MELSEC System Q

Programmable Logic Controllers

User's Manual

HART Analog Output Module ME1DA6HAI-Q

About this Manual

The texts, illustration, diagrams and examples in this manual are provided for information purposes only. They are intended as aids to help explain the installation, operation, programming and use of the programmable logic controllers of the MELSEC System Q.

If you have any questions about the installation and operation of any of the products described in this manual please contact your local sales office or distributor (see back cover).

You can find the latest information and answers to frequently asked questions on our website at www.mitsubishi-automation.com.

MITSUBISHI ELECTRIC EUROPE BV reserves the right to make changes to this manual or the technical specifications of its products at any time without notice.

© 2010

HART Analog Output Module ME1DA6HAI-Q User's Manual Art.-no.: 236882

	Artno.: 236882					
	Version		Changes / Additions / Corrections			
Α	08/2010	pdp-dk	First edition			
В	01/2013	pdp-dk	New chapter 5: "Intelligent Function Utility (GX Works2)"			
			Addition of the "Intelligent function utility" in section 1.1			
			• Update of table 2-1 and the item "Supported software packages" in section 2.1			
			Changes in section 2.2			
			Note in table 3-10 (entry for X9)			
			Note regarding initial settings in Fig. 6-1 and Fig. 6-2			

Safety Guidelines

For use by qualified staff only

This manual is only intended for use by properly trained and qualified electrical technicians who are fully acquainted with the relevant automation technology safety standards. All work with the hardware described, including system design, installation, configuration, maintenance, service and testing of the equipment, may only be performed by trained electrical technicians with approved qualifications who are fully acquainted with all the applicable automation technology safety standards and regulations. Any operations or modifications to the hardware and/or software of our products not specifically described in this manual may only be performed by authorised Mitsubishi Electric staff.

Proper use of the products

The programmable logic controllers of the MELSEC System Q are only intended for the specific applications explicitly described in this manual. All parameters and settings specified in this manual must be observed. The products described have all been designed, manufactured, tested and documented in strict compliance with the relevant safety standards. Unqualified modification of the hardware or software or failure to observe the warnings on the products and in this manual may result in serious personal injury and/or damage to property. Only peripherals and expansion equipment specifically recommended and approved by Mitsubishi Electric may be used with the programmable logic controllers of the MELSEC System Q.

All and any other uses or application of the products shall be deemed to be improper.

Relevant safety regulations

All safety and accident prevention regulations relevant to your specific application must be observed in the system design, installation, configuration, maintenance, servicing and testing of these products. The installation should be carried out in accordance to applicable local and national standards. Wiring should follow the HART standards.

Safety warnings in this manual

In this manual warnings that are relevant for safety are identified as follows:

DANGER:

Failure to observe the safety warnings identified with this symbol can result in health and injury hazards for the user.

WARNING:

Failure to observe the safety warnings identified with this symbol can result in damage to the equipment or other property.

I

General safety information and precautions

The following safety precautions are intended as a general guideline for using PLC systems together with other equipment. These precautions must always be observed in the design, installation and operation of all control systems.

DANGER:

- Observe all safety and accident prevention regulations applicable to your specific application. Always disconnect all power supplies before performing installation and wiring work or opening any of the assemblies, components and devices.
- Assemblies, components and devices must always be installed in a shockproof housing fitted with a proper cover and fuses or circuit breakers.
- Devices with a permanent connection to the mains power supply must be integrated in the building installations with an all-pole disconnection switch and a suitable fuse.
- Check power cables and lines connected to the equipment regularly for breaks and insulation damage. If cable damage is found immediately disconnect the equipment and the cables from the power supply and replace the defective cabling.
- Before using the equipment for the first time check that the power supply rating matches that of the local mains power.
- Take appropriate steps to ensure that cable damage or core breaks in the signal lines cannot cause undefined states in the equipment.
- You are responsible for taking the necessary precautions to ensure that programs interrupted by brownouts and power failures can be restarted properly and safely. In particular, you must ensure that dangerous conditions cannot occur under any circumstances, even for brief periods.
- EMERGENCY OFF facilities conforming to EN 60204/IEC 204 and VDE 0113 must remain fully operative at all times and in all PLC operating modes. The EMERGENCY OFF facility reset function must be designed so that it cannot ever cause an uncontrolled or undefined restart.
- You must implement both hardware and software safety precautions to prevent the possibility of undefined control system states caused by signal line cable or core breaks.
- When using modules always ensure that all electrical and mechanical specifications and requirements are observed exactly.
- At power ON/OFF, current may instantaneously be output from the output terminal of this module. In such case, wait until the analog output becomes stable to start controlling the external device.

