID M5015

#define M_SI_usNetxLicenseFlags M5016

#define M_SI_usDeviceClass M5017

#define M_SI_bHwRevision M5018

#define M_SI_bHwCompatibility M5019

#define M_SI_bDevIdNumber M5020

#define M_SCI_bChannelType M5021

#define M_SCI_bSizePositionOfHandshake M5022

#define M_SCI_bNumberOfBlocks M5023

#define M_SCI_ulSizeOfChannel M5024

#define M_SCI_usSizeOfMailbox M5025

#define M_SCI_usMailboxStartOffset M5026

#define M_HCI_bChannelType M5027

#define M_HCI_ulSizeOfChannel M5028

#define M_CC0I_bChannelType M5029

#define M_CC0I_bChannelId M5030

#define M_CC0I_bSizePositionOfHandshake M5031

#define M_CC0I_bNumberOfBlocks M5032

#define M_CC0I_ulSizeOfChannel M5033

#define M_CC0I_usCommunicationClass M5034

#define M_CC0I_usProtocolClass M5035

#define M_CC0I_usConformanceClass M5036

#define M_CC1I_bChannelType M5037

#define M_CC1I_bChannelId M5038

#define M_CC1I_bSizePositionOfHandshake M5039

#define M_CC1I_bNumberOfBlocks M5040

ACC-72EX User Manual

Appendix A – Setup Examples 134

#define M_CC1I_ulSizeOfChannel M5041

#define M_CC1I_usCommunicationClass M5042

#define M_CC1I_usProtocolClass M5043

#define M_CC1I_usConformanceClass M5044

#define M_CC2I_bChannelType M5045

#define M_CC2I_bChannelId M5046

#define M_CC2I_bSizePositionOfHandshake M5047

#define M_CC2I_bNumberOfBlocks M5048

#define M_CC2I_ulSizeOfChannel M5049

#define M_CC2I_usCommunicationClass M5050

#define M_CC2I_usProtocolClass M5051

#define M_CC2I_usConformanceClass M5052

#define M_CC3I_bChannelType M5053

#define M_CC3I_bChannelId M5054

#define M_CC3I_bSizePositionOfHandshake M5055

#define M_CC3I_bNumberOfBlocks M5056

#define M_CC3I_ulSizeOfChannel M5057

#define M_CC3I_usCommunicationClass M5058

#define M_CC3I_usProtocolClass M5059

#define M_CC3I_usConformanceClass M5060

#define M_AC0I_bChannelType M5061

#define M_AC0I_bChannelId M5062

#define M_AC0I_bSizePositionOfHandshake M5063

#define M_AC0I_bNumberOfBlocks M5064

#define M_AC0I_ulSizeOfChannel M5065

#define M_AC1I_bChannelType M5066

#define M_AC1I_bChannelId M5067

#define M_AC1I_bSizePositionOfHandshake M5068

#define M_AC1I_bNumberOfBlocks M5069

#define M_AC1I_ulSizeOfChannel M5070

#define M_SCtrl_ulSystemCommandCOS M5071

#define M_SStat_ulSystemCOS M5072

#define M_SStat_ulSystemStatus M5073

#define M_SStat_ulSystemError M5074

#define M_SStat_ulBootError M5075

#define M_SStat_ulTimeSinceStart M5076

#define M_SStat_usCpuLoad M5077

#define M_SStat_ulHWFeatures M5078

#define M_SSMB_usPackagesAccepted M5079

#define M_SSMB_ulDest M5080

#define M_SSMB_ulSrc M5081

#define M_SSMB_ulDestId M5082

#define M_SSMB_ulSrcId M5083

#define M_SSMB_ulLen M5084

#define M_SSMB_ulId M5085

#define M_SSMB_ulState M5086

#define M_SSMB_ulCmd M5087

#define M_SSMB_ulExt M5088

#define M_SSMB_ulRout M5089

#define M_SSMB_ultData0 M5090

#define M_SSMB_ultData1 M5091

#define M_SSMB_ultData2 M5092

#define M_SSMB_ultData3 M5093

#define M_SSMB_ultData4 M5094

#define M_SSMB_ultData5 M5095

#define M_SSMB_ultData6 M5096

#define M_SSMB_ultData7 M5097

#define M_SSMB_ultData8 M5098

#define M_SSMB_ultData9 M5099

#define M_SSMB_ultData10 M5100

#define M_SSMB_ultData11 M5101

#define M_SSMB_ultData12 M5102

#define M_SSMB_ultData13 M5103

#define M_SSMB_ultData14 M5104

#define M_SSMB_ultData15 M5105

#define M_SSMB_ultData16 M5106

#define M_SSMB_ultData17 M5107

#define M_SSMB_ultData18 M5108

#define M_SSMB_ultData19 M5109

#define M_SSMB_ultData20 M5110

#define M_SRMB_usWaitingPackages M5111

ACC-72EX User Manual

Appendix A – Setup Examples 135

#define M_SRMB_ulDest M5112

#define M_SRMB_ulSrc M5113

#define M_SRMB_ulDestId M5114

#define M_SRMB_ulSrcId M5115

#define M_SRMB_ulLen M5116

#define M_SRMB_ulId M5117

#define M_SRMB_ulState M5118

#define M_SRMB_ulCmd M5119

#define M_SRMB_ulExt M5120

#define M_SRMB_ulRout M5121

#define M_SRMB_ultData0 M5122

#define M_SRMB_ultData1 M5123

#define M_SRMB_ultData2 M5124

#define M_SRMB_ultData3 M5125

#define M_SRMB_ultData4 M5126

#define M_SRMB_ultData5 M5127

#define M_SRMB_ultData6 M5128

#define M_SRMB_ultData7 M5129

#define M_SRMB_ultData8 M5130

#define M_SRMB_ultData9 M5131

#define M_SRMB_ultData10 M5132

#define M_SRMB_ultData11 M5133

#define M_SRMB_ultData12 M5134

#define M_SRMB_ultData13 M5135

#define M_SRMB_ultData14 M5136

#define M_SRMB_ultData15 M5137

#define M_SRMB_ultData16 M5138

#define M_SRMB_ultData17 M5139

#define M_SRMB_ultData18 M5140

#define M_SRMB_ultData19 M5141

#define M_SRMB_ultData20 M5142

#define M_HCSC_bNetxFlags M5143

#define M_HCSC_NSF_READY M5144

#define M_HCSC_NSF_ERROR M5145

#define M_HCSC_NSF_HOST_COS_ACK M5146

#define M_HCSC_NSF_NETX_COS_CMD M5147

#define M_HCSC_NSF_SEND_MBX_ACK M5148

#define M_HCSC_NSF_RECV_MBX_CMD M5149

#define M_HCSC_bHostFlags M5150

#define M_HCSC_HSF_RESET M5151

#define M_HCSC_HSF_BOOTSTART M5152

#define M_HCSC_HSF_HOST_COS_CMD M5153

#define M_HCSC_HSF_NETX_COS_ACK M5154

#define M_HCSC_HSF_SEND_MBX_CMD M5155

#define M_HCSC_HSF_RECV_MBX_ACK M5156

#define M_HCCC0_usNetxFlags M5157

#define M_HCCC0_NCF_COMMUNICATING M5158

#define M_HCCC0_NCF_ERROR M5159

#define M_HCCC0_NCF_HOST_COS_ACK M5160

#define M_HCCC0_NCF_NETX_COS_CMD M5161

#define M_HCCC0_NCF_SEND_MBX_ACK M5162

#define M_HCCC0_NCF_RECV_MBX_CMD M5163

#define M_HCCC0_NCF_PD0_OUT_ACK M5164

#define M_HCCC0_NCF_PD0_IN_CMD M5165

#define M_HCCC0_NCF_PD1_OUT_ACK M5166

#define M_HCCC0_NCF_PD1_IN_CMD M5167

#define M_HCCC0_usHostFlags M5168

#define M_HCCC0_HCF_HOST_COS_CMD M5169

#define M_HCCC0_HCF_NETX_COS_ACK M5170

#define M_HCCC0_HCF_SEND_MBX_CMD M5171

#define M_HCCC0_HCF_RECV_MBX_ACK M5172

#define M_HCCC0_HCF_PD0_OUT_CMD M5173

#define M_HCCC0_HCF_PD0_IN_ACK M5174