Contents

1	Overvi	ew							
1.1	Feature	es	1-1						
2	System	System Configuration							
2.1	Applica	able Systems	2-1						
2.2	How to	Check the Function Version and Serial No. of the Modules	2-3						
3	Detaile	ed Description of the Module							
3.1		nmesSignal Layout of the Terminal Block							
3.2	Specific 3.2.1 3.2.2 3.2.3	cations	3-4						
3.3	Functions 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8	Analog output HOLD/CLEAR function Analog output test during PLC CPU STOP. Rate control function Scaling function Warning output function Disconnection detection function HART Master Function	3-63-83-103-113-12						
3.4	I/O Sign 3.4.1 3.4.2	nals for the Programmable Controller CPU	3-16						
3.5	Buffer N 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5	Memory Buffer memory assignment CH□ digital value (Un\G1 to Un\G6) CH□ set value check codes (Un\G11 to Un\G16) Error code (Un\G19) Setting range (Un\G20, Un\G21)	3-21 3-32 3-33						

	3.5.6	Short circuit detection setting (Un\G45)	. 3-34
	3.5.7	Rate control enable/disable setting (Un\G46)	. 3-34
	3.5.8	Disconnection detection/warning output setting (Un\G47)	. 3-35
	3.5.9	Warning output flags (Un\G48)	. 3-35
	3.5.10	Disconnection detection flags (Un\G49)	. 3-36
	3.5.11	Short circuit detection flag (Un\G50)	. 3-36
	3.5.12	Scaling enable/disable setting (Un\G53)	. 3-37
	3.5.13	CHI scaling upper/lower limit values (Un\G54 to Un\G65)	. 3-37
	3.5.14	CHI Increase/decrease digital limit values (Un\G70 to Un\G81)	. 3-37
	3.5.15	CHI Warning output upper/lower limit values (Un\G86 to Un\G97) \dots	. 3-38
	3.5.16	HART enable (Un\G160)	. 3-38
	3.5.17	HART scan list (Un\G161).	. 3-38
	3.5.18	HART cycle time (Un\G162 to Un\G164)	. 3-39
	3.5.19	HART maximum retries (Un\G176 to Un\G181)	. 3-40
	3.5.20	HART device information refresh interval (Un\G191)	. 3-40
	3.5.21	HART field device status (Un\G240, Un\G252, Un\G264)	. 3-40
	3.5.22	Extended HART field device status (Un\G241, Un\G253, Un\G265) \dots	. 3-41
	3.5.23	Device variable status (Un\G242 & Un\G243, Un\G254 & Un\G255)	. 3-42
	3.5.24	HART process variables (Un\G244 to Un\G251, Un\G256 to Un\G263)	. 3-43
	3.5.25	HART Command Request (Un\G352 to Un\G483)	. 3-44
	3.5.26	HART Command Answer (Un\G496 to Un\G627)	. 3-46
	3.5.27	Information about HART Device (Un\G896 to Un\G966, Un\G968 to Un\G1038)	. 3-47
4	Setup a	nd Procedures before Operation	
4.1	Handlin	g Precautionsg	4-1
4.2	Setup aı	nd Procedures before Operation	4-2
4.3	Installat	ion of the Module	4-3
4.4	Wiring		4-4
	4.4.1	Wiring precautions	
	4.4.2	External wiring	
4.5		ameter Setting	
	4.5.1	I/O assignment	
	4.5.2	Intelligent function module switch settings	4-7
4.6	Setting	of the HART Devices	4-9

5	Intellig	ent Function Utility (GX Works2)					
5.1	Addition	n of a new Module to the Project	5-1				
5.2	Switch S	Setting	5-3				
5.3	Paramet	ter Setting	5-5				
5.4	Auto Re	fresh Settings	5-7				
5.5	Writing the Intelligent Function Module Settings to the PLC5-8						
6	Progran	mming					
6.1	Program	nming Procedure	6-1				
6.2	Example	e 1: ME1DA6HAI-Q combined with PLC CPU	6-3				
	6.2.1	Before creating a program	6-4				
	6.2.2	Program	6-7				
6.3	Example	e 2: ME1DA6HAI-Q used in Remote I/O Network	6-13				
	6.3.1	Before creating a program	6-14				
	6.3.2	Network parameter	6-17				
	6.3.3	Program	.6-20				
7	Trouble	eshooting					
7.1	Error Co	ode List	7-1				
7.2	Trouble	shooting using the LEDs of the Module	7-2				
	7.2.1	When the "RUN" LED is flashing or turned off	7-2				
	7.2.2	When the "ERR." LED is on	7-2				
	7.2.3	When the "ALM" LED is on or flashing	7-2				
7.3	When a	n Analog Output Value is Not Output	7-3				
7.4	When a	n Analog Output Value is Not Held	7-3				
7.5	Checkin	g the Analog Output Module Status	7-4				
	Index						

Features Overview

1 Overview

This User's Manual describes the specifications, handling and programming methods for the HART analog output module ME1DA6HAI-Q (hereinafter referred to as the ME1DA6HAI-Q) which is used with the CPU modules of the MELSEC System Q. The ME1DA6HAI-Q is exclusively used for current output.

1.1 Features

Multi-channel analog output is available.

By using a single ME1DA6HAI-Q, analog current outputs of 6 points (6 channels) are available. Standard devices with 4 to 20 mA or 0 to 20 mA input range and HART devices can be connected to the module at the same time. The analog output range of the ME1DA6HAI-Q is selectable by the intelligent function module switch setting in GX(IEC) Developer.

HART master function

The ME1DA6HAI-Q can communicate with up to six HART-enabled devices. (One HART device connected to each channel.) HART* is a bi-directional industrial field communication protocol used to communicate between intelligent field devices and host systems.

For this communication no additional wiring is required. Additional device information is communicated using a digital signal that is superimposed on the analog signal. The digital signal contains information from and to the device including device configuration or re-configuration, device status, diagnostics, or additional information.

The ME1DA6HAI-Q can operate as a HART master with protocol revision 6.

* HART stands for **H**ighway **A**ddressable **R**emote **T**ransducer. Fore more information about the HART protocol please refer to section 3.3.6.

FDT/DTM function support

The FDT/DTM* can be used for setting and monitoring the HART devices. To use this function, the HART device must have DeviceDTM.

* FDT stands for Field Device Tool and DTM stands for Device Type Manager. FDT/DTM is a communication technique for the manufacturer-independent configuration of processing systems at a field bus.

High accuracy

The accuracy is as high as ± 0.3 % over the specified operating temperature range for the MELSEC System Q.

Easy changing of the output range

The output range (4 to 20 mA or 0 to 20 mA) can easily be set from the GX (IEC) Developer.

Analog output hold/clear function

This function is used to set whether the analog output value will be held or cleared when the PLC CPU module is in a STOP status or when an error occurs which stops the PLC CPU.

Warning output function

A warning is triggered if a digital input value falls outside the setting range.

Rate control function

The increment and decrement of the analog output value per conversion cycle can be restricted.

Overview Features

Disconnection detection function

When the analog output current is 4mA or more, the voltage across the output is watched to detect a disconnection.