#define M_HCCC0_HCF_PD1_OUT_CMD M5175

#define M_HCCC0_HCF_PD1_IN_ACK M5176

#define M_HCCC1_usNetxFlags M5177

#define M_HCCC1_NCF_COMMUNICATING M5178

#define M_HCCC1_NCF_ERROR M5179

#define M_HCCC1_NCF_HOST_COS_ACK M5180

#define M_HCCC1_NCF_NETX_COS_CMD M5181

#define M_HCCC1_NCF_SEND_MBX_ACK M5182

ACC-72EX User Manual

Appendix A – Setup Examples 136

#define M_HCCC1_NCF_RECV_MBX_CMD M5183

#define M_HCCC1_NCF_PD0_OUT_ACK M5184

#define M_HCCC1_NCF_PD0_IN_CMD M5185

#define M_HCCC1_NCF_PD1_OUT_ACK M5186

#define M_HCCC1_NCF_PD1_IN_CMD M5187

#define M_HCCC1_usHostFlags M5188

#define M_HCCC1_HCF_HOST_COS_CMD M5189

#define M_HCCC1_HCF_NETX_COS_ACK M5190

#define M_HCCC1_HCF_SEND_MBX_CMD M5191

#define M_HCCC1_HCF_RECV_MBX_ACK M5192

#define M_HCCC1_HCF_PD0_OUT_CMD M5193

#define M_HCCC1_HCF_PD0_IN_ACK M5194

#define M_HCCC1_HCF_PD1_OUT_CMD M5195

#define M_HCCC1_HCF_PD1_IN_ACK M5196

#define M_HCCC2_usNetxFlags M5197

#define M_HCCC2_NCF_COMMUNICATING M5198

#define M_HCCC2_NCF_ERROR M5199

#define M_HCCC2_NCF_HOST_COS_ACK M5200

#define M_HCCC2_NCF_NETX_COS_CMD M5201

#define M_HCCC2_NCF_SEND_MBX_ACK M5202

#define M_HCCC2_NCF_RECV_MBX_CMD M5203

#define M_HCCC2_NCF_PD0_OUT_ACK M5204

#define M_HCCC2_NCF_PD0_IN_CMD M5205

#define M_HCCC2_NCF_PD1_OUT_ACK M5206

#define M_HCCC2_NCF_PD1_IN_CMD M5207

#define M_HCCC2_usHostFlags M5208

#define M_HCCC2_HCF_HOST_COS_CMD M5209

#define M_HCCC2_HCF_NETX_COS_ACK M5210

#define M_HCCC2_HCF_SEND_MBX_CMD M5211

#define M_HCCC2_HCF_RECV_MBX_ACK M5212

#define M_HCCC2_HCF_PD0_OUT_CMD M5213

#define M_HCCC2_HCF_PD0_IN_ACK M5214

#define M_HCCC2_HCF_PD1_OUT_CMD M5215

#define M_HCCC2_HCF_PD1_IN_ACK M5216

#define M_HCCC3_usNetxFlags M5217

#define M_HCCC3_NCF_COMMUNICATING M5218

#define M_HCCC3_NCF_ERROR M5219

#define M_HCCC3_NCF_HOST_COS_ACK M5220

#define M_HCCC3_NCF_NETX_COS_CMD M5221

#define M_HCCC3_NCF_SEND_MBX_ACK M5222

#define M_HCCC3_NCF_RECV_MBX_CMD M5223

#define M_HCCC3_NCF_PD0_OUT_ACK M5224

#define M_HCCC3_NCF_PD0_IN_CMD M5225

#define M_HCCC3_NCF_PD1_OUT_ACK M5226

#define M_HCCC3_NCF_PD1_IN_CMD M5227

#define M_HCCC3_usHostFlags M5228

#define M_HCCC3_HCF_HOST_COS_CMD M5229

#define M_HCCC3_HCF_NETX_COS_ACK M5230

#define M_HCCC3_HCF_SEND_MBX_CMD M5231

#define M_HCCC3_HCF_RECV_MBX_ACK M5232

#define M_HCCC3_HCF_PD0_OUT_CMD M5233

#define M_HCCC3_HCF_PD0_IN_ACK M5234

#define M_HCCC3_HCF_PD1_OUT_CMD M5235

#define M_HCCC3_HCF_PD1_IN_ACK M5236

#define M_HCAC0_usNetxFlags M5237

#define M_HCAC0_NCF_COMMUNICATING M5238

#define M_HCAC0_NCF_ERROR M5239

#define M_HCAC0_NCF_HOST_COS_ACK M5240

#define M_HCAC0_NCF_NETX_COS_CMD M5241

#define M_HCAC0_NCF_SEND_MBX_ACK M5242

#define M_HCAC0_NCF_RECV_MBX_CMD M5243

#define M_HCAC0_NCF_PD0_OUT_ACK M5244

#define M_HCAC0_NCF_PD0_IN_CMD M5245

#define M_HCAC0_NCF_PD1_OUT_ACK M5246

#define M_HCAC0_NCF_PD1_IN_CMD M5247

#define M_HCAC0_usHostFlags M5248

#define M_HCAC0_HCF_HOST_COS_CMD M5249

#define M_HCAC0_HCF_NETX_COS_ACK M5250

#define M_HCAC0_HCF_SEND_MBX_CMD M5251

#define M_HCAC0_HCF_RECV_MBX_ACK M5252

#define M_HCAC0_HCF_PD0_OUT_CMD M5253

ACC-72EX User Manual

Appendix A – Setup Examples 137

#define M_HCAC0_HCF_PD0_IN_ACK M5254

#define M_HCAC0_HCF_PD1_OUT_CMD M5255

#define M_HCAC0_HCF_PD1_IN_ACK M5256

#define M_HCAC1_usNetxFlags M5257

#define M_HCAC1_NCF_COMMUNICATING M5258

#define M_HCAC1_NCF_ERROR M5259

#define M_HCAC1_NCF_HOST_COS_ACK M5260

#define M_HCAC1_NCF_NETX_COS_CMD M5261

#define M_HCAC1_NCF_SEND_MBX_ACK M5262

#define M_HCAC1_NCF_RECV_MBX_CMD M5263

#define M_HCAC1_NCF_PD0_OUT_ACK M5264

#define M_HCAC1_NCF_PD0_IN_CMD M5265

#define M_HCAC1_NCF_PD1_OUT_ACK M5266

#define M_HCAC1_NCF_PD1_IN_CMD M5267

#define M_HCAC1_usHostFlags M5268

#define M_HCAC1_HCF_HOST_COS_CMD M5269

#define M_HCAC1_HCF_NETX_COS_ACK M5270

#define M_HCAC1_HCF_SEND_MBX_CMD M5271

#define M_HCAC1_HCF_RECV_MBX_ACK M5272

#define M_HCAC1_HCF_PD0_OUT_CMD M5273

#define M_HCAC1_HCF_PD0_IN_ACK M5274

#define M_HCAC1_HCF_PD1_OUT_CMD M5275

#define M_HCAC1_HCF_PD1_IN_ACK M5276

#define M_CC0_RCX_APP_COS_APP_READY M5277

#define M_CC0_RCX_APP_COS_BUS_ON M5278

#define M_CC0_RCX_APP_COS_BUS_ON_ENABLE M5279

#define M_CC0_RCX_APP_COS_INIT M5280

#define M_CC0_RCX_APP_COS_INIT_ENABLE M5281

#define M_CC0_RCX_APP_COS_LOCK_CFG M5282

#define M_CC0_RCX_APP_COS_LOCK_CFG_ENA M5283

#define M_CC0_RCX_APP_COS_DMA M5284

#define M_CC0_RCX_APP_COS_DMA_ENABLE M5285

#define M_CC0_ulDeviceWatchdog M5286

#define M_CC0_RCX_COMM_COS_READY M5287

#define M_CC0_RCX_COMM_COS_RUN M5288

#define M_CC0_RCX_COMM_COS_BUS_ON M5289

#define M_CC0_RCX_COMM_COS_CONFIG_LOCKED M5290

#define M_CC0_RCX_COMM_COS_CONFIG_NEW M5291

#define M_CC0_RCX_COMM_COS_RESTART_REQ M5292

#define M_CC0_RCX_COMM_CO_REQ_ENA M5293

#define M_CC0_RCX_COMM_COS_DMA M5294

#define M_CC0_ulCommunicationState M5295

#define M_CC0_ulCommunicationError M5296

#define M_CC0_usVersion M5297

#define M_CC0_usWatchdogTime M5298

#define M_CC0_bPDInHskMode M5299

#define M_CC0_bPDInSource M5300

#define M_CC0_bPDOutHskMode M5301

#define M_CC0_bPDOutSource M5302

#define M_CC0_ulHostWatchdog M5303

#define M_CC0_ulErrorCount M5304

#define M_CC0_bErrorLogInd M5305

#define M_CC0_bErrorPDInCnt M5306

#define M_CC0_bErrorPDOutCnt M5307

#define M_CC0_bErrorSyncCnt M5308

#define M_CC0_bSyncHskMode M5309

#define M_CC0_bSyncSource M5310

#define M_CC0_ulSlaveState M5311

#define M_CC0_ulSlaveErrLogInd M5312

#define M_CC0_ulNumOfConfigSlaves M5313

#define M_CC0_ulNumOfActiveSlaves M5314

#define M_CC0_ulNumOfDiagSlaves M5315

ACC-72EX User Manual

Appendix A – Setup Examples 138

Next file:

// M-VariableDefinition_$6C000.pmc

CLOSE

END GAT

DEL GAT

#Include "MacroNameDefinition_$6C000.h"

M_SI_abCookie_0_->Y:$6C000,0,8

M_SI_abCookie_1_->Y:$6C000,8,8

M_SI_abCookie_2_->X:$6C000,0,8

M_SI_abCookie_3_->X:$6C000,8,8

M_SI_ulDpmTotalSize->DP:$6C001

M_SI_ulDeviceNumber->DP:$6C002

M_SI_ulSerialNumber->DP:$6C003

M_SI_ausHwOptions_0_->Y:$6C004,0,16

M_SI_ausHwOptions_1_->X:$6C004,0,16

M_SI_ausHwOptions_2_->Y:$6C005,0,16

M_SI_ausHwOptions_3_->X:$6C005,0,16

M_SI_usManufacturer->Y:$6C006,0,16

M_SI_usProductionDate->X:$6C006,0,16

M_SI_ulLicenseFlags1->DP:$6C007

M_SI_ulLicenseFlags2->DP:$6C008

M_SI_usNetxLicenseID->Y:$6C009,0,16

M_SI_usNetxLicenseFlags->X:$6C009,0,16

M_SI_usDeviceClass->Y:$6C00A,0,16

M_SI_bHwRevision->X:$6C00A,0,8

M_SI_bHwCompatibility->X:$6C00A,8,8

M_SI_bDevIdNumber->Y:$6C00B,0,8

M_SCI_bChannelType->Y:$6C00C,0,8

M_SCI_bSizePositionOfHandshake->X:$6C00C,0,8

M_SCI_bNumberOfBlocks->X:$6C00C,8,8

M_SCI_ulSizeOfChannel->DP:$6C00D

M_SCI_usSizeOfMailbox->Y:$6C00E,0,16

M_SCI_usMailboxStartOffset->X:$6C00E,0,16

M_HCI_bChannelType->Y:$6C010,0,8

M_HCI_ulSizeOfChannel->DP:$6C011

M_CC0I_bChannelType->Y:$6C014,0,8

M_CC0I_bChannelId->Y:$6C014,8,8

M_CC0I_bSizePositionOfHandshake->X:$6C014,0,8

M_CC0I_bNumberOfBlocks->X:$6C014,8,8

M_CC0I_ulSizeOfChannel->DP:$6C015

M_CC0I_usCommunicationClass->Y:$6C016,0,16

M_CC0I_usProtocolClass->X:$6C016,0,16

M_CC0I_usConformanceClass->Y:$6C017,0,16

M_CC1I_bChannelType->Y:$6C018,0,8

M_CC1I_bChannelId->Y:$6C018,8,8

M_CC1I_bSizePositionOfHandshake->X:$6C018,0,8

M_CC1I_bNumberOfBlocks->X:$6C018,8,8

M_CC1I_ulSizeOfChannel->DP:$6C019

M_CC1I_usCommunicationClass->Y:$6C01A,0,16

M_CC1I_usProtocolClass->X:$6C01A,0,16

M_CC1I_usConformanceClass->Y:$6C01B,0,16

M_CC2I_bChannelType->Y:$6C01C,0,8

M_CC2I_bChannelId->Y:$6C01C,8,8

M_CC2I_bSizePositionOfHandshake->X:$6C01C,0,8

M_CC2I_bNumberOfBlocks->X:$6C01C,8,8

M_CC2I_ulSizeOfChannel->DP:$6C01D

M_CC2I_usCommunicationClass->Y:$6C01E,0,16

M_CC2I_usProtocolClass->X:$6C01E,0,16

M_CC2I_usConformanceClass->Y:$6C01F,0,16

M_CC3I_bChannelType->Y:$6C020,0,8

M_CC3I_bChannelId->Y:$6C020,8,8

M_CC3I_bSizePositionOfHandshake->X:$6C020,0,8

M_CC3I_bNumberOfBlocks->X:$6C020,8,8

M_CC3I_ulSizeOfChannel->DP:$6C021

M_CC3I_usCommunicationClass->Y:$6C022,0,16

M_CC3I_usProtocolClass->X:$6C022,0,16

M_CC3I_usConformanceClass->Y:$6C023,0,16

M_AC0I_bChannelType->Y:$6C024,0,8

M_AC0I_bChannelId->Y:$6C024,8,8

ACC-72EX User Manual

Appendix A – Setup Examples 139

M_AC0I_bSizePositionOfHandshake->X:$6C024,0,8

M_AC0I_bNumberOfBlocks->X:$6C024,8,8

M_AC0I_ulSizeOfChannel->DP:$6C025

M_AC1I_bChannelType->Y:$6C028,0,8

M_AC1I_bChannelId->Y:$6C028,8,8

M_AC1I_bSizePositionOfHandshake->X:$6C028,0,8

M_AC1I_bNumberOfBlocks->X:$6C028,8,8

M_AC1I_ulSizeOfChannel->DP:$6C029

M_SCtrl_ulSystemCommandCOS->DP:$6C02E

M_SStat_ulSystemCOS->DP:$6C030

M_SStat_ulSystemStatus->DP:$6C031

M_SStat_ulSystemError->DP:$6C032

M_SStat_ulBootError->DP:$6C033

M_SStat_ulTimeSinceStart->DP:$6C034

M_SStat_usCpuLoad->Y:$6C035,0,16

M_SStat_ulHWFeatures->DP:$6C036

M_SSMB_usPackagesAccepted->Y:$6C040,0,16

M_SSMB_ulDest->DP:$6C041

M_SSMB_ulSrc->DP:$6C042

M_SSMB_ulDestId->DP:$6C043

M_SSMB_ulSrcId->DP:$6C044

M_SSMB_ulLen->DP:$6C045

M_SSMB_ulId->DP:$6C046

M_SSMB_ulState->DP:$6C047

M_SSMB_ulCmd->DP:$6C048

M_SSMB_ulExt->DP:$6C049

M_SSMB_ulRout->DP:$6C04A

M_SSMB_ultData0->DP:$6C04B

M_SSMB_ultData1->DP:$6C04C

M_SSMB_ultData2->DP:$6C04D

M_SSMB_ultData3->DP:$6C04E

M_SSMB_ultData4->DP:$6C04F

M_SSMB_ultData5->DP:$6C050

M_SSMB_ultData6->DP:$6C051

M_SSMB_ultData7->DP:$6C052

M_SSMB_ultData8->DP:$6C053

M_SSMB_ultData9->DP:$6C054

M_SSMB_ultData10->DP:$6C055

M_SSMB_ultData11->DP:$6C056

M_SSMB_ultData12->DP:$6C057

M_SSMB_ultData13->DP:$6C058

M_SSMB_ultData14->DP:$6C059

M_SSMB_ultData15->DP:$6C05A

M_SSMB_ultData16->DP:$6C05B

M_SSMB_ultData17->DP:$6C05C

M_SSMB_ultData18->DP:$6C05D

M_SSMB_ultData19->DP:$6C05E

M_SSMB_ultData20->DP:$6C05F

M_SRMB_usWaitingPackages->Y:$6C060,0,16

M_SRMB_ulDest->DP:$6C061

M_SRMB_ulSrc->DP:$6C062

M_SRMB_ulDestId->DP:$6C063

M_SRMB_ulSrcId->DP:$6C064

M_SRMB_ulLen->DP:$6C065

M_SRMB_ulId->DP:$6C066

M_SRMB_ulState->DP:$6C067

M_SRMB_ulCmd->DP:$6C068

M_SRMB_ulExt->DP:$6C069

M_SRMB_ulRout->DP:$6C06A

M_SRMB_ultData0->DP:$6C06B

M_SRMB_ultData1->DP:$6C06C

M_SRMB_ultData2->DP:$6C06D

M_SRMB_ultData3->DP:$6C06E

M_SRMB_ultData4->DP:$6C06F

M_SRMB_ultData5->DP:$6C070

M_SRMB_ultData6->DP:$6C071

M_SRMB_ultData7->DP:$6C072

M_SRMB_ultData8->DP:$6C073

M_SRMB_ultData9->DP:$6C074

M_SRMB_ultData10->DP:$6C075

M_SRMB_ultData11->DP:$6C076

ACC-72EX User Manual

Appendix A – Setup Examples 140

M_SRMB_ultData12->DP:$6C077

M_SRMB_ultData13->DP:$6C078

M_SRMB_ultData14->DP:$6C079

M_SRMB_ultData15->DP:$6C07A

M_SRMB_ultData16->DP:$6C07B

M_SRMB_ultData17->DP:$6C07C

M_SRMB_ultData18->DP:$6C07D

M_SRMB_ultData19->DP:$6C07E

M_SRMB_ultData20->DP:$6C07F

M_HCSC_bNetxFlags->X:$6C080,0,8

M_HCSC_NSF_READY->X:$6C080,0,1

M_HCSC_NSF_ERROR->X:$6C080,1,1

M_HCSC_NSF_HOST_COS_ACK->X:$6C080,2,1

M_HCSC_NSF_NETX_COS_CMD->X:$6C080,3,1

M_HCSC_NSF_SEND_MBX_ACK->X:$6C080,4,1

M_HCSC_NSF_RECV_MBX_CMD->X:$6C080,5,1

M_HCSC_bHostFlags->X:$6C080,8,8

M_HCSC_HSF_RESET->X:$6C080,8,1

M_HCSC_HSF_BOOTSTART->X:$6C080,9,1

M_HCSC_HSF_HOST_COS_CMD->X:$6C080,10,1

M_HCSC_HSF_NETX_COS_ACK->X:$6C080,11,1

M_HCSC_HSF_SEND_MBX_CMD->X:$6C080,12,1

M_HCSC_HSF_RECV_MBX_ACK->X:$6C080,13,1

M_HCCC0_usNetxFlags->Y:$6C082,0,16

M_HCCC0_NCF_COMMUNICATING->Y:$6C082,0,1

M_HCCC0_NCF_ERROR->Y:$6C082,1,1

M_HCCC0_NCF_HOST_COS_ACK->Y:$6C082,2,1

M_HCCC0_NCF_NETX_COS_CMD->Y:$6C082,3,1

M_HCCC0_NCF_SEND_MBX_ACK->Y:$6C082,4,1

M_HCCC0_NCF_RECV_MBX_CMD->Y:$6C082,5,1

M_HCCC0_NCF_PD0_OUT_ACK->Y:$6C082,6,1

M_HCCC0_NCF_PD0_IN_CMD->Y:$6C082,7,1

M_HCCC0_NCF_PD1_OUT_ACK->Y:$6C082,8,1

M_HCCC0_NCF_PD1_IN_CMD->Y:$6C082,9,1

M_HCCC0_usHostFlags->X:$6C082,0,16

M_HCCC0_HCF_HOST_COS_CMD->X:$6C082,2,1

M_HCCC0_HCF_NETX_COS_ACK->X:$6C082,3,1

M_HCCC0_HCF_SEND_MBX_CMD->X:$6C082,4,1

M_HCCC0_HCF_RECV_MBX_ACK->X:$6C082,5,1

M_HCCC0_HCF_PD0_OUT_CMD->X:$6C082,6,1

M_HCCC0_HCF_PD0_IN_ACK->X:$6C082,7,1

M_HCCC0_HCF_PD1_OUT_CMD->X:$6C082,8,1

M_HCCC0_HCF_PD1_IN_ACK->X:$6C082,9,1

M_HCCC1_usNetxFlags->Y:$6C083,0,16

M_HCCC1_NCF_COMMUNICATING->Y:$6C083,0,1

M_HCCC1_NCF_ERROR->Y:$6C083,1,1

M_HCCC1_NCF_HOST_COS_ACK->Y:$6C083,2,1

M_HCCC1_NCF_NETX_COS_CMD->Y:$6C083,3,1

M_HCCC1_NCF_SEND_MBX_ACK->Y:$6C083,4,1

M_HCCC1_NCF_RECV_MBX_CMD->Y:$6C083,5,1

M_HCCC1_NCF_PD0_OUT_ACK->Y:$6C083,6,1

M_HCCC1_NCF_PD0_IN_CMD->Y:$6C083,7,1

M_HCCC1_NCF_PD1_OUT_ACK->Y:$6C083,8,1

M_HCCC1_NCF_PD1_IN_CMD->Y:$6C083,9,1

M_HCCC1_usHostFlags->X:$6C083,0,16

M_HCCC1_HCF_HOST_COS_CMD->X:$6C083,2,1

M_HCCC1_HCF_NETX_COS_ACK->X:$6C083,3,1

M_HCCC1_HCF_SEND_MBX_CMD->X:$6C083,4,1

M_HCCC1_HCF_RECV_MBX_ACK->X:$6C083,5,1

M_HCCC1_HCF_PD0_OUT_CMD->X:$6C083,6,1

M_HCCC1_HCF_PD0_IN_ACK->X:$6C083,7,1

M_HCCC1_HCF_PD1_OUT_CMD->X:$6C083,8,1

M_HCCC1_HCF_PD1_IN_ACK->X:$6C083,9,1

M_HCCC2_usNetxFlags->Y:$6C084,0,16

M_HCCC2_NCF_COMMUNICATING->Y:$6C084,0,1

M_HCCC2_NCF_ERROR->Y:$6C084,1,1

M_HCCC2_NCF_HOST_COS_ACK->Y:$6C084,2,1

M_HCCC2_NCF_NETX_COS_CMD->Y:$6C084,3,1

M_HCCC2_NCF_SEND_MBX_ACK->Y:$6C084,4,1

M_HCCC2_NCF_RECV_MBX_CMD->Y:$6C084,5,1

M_HCCC2_NCF_PD0_OUT_ACK->Y:$6C084,6,1

ACC-72EX User Manual

Appendix A – Setup Examples 141

M_HCCC2_NCF_PD0_IN_CMD->Y:$6C084,7,1

M_HCCC2_NCF_PD1_OUT_ACK->Y:$6C084,8,1

M_HCCC2_NCF_PD1_IN_CMD->Y:$6C084,9,1

M_HCCC2_usHostFlags->X:$6C084,0,16

M_HCCC2_HCF_HOST_COS_CMD->X:$6C084,2,1

M_HCCC2_HCF_NETX_COS_ACK->X:$6C084,3,1

M_HCCC2_HCF_SEND_MBX_CMD->X:$6C084,4,1

M_HCCC2_HCF_RECV_MBX_ACK->X:$6C084,5,1

M_HCCC2_HCF_PD0_OUT_CMD->X:$6C084,6,1

M_HCCC2_HCF_PD0_IN_ACK->X:$6C084,7,1

M_HCCC2_HCF_PD1_OUT_CMD->X:$6C084,8,1

M_HCCC2_HCF_PD1_IN_ACK->X:$6C084,9,1

M_HCCC3_usNetxFlags->Y:$6C085,0,16

M_HCCC3_NCF_COMMUNICATING->Y:$6C085,0,1

M_HCCC3_NCF_ERROR->Y:$6C085,1,1

M_HCCC3_NCF_HOST_COS_ACK->Y:$6C085,2,1

M_HCCC3_NCF_NETX_COS_CMD->Y:$6C085,3,1

M_HCCC3_NCF_SEND_MBX_ACK->Y:$6C085,4,1

M_HCCC3_NCF_RECV_MBX_CMD->Y:$6C085,5,1

M_HCCC3_NCF_PD0_OUT_ACK->Y:$6C085,6,1

M_HCCC3_NCF_PD0_IN_CMD->Y:$6C085,7,1

M_HCCC3_NCF_PD1_OUT_ACK->Y:$6C085,8,1

M_HCCC3_NCF_PD1_IN_CMD->Y:$6C085,9,1

M_HCCC3_usHostFlags->X:$6C085,0,16

M_HCCC3_HCF_HOST_COS_CMD->X:$6C085,2,1

M_HCCC3_HCF_NETX_COS_ACK->X:$6C085,3,1

M_HCCC3_HCF_SEND_MBX_CMD->X:$6C085,4,1

M_HCCC3_HCF_RECV_MBX_ACK->X:$6C085,5,1

M_HCCC3_HCF_PD0_OUT_CMD->X:$6C085,6,1

M_HCCC3_HCF_PD0_IN_ACK->X:$6C085,7,1

M_HCCC3_HCF_PD1_OUT_CMD->X:$6C085,8,1

M_HCCC3_HCF_PD1_IN_ACK->X:$6C085,9,1

M_HCAC0_usNetxFlags->Y:$6C086,0,16

M_HCAC0_NCF_COMMUNICATING->Y:$6C086,0,1

M_HCAC0_NCF_ERROR->Y:$6C086,1,1

M_HCAC0_NCF_HOST_COS_ACK->Y:$6C086,2,1

M_HCAC0_NCF_NETX_COS_CMD->Y:$6C086,3,1

M_HCAC0_NCF_SEND_MBX_ACK->Y:$6C086,4,1

M_HCAC0_NCF_RECV_MBX_CMD->Y:$6C086,5,1

M_HCAC0_NCF_PD0_OUT_ACK->Y:$6C086,6,1

M_HCAC0_NCF_PD0_IN_CMD->Y:$6C086,7,1

M_HCAC0_NCF_PD1_OUT_ACK->Y:$6C086,8,1

M_HCAC0_NCF_PD1_IN_CMD->Y:$6C086,9,1

M_HCAC0_usHostFlags->X:$6C086,0,16

M_HCAC0_HCF_HOST_COS_CMD->X:$6C086,2,1

M_HCAC0_HCF_NETX_COS_ACK->X:$6C086,3,1

M_HCAC0_HCF_SEND_MBX_CMD->X:$6C086,4,1

M_HCAC0_HCF_RECV_MBX_ACK->X:$6C086,5,1

M_HCAC0_HCF_PD0_OUT_CMD->X:$6C086,6,1

M_HCAC0_HCF_PD0_IN_ACK->X:$6C086,7,1

M_HCAC0_HCF_PD1_OUT_CMD->X:$6C086,8,1

M_HCAC0_HCF_PD1_IN_ACK->X:$6C086,9,1

M_HCAC1_usNetxFlags->Y:$6C087,0,16

M_HCAC1_NCF_COMMUNICATING->Y:$6C087,0,1

M_HCAC1_NCF_ERROR->Y:$6C087,1,1

M_HCAC1_NCF_HOST_COS_ACK->Y:$6C087,2,1

M_HCAC1_NCF_NETX_COS_CMD->Y:$6C087,3,1

M_HCAC1_NCF_SEND_MBX_ACK->Y:$6C087,4,1

M_HCAC1_NCF_RECV_MBX_CMD->Y:$6C087,5,1

M_HCAC1_NCF_PD0_OUT_ACK->Y:$6C087,6,1

M_HCAC1_NCF_PD0_IN_CMD->Y:$6C087,7,1

M_HCAC1_NCF_PD1_OUT_ACK->Y:$6C087,8,1

M_HCAC1_NCF_PD1_IN_CMD->Y:$6C087,9,1

M_HCAC1_usHostFlags->X:$6C087,0,16

M_HCAC1_HCF_HOST_COS_CMD->X:$6C087,2,1

M_HCAC1_HCF_NETX_COS_ACK->X:$6C087,3,1

M_HCAC1_HCF_SEND_MBX_CMD->X:$6C087,4,1

M_HCAC1_HCF_RECV_MBX_ACK->X:$6C087,5,1

M_HCAC1_HCF_PD0_OUT_CMD->X:$6C087,6,1

M_HCAC1_HCF_PD0_IN_ACK->X:$6C087,7,1

M_HCAC1_HCF_PD1_OUT_CMD->X:$6C087,8,1

ACC-72EX User Manual

Appendix A – Setup Examples 142

M_HCAC1_HCF_PD1_IN_ACK->X:$6C087,9,1

M_CC0_RCX_APP_COS_APP_READY->Y:$6C0C2,0,1

M_CC0_RCX_APP_COS_BUS_ON->Y:$6C0C2,1,1

M_CC0_RCX_APP_COS_BUS_ON_ENABLE->Y:$6C0C2,2,1

M_CC0_RCX_APP_COS_INIT->Y:$6C0C2,3,1

M_CC0_RCX_APP_COS_INIT_ENABLE->Y:$6C0C2,4,1

M_CC0_RCX_APP_COS_LOCK_CFG->Y:$6C0C2,5,1

M_CC0_RCX_APP_COS_LOCK_CFG_ENA->Y:$6C0C2,6,1

M_CC0_RCX_APP_COS_DMA->Y:$6C0C2,7,1

M_CC0_RCX_APP_COS_DMA_ENABLE->Y:$6C0C2,8,1

M_CC0_ulDeviceWatchdog->DP:$6C0C3

M_CC0_RCX_COMM_COS_READY->Y:$6C0C4,0,1

M_CC0_RCX_COMM_COS_RUN->Y:$6C0C4,1,1

M_CC0_RCX_COMM_COS_BUS_ON->Y:$6C0C4,2,1

M_CC0_RCX_COMM_COS_CONFIG_LOCKED->Y:$6C0C4,3,1

M_CC0_RCX_COMM_COS_CONFIG_NEW->Y:$6C0C4,4,1

M_CC0_RCX_COMM_COS_RESTART_REQ->Y:$6C0C4,5,1

M_CC0_RCX_COMM_CO_REQ_ENA->Y:$6C0C4,6,1

M_CC0_RCX_COMM_COS_DMA->Y:$6C0C4,7,1

M_CC0_ulCommunicationState->DP:$6C0C5

M_CC0_ulCommunicationError->DP:$6C0C6

M_CC0_usVersion->Y:$6C0C7,0,16

M_CC0_usWatchdogTime->X:$6C0C7,0,16

M_CC0_bPDInHskMode->Y:$6C0C8,0,8

M_CC0_bPDInSource->Y:$6C0C8,8,8

M_CC0_bPDOutHskMode->X:$6C0C8,0,8

M_CC0_bPDOutSource->X:$6C0C8,8,8

M_CC0_ulHostWatchdog->DP:$6C0C9

M_CC0_ulErrorCount->DP:$6C0CA

M_CC0_bErrorLogInd->Y:$6C0CB,0,8

M_CC0_bErrorPDInCnt->Y:$6C0CB,8,8

M_CC0_bErrorPDOutCnt->X:$6C0CB,0,8

M_CC0_bErrorSyncCnt->X:$6C0CB,8,8

M_CC0_bSyncHskMode->Y:$6C0CC,0,8

M_CC0_bSyncSource->Y:$6C0CC,8,8

M_CC0_ulSlaveState->DP:$6C0CE

M_CC0_ulSlaveErrLogInd->DP:$6C0CF

M_CC0_ulNumOfConfigSlaves->DP:$6C0D0

M_CC0_ulNumOfActiveSlaves->DP:$6C0D1

M_CC0_ulNumOfDiagSlaves->DP:$6C0D2

ACC-72EX User Manual

Appendix B – TURBO PMAC Memory Maps 143

APPENDIX B – TURBO PMAC MEMORY MAPS

PROFIBUS-DP Master PROFIBUS-DP Slave DeviceNet Master DeviceNet Slave CANopen Master CANopen Slave CC-Link Slave EtherCAT Master EtherCAT Slave EtherNet/IP
Scanner/Master

EtherNet/IP
Adapter/Slave

Open Modbus/TCP PROFINET IO
Controller/Master

PROFINET IO
Device/Slave

ACC-72EX Address $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000
netX Identification netX netX netX netX netX netX netX netX netX netX netX netX netX netX
Dual-Port Memory Size 16384 bytes 8192 bytes 16384 bytes 8192 bytes 65536 bytes 8192 bytes 8192 bytes 16384 bytes 16384 bytes 65536 bytes 16384 bytes 16384 bytes 32768 bytes 32768 bytes
Device Number 1532410 1562420 1532510 1562520 1532500 1562540 1562740 1532100 1532100 1532100 1532100 1532100 1532100 1532100
Hardware Assembly Options
 Port 0 NOT CONNECTED PROFIBUS NOT CONNECTED DEVICENET NOT CONNECTED CAN CC-LINK ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy)
 Port 1 NOT CONNECTED NOT AVAILABLE NOT CONNECTED NOT AVAILABLE NOT CONNECTED NOT AVAILABLE NOT AVAILABLE ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy)
 Port 2 PROFIBUS NOT AVAILABLE DEVICENET NOT AVAILABLE CAN NOT AVAILABLE NOT AVAILABLE NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED
 Port 3 NOT CONNECTED NOT AVAILABLE NOT CONNECTED NOT AVAILABLE NOT CONNECTED NOT AVAILABLE NOT AVAILABLE NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED
Hilscher Module License Information (PROFIBUS Master) (CANopen

Master) (DeviceNet Master) (AS-
Interface Master) (PROFINET IO RT
Controller) (EtherCAT Master)
(EtherNet/IP Scanner) (SERCOS III
Master) 1 Master License

Unlimited number of master
licenses

(PROFIBUS Master) (CANopen
Master) (DeviceNet Master) (AS-
Interface Master) (PROFINET IO RT
Controller) (EtherCAT Master)
(EtherNet/IP Scanner) (SERCOS III
Master) 1 Master License

Unlimited number of master
licenses

(PROFIBUS Master) (CANopen
Master) (DeviceNet Master) (AS-
Interface Master) (PROFINET IO RT
Controller) (EtherCAT Master)
(EtherNet/IP Scanner) (SERCOS III
Master) 1 Master License

Unlimited number of master
licenses

Unlimited number of master
licenses

(PROFIBUS Master) (CANopen
Master) (DeviceNet Master) (AS-
Interface Master) (PROFINET IO RT
Controller) (EtherCAT Master)
(EtherNet/IP Scanner) (SERCOS III
Master) Unlimited number of
master licenses

Unlimited number of master
licenses

(PROFIBUS Master) (CANopen
Master) (DeviceNet Master) (AS-
Interface Master) (PROFINET IO RT
Controller) (EtherCAT Master)
(EtherNet/IP Scanner) (SERCOS III
Master) 1 Master License

Unlimited number of master
licenses

Unlimited number of master
licenses

(PROFIBUS Master) (CANopen
Master) (DeviceNet Master) (AS-
Interface Master) (PROFINET IO RT
Controller) (EtherCAT Master)
(EtherNet/IP Scanner) (SERCOS III
Master) 1 Master License

Unlimited number of master
licenses

Tool License Information (SYCON.net) (SYCON.net) (SYCON.net) (SYCON.net) (SYCON.net) (SYCON.net)
Device Class COMX 100 COMX 10 COMX 100 COMX 10 COMX 100 COMX 10 COMX 10 COMX 100 COMX 100 COMX 100 COMX 100 COMX 100 COMX 100 COMX 100

 + Block 0
 | Channel Type System System System System System System System System System System System System System System
 | Size of Channel 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes
 | Channel Start Address $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000
 | Position of Handshake Cells IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL
 | netX System Flags Adress X:$6C080,0,8 X:$6C080,0,8 X:$6C080,0,8 X:$6C080,0,8 X:$6C080,0,8 X:$6C080,0,8 X:$6C080,0,8 X:$6C080,0,8 X:$6C080,0,8 X:$6C080,0,8 X:$6C080,0,8 X:$6C080,0,8 X:$6C080,0,8 X:$6C080,0,8
 | Host System Flags Adress X:$6C080,8,8 X:$6C080,8,8 X:$6C080,8,8 X:$6C080,8,8 X:$6C080,8,8 X:$6C080,8,8 X:$6C080,8,8 X:$6C080,8,8 X:$6C080,8,8 X:$6C080,8,8 X:$6C080,8,8 X:$6C080,8,8 X:$6C080,8,8 X:$6C080,8,8
 | Size of Handshake Cells 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS
 | Size of Mailbox 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes
 | Mailbox Start address $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040
 | Number of Subblocks 5 5 5 5 5 5 5 5 5 5 5 5 5 5
 |
 |--- Subblock 0 COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS
 | Size 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes
 | Start Offset $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000 $6C000
 | Transfer Direction IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |
 |--- Subblock 1 CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL
 | Size 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes
 | Start Offset $6C02E $6C02E $6C02E $6C02E $6C02E $6C02E $6C02E $6C02E $6C02E $6C02E $6C02E $6C02E $6C02E $6C02E
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |
 |--- Subblock 2 COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS
 | Size 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes
 | Start Offset $6C030 $6C030 $6C030 $6C030 $6C030 $6C030 $6C030 $6C030 $6C030 $6C030 $6C030 $6C030 $6C030 $6C030
 | Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |
 |--- Subblock 3 MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX
 | Size 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes
 | Start Offset $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040 $6C040
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 4 4 4 4 4 4 4 4 4 4 4 4 4 4
 |
 |--- Subblock 4 MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX
 Size 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes
 Start Offset $6C060 $6C060 $6C060 $6C060 $6C060 $6C060 $6C060 $6C060 $6C060 $6C060 $6C060 $6C060 $6C060 $6C060
 Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 Handshake Mode UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN
 Handshake Bit 5 5 5 5 5 5 5 5 5 5 5 5 5 5

 + Block 1
 | Channel Type Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake
 | Size of Channel 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes
 | Channel Start Address $6C080 $6C080 $6C080 $6C080 $6C080 $6C080 $6C080 $6C080 $6C080 $6C080 $6C080 $6C080 $6C080 $6C080

 + Block 2
 | Channel Type Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication
 | Size of Channel 15616 bytes 7424 bytes 15616 bytes 7424 bytes 15616 bytes 7424 bytes 7424 bytes 15616 bytes 15616 bytes 15616 bytes 15616 bytes 15616 bytes 15616 bytes 15616 bytes
 | Channel Start Address $6C0C0 $6C0C0 $6C0C0 $6C0C0 $6C0C0 $6C0C0 $6C0C0 $6C0C0 $6C0C0 $6C0C0 $6C0C0 $6C0C0 $6C0C0 $6C0C0
 | Position of Handshake Cells IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL
 | Size of Handshake Cells 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS
 | NetX Handshake Register Y:$6C082,0,16 Y:$6C082,0,16 Y:$6C082,0,16 Y:$6C082,0,16 Y:$6C082,0,16 Y:$6C082,0,16 Y:$6C082,0,16 Y:$6C082,0,16 Y:$6C082,0,16 Y:$6C082,0,16 Y:$6C082,0,16 Y:$6C082,0,16 Y:$6C082,0,16 Y:$6C082,0,16
 | Host Handshake Register X:$6C082,0,16 X:$6C082,0,16 X:$6C082,0,16 X:$6C082,0,16 X:$6C082,0,16 X:$6C082,0,16 X:$6C082,0,16 X:$6C082,0,16 X:$6C082,0,16 X:$6C082,0,16 X:$6C082,0,16 X:$6C082,0,16 X:$6C082,0,16 X:$6C082,0,16
 | Communication Class MASTER SLAVE MASTER SLAVE MASTER SLAVE SLAVE MASTER SLAVE SCANNER ADAPTER MESSAGING IO-CONTROLLER IO-DEVICE
 | Protocol Class Managing Node Managing Node Server Server Scanner Scanner Adapter Io-Controller Io-Controller Io-Device Io-Device Combination Firmware Programmable Logic Controller (Plc) Programmable Logic Controller (Plc)
 | Conformance Class 0 0 0 0 0 0 0 0 0 0 0 0 0 67
 | Number of Subblocks 9 9 9 9 9 9 9 9 9 9 9 9 9 9
 |
 |--- Subblock 0 CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL
 | Size 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes
 | Start Offset $6C0C2 $6C0C2 $6C0C2 $6C0C2 $6C0C2 $6C0C2 $6C0C2 $6C0C2 $6C0C2 $6C0C2 $6C0C2 $6C0C2 $6C0C2 $6C0C2
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |
 |--- Subblock 1 COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS
 | Size 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes
 | Start Offset $6C0C4 $6C0C4 $6C0C4 $6C0C4 $6C0C4 $6C0C4 $6C0C4 $6C0C4 $6C0C4 $6C0C4 $6C0C4 $6C0C4 $6C0C4 $6C0C4
 | Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |
 |--- Subblock 2 EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS
 | Size 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes
 | Start Offset $6C0D4 $6C0D4 $6C0D4 $6C0D4 $6C0D4 $6C0D4 $6C0D4 $6C0D4 $6C0D4 $6C0D4 $6C0D4 $6C0D4 $6C0D4 $6C0D4
 | Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |
 |--- Subblock 3 MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX
 | Size 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes
 | Start Offset $6C140 $6C140 $6C140 $6C140 $6C140 $6C140 $6C140 $6C140 $6C140 $6C140 $6C140 $6C140 $6C140 $6C140
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 4 4 4 4 4 4 4 4 4 4 4 4 4 4

ACC-72EX User Manual

Appendix B – TURBO PMAC Memory Maps 144

PROFIBUS-DP Master PROFIBUS-DP Slave DeviceNet Master DeviceNet Slave CANopen Master CANopen Slave CC-Link Slave EtherCAT Master EtherCAT Slave EtherNet/IP
Scanner/Master

EtherNet/IP
Adapter/Slave

Open Modbus/TCP PROFINET IO
Controller/Master

PROFINET IO
Device/Slave

 |
 |--- Subblock 4 MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX
 | Size 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes
 | Start Offset $6C2D0 $6C2D0 $6C2D0 $6C2D0 $6C2D0 $6C2D0 $6C2D0 $6C2D0 $6C2D0 $6C2D0 $6C2D0 $6C2D0 $6C2D0 $6C2D0
 | Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN
 | Handshake Bit 5 5 5 5 5 5 5 5 5 5 5 5 5 5
 |
 |--- Subblock 5 PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE
 | Size 5760 bytes 1536 bytes 5760 bytes 1536 bytes 5760 bytes 1536 bytes 1536 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes
 | Start Offset $6C4C0 $6C4C0 $6C4C0 $6C4C0 $6C4C0 $6C4C0 $6C4C0 $6C4C0 $6C4C0 $6C4C0 $6C4C0 $6C4C0 $6C4C0 $6C4C0
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 6 6 6 6 6 6 6 6 6 6 6 6 6 6
 |
 |--- Subblock 6 PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE
 | Size 5760 bytes 1536 bytes 5760 bytes 1536 bytes 5760 bytes 1536 bytes 1536 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes
 | Start Offset $6CA60 $6C640 $6CA60 $6C640 $6CA60 $6C640 $6C640 $6CA60 $6CA60 $6CA60 $6CA60 $6CA60 $6CA60 $6CA60
 | Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 7 7 7 7 7 7 7 7 7 7 7 7 7 7
 |
 |--- Subblock 7 HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE
 | Size 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes
 | Start Offset $6C460 $6C460 $6C460 $6C460 $6C460 $6C460 $6C460 $6C460 $6C460 $6C460 $6C460 $6C460 $6C460 $6C460
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 8 8 8 8 8 8 8 8 8 8 8 8 8 8
 |
 |--- Subblock 8 HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE
 Size 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes
 Start Offset $6C470 $6C470 $6C470 $6C470 $6C470 $6C470 $6C470 $6C470 $6C470 $6C470 $6C470 $6C470 $6C470 $6C470
 Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 Handshake Bit 9 9 9 9 9 9 9 9 9 9 9 9 9 9

 + Block 3
 | Channel Type Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Communication Undefined Undefined Undefined Communication
 | Size of Channel 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 15616 bytes 0 bytes 0 bytes 0 bytes 15616 bytes
 | Channel Start Address $6D000 $6C800 $6D000 $6C800 $6D000 $6C800 $6C800 $6D000 $6D000 $6D000 $6D000 $6D000 $6D000 $6D000
 | Position of Handshake Cells BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL IN HANDSHAKE CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL IN HANDSHAKE CHANNEL
 | Size of Handshake Cells NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE 16 BITS NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE 16 BITS
 | NetX Handshake Register X:$6D000 X:$6C800 X:$6D000 X:$6C800 X:$6D000 X:$6C800 X:$6C800 X:$6D000 X:$6D000 Y:$6C083,0,16 X:$6D000 X:$6D000 X:$6D000 Y:$6C083,0,16
 | Host Handshake Register X:$6D000,8,0 X:$6C800,8,0 X:$6D000,8,0 X:$6C800,8,0 X:$6D000,8,0 X:$6C800,8,0 X:$6C800,8,0 X:$6D000,8,0 X:$6D000,8,0 X:$6C083,0,16 X:$6D000,8,0 X:$6D000,8,0 X:$6D000,8,0 X:$6C083,0,16
 | Communication Class UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED MESSAGING UNDEFINED UNDEFINED UNDEFINED MESSAGING
 | Protocol Class UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED
 | Conformance Class 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | Number of Subblocks 0 0 0 0 0 0 0 0 0 9 0 0 0 9
 |
 |--- Subblock 0 CONTROL CONTROL
 | Size 8 bytes 8 bytes
 | Start Offset $6D002 $6D002
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0
 |
 |--- Subblock 1 COMMON STATUS COMMON STATUS
 | Size 64 bytes 64 bytes
 | Start Offset $6D004 $6D004
 | Transfer Direction IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0
 |
 |--- Subblock 2 EXTENDED STATUS EXTENDED STATUS
 | Size 432 bytes 432 bytes
 | Start Offset $6D014 $6D014
 | Transfer Direction IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0
 |
 |--- Subblock 3 MAILBOX MAILBOX
 | Size 1600 bytes 1600 bytes
 | Start Offset $6D080 $6D080
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 4 4
 |
 |--- Subblock 4 MAILBOX MAILBOX
 | Size 1600 bytes 1600 bytes
 | Start Offset $6D210 $6D210
 | Transfer Direction IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNKNOWN UNKNOWN
 | Handshake Bit 5 5
 |
 |--- Subblock 5 PROCESS DATA IMAGE PROCESS DATA IMAGE
 | Size 5760 bytes 5760 bytes
 | Start Offset $6D400 $6D400
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 6 6

 |
 |--- Subblock 6 PROCESS DATA IMAGE PROCESS DATA IMAGE
 | Size 5760 bytes 5760 bytes
 | Start Offset $6D9A0 $6D9A0
 | Transfer Direction IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 7 7
 |
 |--- Subblock 7 HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE
 | Size 64 bytes 64 bytes
 | Start Offset $6D3A0 $6D3A0
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 8 8
 |
 |--- Subblock 8 HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE
 Size 64 bytes 64 bytes
 Start Offset $6D3B0 $6D3B0
 Transfer Direction IN (netX to Host System) IN (netX to Host System)
 Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 Handshake Bit 9 9

 + Block 4
 | Channel Type Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
 | Size of Channel 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes

ACC-72EX User Manual

Appendix B – TURBO PMAC Memory Maps 145

PROFIBUS-DP Master PROFIBUS-DP Slave DeviceNet Master DeviceNet Slave CANopen Master CANopen Slave CC-Link Slave EtherCAT Master EtherCAT Slave EtherNet/IP
Scanner/Master

EtherNet/IP
Adapter/Slave

Open Modbus/TCP PROFINET IO
Controller/Master

PROFINET IO
Device/Slave

 | Channel Start Address $6D000 $6C800 $6D000 $6C800 $6D000 $6C800 $6C800 $6D000 $6D000 $6DF40 $6D000 $6D000 $6D000 $6DF40
 | Position of Handshake Cells BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL
 | Size of Handshake Cells NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE
 | NetX Handshake Register X:$6D000 X:$6C800 X:$6D000 X:$6C800 X:$6D000 X:$6C800 X:$6C800 X:$6D000 X:$6D000 X:$6DF40 X:$6D000 X:$6D000 X:$6D000 X:$6DF40
 | Host Handshake Register X:$6D000,8,0 X:$6C800,8,0 X:$6D000,8,0 X:$6C800,8,0 X:$6D000,8,0 X:$6C800,8,0 X:$6C800,8,0 X:$6D000,8,0 X:$6D000,8,0 X:$6DF40,8,0 X:$6D000,8,0 X:$6D000,8,0 X:$6D000,8,0 X:$6DF40,8,0
 | Communication Class UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED
 | Protocol Class UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED
 | Conformance Class 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | Number of Subblocks 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |

 + Block 5
 | Channel Type Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
 | Size of Channel 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes
 | Channel Start Address $6D000 $6C800 $6D000 $6C800 $6D000 $6C800 $6C800 $6D000 $6D000 $6DF40 $6D000 $6D000 $6D000 $6DF40
 | Position of Handshake Cells BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL
 | Size of Handshake Cells NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE
 | NetX Handshake Register X:$6D000 X:$6C800 X:$6D000 X:$6C800 X:$6D000 X:$6C800 X:$6C800 X:$6D000 X:$6D000 X:$6DF40 X:$6D000 X:$6D000 X:$6D000 X:$6DF40
 | Host Handshake Register X:$6D000,8,0 X:$6C800,8,0 X:$6D000,8,0 X:$6C800,8,0 X:$6D000,8,0 X:$6C800,8,0 X:$6C800,8,0 X:$6D000,8,0 X:$6D000,8,0 X:$6DF40,8,0 X:$6D000,8,0 X:$6D000,8,0 X:$6D000,8,0 X:$6DF40,8,0
 | Communication Class UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED
 | Protocol Class UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED
 | Conformance Class 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | Number of Subblocks 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ACC-72EX User Manual

Appendix C – POWER PMAC Memory Maps 146

APPENDIX C – POWER PMAC MEMORY MAPS

PROFIBUS-DP Master PROFIBUS-DP Slave DeviceNet Master DeviceNet Slave CANopen Master CANopen Slave CC-Link Slave EtherCAT Master EtherCAT Slave EtherNet/IP
Scanner/Master

EtherNet/IP
Adapter/Slave

Open Modbus/TCP PROFINET IO
Controller/Master

PROFINET IO
Device/Slave

ACC-72EX Address Acc72EX[i].a Acc72EX[i].a Acc72EX[i].a Acc72EX[i].a Acc72EX[i].a Acc72EX[i].a Acc72EX[i].a Acc72EX[i].a Acc72EX[i].a Acc72EX[i].a Acc72EX[i].a Acc72EX[i].a Acc72EX[i].a Acc72EX[i].a
netX Identification netX netX netX netX netX netX netX netX netX netX netX netX netX netX
Dual-Port Memory Size 16384 bytes 8192 bytes 16384 bytes 8192 bytes 65536 bytes 8192 bytes 8192 bytes 16384 bytes 16384 bytes 65536 bytes 16384 bytes 16384 bytes 32768 bytes 32768 bytes
Device Number 1532410 1562420 1532510 1562520 1532500 1562540 1562740 1532100 1532100 1532100 1532100 1532100 1532100 1532100
Hardware Assembly Options
 Port 0 NOT CONNECTED PROFIBUS NOT CONNECTED DEVICENET NOT CONNECTED CAN CC-LINK ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy)
 Port 1 NOT CONNECTED NOT AVAILABLE NOT CONNECTED NOT AVAILABLE NOT CONNECTED NOT AVAILABLE NOT AVAILABLE ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy) ETHERNET (internal Phy)
 Port 2 PROFIBUS NOT AVAILABLE DEVICENET NOT AVAILABLE CAN NOT AVAILABLE NOT AVAILABLE NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED
 Port 3 NOT CONNECTED NOT AVAILABLE NOT CONNECTED NOT AVAILABLE NOT CONNECTED NOT AVAILABLE NOT AVAILABLE NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED NOT CONNECTED
Hilscher Module License Information (PROFIBUS Master) (CANopen

Master) (DeviceNet Master) (AS-
Interface Master) (PROFINET IO RT
Controller) (EtherCAT Master)
(EtherNet/IP Scanner) (SERCOS III
Master) 1 Master License

Unlimited number of master
licenses

(PROFIBUS Master) (CANopen
Master) (DeviceNet Master) (AS-
Interface Master) (PROFINET IO RT
Controller) (EtherCAT Master)
(EtherNet/IP Scanner) (SERCOS III
Master) 1 Master License

Unlimited number of master
licenses

(PROFIBUS Master) (CANopen
Master) (DeviceNet Master) (AS-
Interface Master) (PROFINET IO RT
Controller) (EtherCAT Master)
(EtherNet/IP Scanner) (SERCOS III
Master) 1 Master License

Unlimited number of master
licenses

Unlimited number of master
licenses

(PROFIBUS Master) (CANopen
Master) (DeviceNet Master) (AS-
Interface Master) (PROFINET IO RT
Controller) (EtherCAT Master)
(EtherNet/IP Scanner) (SERCOS III
Master) Unlimited number of
master licenses

Unlimited number of master
licenses

(PROFIBUS Master) (CANopen
Master) (DeviceNet Master) (AS-
Interface Master) (PROFINET IO RT
Controller) (EtherCAT Master)
(EtherNet/IP Scanner) (SERCOS III
Master) 1 Master License

Unlimited number of master
licenses

Unlimited number of master
licenses

(PROFIBUS Master) (CANopen
Master) (DeviceNet Master) (AS-
Interface Master) (PROFINET IO RT
Controller) (EtherCAT Master)
(EtherNet/IP Scanner) (SERCOS III
Master) 1 Master License

Unlimited number of master
licenses

Tool License Information (SYCON.net) (SYCON.net) (SYCON.net) (SYCON.net) (SYCON.net) (SYCON.net)
Device Class COMX 100 COMX 10 COMX 100 COMX 10 COMX 100 COMX 10 COMX 10 COMX 100 COMX 100 COMX 100 COMX 100 COMX 100 COMX 100 COMX 100

 + Block 0
 | Channel Type System System System System System System System System System System System System System System
 | Size of Channel 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes 512 bytes
 | Channel Start Address Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a
 | Position of Handshake Cells IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL
 | netX System Flags Address Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a Acc72EX[i].Data8[514].a
 | Host System Flags Address Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a Acc72EX[i].Data8[515].a
 | Size of Handshake Cells 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS 8 BITS
 | Size of Mailbox 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes
 | Mailbox Start address Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a
 | Number of Subblocks 5 5 5 5 5 5 5 5 5 5 5 5 5 5
 |
 |--- Subblock 0 COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS
 | Size 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes 176 bytes
 | Start Offset Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a Acc72EX[i].Data8[0].a
 | Transfer Direction IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional) IN - OUT (Bi-Directional)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |
 |--- Subblock 1 CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL
 | Size 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes
 | Start Offset Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a Acc72EX[i].Data8[184].a
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |
 |--- Subblock 2 COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS
 | Size 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes
 | Start Offset Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a Acc72EX[i].Data8[192].a
 | Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |
 |--- Subblock 3 MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX
 | Size 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes
 | Start Offset Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a Acc72EX[i].Data8[256].a
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 4 4 4 4 4 4 4 4 4 4 4 4 4 4
 |
 |--- Subblock 4 MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX
 Size 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes
 Start Offset Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a Acc72EX[i].Data8[384].a
 Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 Handshake Mode UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN
 Handshake Bit 5 5 5 5 5 5 5 5 5 5 5 5 5 5

 + Block 1
 | Channel Type Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake Handshake
 | Size of Channel 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes
 | Channel Start Address Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a Acc72EX[i].Data8[512].a

 + Block 2
 | Channel Type Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication Communication
 | Size of Channel 15616 bytes 7424 bytes 15616 bytes 7424 bytes 15616 bytes 7424 bytes 7424 bytes 15616 bytes 15616 bytes 15616 bytes 15616 bytes 15616 bytes 15616 bytes 15616 bytes
 | Channel Start Address Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a
 | Position of Handshake Cells IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL IN HANDSHAKE CHANNEL
 | Size of Handshake Cells 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS 16 BITS
 | NetX Handshake Register Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a Acc72EX[i].Data8[520].a
 | Host Handshake Register Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a Acc72EX[i].Data8[522].a
 | Communication Class MASTER SLAVE MASTER SLAVE MASTER SLAVE SLAVE MASTER SLAVE SCANNER ADAPTER MESSAGING IO-CONTROLLER IO-DEVICE
 | Protocol Class Managing Node Managing Node Server Server Scanner Scanner Adapter Io-Controller Io-Controller Io-Device Io-Device Combination Firmware Programmable Logic Controller (Plc) Programmable Logic Controller (Plc)
 | Conformance Class 0 0 0 0 0 0 0 0 0 0 0 0 0 67
 | Number of Subblocks 9 9 9 9 9 9 9 9 9 9 9 9 9 9
 |
 |--- Subblock 0 CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL
 | Size 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes
 | Start Offset Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a Acc72EX[i].Data8[768].a
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |
 |--- Subblock 1 COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS COMMON STATUS
 | Size 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes
 | Start Offset Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a Acc72EX[i].Data8[784].a
 | Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |
 |--- Subblock 2 EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS EXTENDED STATUS
 | Size 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes 432 bytes
 | Start Offset Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a Acc72EX[i].Data8[848].a
 | Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |
 |--- Subblock 3 MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX
 | Size 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes
 | Start Offset Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a Acc72EX[i].Data8[1280].a
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 4 4 4 4 4 4 4 4 4 4 4 4 4 4

ACC-72EX User Manual

Appendix C – POWER PMAC Memory Maps 147

PROFIBUS-DP Master PROFIBUS-DP Slave DeviceNet Master DeviceNet Slave CANopen Master CANopen Slave CC-Link Slave EtherCAT Master EtherCAT Slave EtherNet/IP
Scanner/Master

EtherNet/IP
Adapter/Slave

Open Modbus/TCP PROFINET IO
Controller/Master

PROFINET IO
Device/Slave

 |
 |--- Subblock 4 MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX MAILBOX
 | Size 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes 1600 bytes
 | Start Offset Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a Acc72EX[i].Data8[2280].a
 | Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN
 | Handshake Bit 5 5 5 5 5 5 5 5 5 5 5 5 5 5
 |
 |--- Subblock 5 PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE
 | Size 5760 bytes 1536 bytes 5760 bytes 1536 bytes 5760 bytes 1536 bytes 1536 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes
 | Start Offset Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a Acc72EX[i].Data8[4480].a
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 6 6 6 6 6 6 6 6 6 6 6 6 6 6
 |
 |--- Subblock 6 PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE PROCESS DATA IMAGE
 | Size 5760 bytes 1536 bytes 5760 bytes 1536 bytes 5760 bytes 1536 bytes 1536 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes 5760 bytes
 | Start Offset Acc72EX[i].Data8[10240].a Acc72EX[i].Data8[6016].a Acc72EX[i].Data8[10240].a Acc72EX[i].Data8[6016].a Acc72EX[i].Data8[10240].a Acc72EX[i].Data8[6016].a Acc72EX[i].Data8[6016].a Acc72EX[i].Data8[10240].a Acc72EX[i].Data8[10240].a Acc72EX[i].Data8[10240].a Acc72EX[i].Data8[10240].a Acc72EX[i].Data8[10240].a Acc72EX[i].Data8[10240].a Acc72EX[i].Data8[10240].a
 | Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 7 7 7 7 7 7 7 7 7 7 7 7 7 7
 |
 |--- Subblock 7 HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE
 | Size 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes
 | Start Offset Acc72EX[i].Data8[16000].a Acc72EX[i].Data8[7552].a Acc72EX[i].Data8[16000].a Acc72EX[i].Data8[7552].a Acc72EX[i].Data8[16000].a Acc72EX[i].Data8[7552].a Acc72EX[i].Data8[7552].a Acc72EX[i].Data8[16000].a Acc72EX[i].Data8[16000].a Acc72EX[i].Data8[16000].a Acc72EX[i].Data8[16000].a Acc72EX[i].Data8[16000].a Acc72EX[i].Data8[16000].a Acc72EX[i].Data8[16000].a
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 8 8 8 8 8 8 8 8 8 8 8 8 8 8
 |
 |--- Subblock 8 HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE
 Size 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes 64 bytes
 Start Offset Acc72EX[i].Data8[16064].a Acc72EX[i].Data8[7616].a Acc72EX[i].Data8[16064].a Acc72EX[i].Data8[7616].a Acc72EX[i].Data8[16064].a Acc72EX[i].Data8[7616].a Acc72EX[i].Data8[7616].a Acc72EX[i].Data8[16064].a Acc72EX[i].Data8[16064].a Acc72EX[i].Data8[16064].a Acc72EX[i].Data8[16064].a Acc72EX[i].Data8[16064].a Acc72EX[i].Data8[16064].a Acc72EX[i].Data8[16064].a
 Transfer Direction IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System) IN (netX to Host System)
 Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 Handshake Bit 9 9 9 9 9 9 9 9 9 9 9 9 9 9

 + Block 3
 | Channel Type Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Communication Undefined Undefined Undefined Communication
 | Size of Channel 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 15616 bytes 0 bytes 0 bytes 0 bytes 15616 bytes
 | Channel Start Address NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE Acc72EX[i].Data8[212992].a NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE Acc72EX[i].Data8[212992].a
 | Position of Handshake Cells BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL IN HANDSHAKE CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL IN HANDSHAKE CHANNEL
 | Size of Handshake Cells NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE 16 BITS NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE 16 BITS
 | NetX Handshake Register NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE Acc72EX[i].Data8[524].a NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE Acc72EX[i].Data8[524].a
 | Host Handshake Register NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE Acc72EX[i].Data8[526].a NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE Acc72EX[i].Data8[526].a
 | Communication Class UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED MESSAGING UNDEFINED UNDEFINED UNDEFINED MESSAGING
 | Protocol Class UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED
 | Conformance Class 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | Number of Subblocks 0 0 0 0 0 0 0 0 0 9 0 0 0 9
 |
 |--- Subblock 0 CONTROL CONTROL
 | Size 8 bytes 8 bytes
 | Start Offset Acc72EX[i].Data8[213000].a Acc72EX[i].Data8[213000].a
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0
 |
 |--- Subblock 1 COMMON STATUS COMMON STATUS
 | Size 64 bytes 64 bytes
 | Start Offset Acc72EX[i].Data8[213008].a Acc72EX[i].Data8[213008].a
 | Transfer Direction IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0
 |
 |--- Subblock 2 EXTENDED STATUS EXTENDED STATUS
 | Size 432 bytes 432 bytes
 | Start Offset Acc72EX[i].Data8[213072].a Acc72EX[i].Data8[213072].a
 | Transfer Direction IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNCONTROLLED UNCONTROLLED
 | Handshake Bit 0 0
 |
 |--- Subblock 3 MAILBOX MAILBOX
 | Size 1600 bytes 1600 bytes
 | Start Offset Acc72EX[i].Data8[213504].a Acc72EX[i].Data8[213504].a
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 4 4
 |
 |--- Subblock 4 MAILBOX MAILBOX
 | Size 1600 bytes 1600 bytes
 | Start Offset Acc72EX[i].Data8[215104].a Acc72EX[i].Data8[215104].a
 | Transfer Direction IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode UNKNOWN UNKNOWN
 | Handshake Bit 5 5
 |
 |--- Subblock 5 PROCESS DATA IMAGE PROCESS DATA IMAGE
 | Size 5760 bytes 5760 bytes
 | Start Offset Acc72EX[i].Data8[217088].a Acc72EX[i].Data8[217088].a
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 6 6

 |
 |--- Subblock 6 PROCESS DATA IMAGE PROCESS DATA IMAGE
 | Size 5760 bytes 5760 bytes
 | Start Offset Acc72EX[i].Data8[222848].a Acc72EX[i].Data8[222848].a
 | Transfer Direction IN (netX to Host System) IN (netX to Host System)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 7 7
 |
 |--- Subblock 7 HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE
 | Size 64 bytes 64 bytes
 | Start Offset Acc72EX[i].Data8[216704].a Acc72EX[i].Data8[216704].a
 | Transfer Direction OUT (Host System to netX) OUT (Host System to netX)
 | Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 | Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 | Handshake Bit 8 8
 |
 |--- Subblock 8 HIGH PRIORITY DATA IMAGE HIGH PRIORITY DATA IMAGE
 Size 64 bytes 64 bytes
 Start Offset Acc72EX[i].Data8[216768].a Acc72EX[i].Data8[216768].a
 Transfer Direction IN (netX to Host System) IN (netX to Host System)
 Transfer Type DPM (Dual-Port Memory) DPM (Dual-Port Memory)
 Handshake Mode BUFFERED, HOST CONTROLLED BUFFERED, HOST CONTROLLED
 Handshake Bit 9 9

 + Block 4
 | Channel Type Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
 | Size of Channel 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes

ACC-72EX User Manual

Appendix C – POWER PMAC Memory Maps 148

PROFIBUS-DP Master PROFIBUS-DP Slave DeviceNet Master DeviceNet Slave CANopen Master CANopen Slave CC-Link Slave EtherCAT Master EtherCAT Slave EtherNet/IP
Scanner/Master

EtherNet/IP
Adapter/Slave

Open Modbus/TCP PROFINET IO
Controller/Master

PROFINET IO
Device/Slave

 | Channel Start Address NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE
 | Position of Handshake Cells BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL
 | Size of Handshake Cells NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE
 | NetX Handshake Register NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE
 | Host Handshake Register NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE
 | Communication Class UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED
 | Protocol Class UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED
 | Conformance Class 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | Number of Subblocks 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 |

 + Block 5
 | Channel Type Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
 | Size of Channel 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes 0 bytes
 | Channel Start Address NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE
 | Position of Handshake Cells BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL BEGINNING OF CHANNEL
 | Size of Handshake Cells NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE
 | NetX Handshake Register NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE
 | Host Handshake Register NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE NOT AVAILABLE
 | Communication Class UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED
 | Protocol Class UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED UNDEFINED
 | Conformance Class 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | Number of Subblocks 0 0 0 0 0 0 0 0 0 0 0 0 0 0