Short circuit detection function

When the analog output current is 4 mA or more, the external load resistance is watched to detect a short circuit.

Scaling function

The digital input value range (Un\G1–Un\G6) can be changed to any given range between –32768 and 32767, and digital values within the range are converted to analog values.

Easy settings using the "Intelligent function utility"

The "Intelligent function utility" is not a required item, however, it is useful for on-screen setting of the intelligent function module parameters (initial setting/auto refresh setting).*

* The "Intelligent function utility" is supported by the ME1DA6HAI-Q if the first 5 digits of the serial number are "14102" or higher.

Applicable Systems System Configuration

2 System Configuration

2.1 Applicable Systems

Applicable modules, base units, and No. of modules

When mounted with a CPU module

The table below shows the CPU modules and base units applicable to the HART Analog Output Module ME1DA6HAI-Q and quantities for each CPU model.

Depending on the combination with other modules or the number of mounted modules, the power supply capacity may be insufficient. Pay attention to the power supply capacity before mounting modules, and if the power supply capacity is insufficient, change the combination of the modules.

Applicable CPU module		No. of	Base unit ^{*2}		
CPU	CPU type		ME1DA6HAI-Qthat can be installed*1	Main base unit	Extension base unit
		Q00JCPU	Up to 16		
	Basic model QCPU	Q00CPU	Up to 24	•	•
		Q01CPU	ορ το 24		
		Q02CPU			
	High	Q02HCPU			
	performance	Q06HCPU	Up to 64	•	•
	model QCPU	Q12HCPU			
		Q25HCPU			
		Q02PHCPU			
	Process CPU	Q06PHCPU	- Up to 64		
Programmable		Q12PHCPU		•	_
controller CPU		Q25PHCPU			
	Redundant CPU	Q12PRHCPU	Up to 53	0	
		Q25PRHCPU	ορ το 33	O	_
		Q00UJCPU	Up to 16		
		Q00UCPU	Up to 24		
		Q01UCPU	Ορ το 24		
	Universal model QCPU	Q02UCPU	Up to 36	•	•
		Q□UD(E)CPU			
		Q50UDEHCPU	Up to 64		
		Q100UDEHCP			
	Safety CPU	QS001CPU	_	0	0
Q06		Q06CCPU-V-H01			
C C - 11411-114-114-114-114-114-114-114-114			lla ta 64		
C Controller mod	uie	Q06CCPU-V-B	- Up to 64	•	
			1		

Tab. 2-1: Applicable base units and number of mountable modules

■ : Applicable, ○: N/A

NOTE A ME1DA6HAI-Q can not installed at the main base in a redundant system with QnPRHCPU.

^{*1} Limited within the range of I/O points for the CPU module.

^{*2} The ME1DA6HAI-Q can be installed to any I/O slot of a base unit.

System Configuration Applicable Systems

Mounting to a MELSECNET/H remote I/O station

The table below shows the network modules and base units applicable to the analog output module ME1DA6HAI-Q and quantities for each network module model.

Depending on the combination with other modules or the number of mounted modules, power supply capacity may be insufficient. Pay attention to the power supply capacity before mounting modules, and if the power supply capacity is insufficient, change the combination of the modules.

	No. of ME1DA6HAI-Q that	Base unit ^{*2}		
Applicable network module	can be installed*1	Main base unit of remote I/O station	Extension base unit of remote I/O station	
QJ72LP25-25				
QJ72LP25G	Un to 64			
QJ72LP25GE	Up to 64	•	•	
QJ72BR15				

Tab. 2-2: Applicable base units and number of mountable modules in a MELSECNET/H remote I/O station

■ : Applicable, ○: N/A

NOTE

The Basic model QCPU or C Controller module cannot create the MELSECNET/H remote I/O network.

Support of the multiple CPU system

The function version of the HART analog output module supports the multiple CPU system. When using the ME1DA6HAI-Q in a multiple CPU system, refer to the following manual first.

- QCPU User's Manual (Multiple CPU System)
- Intelligent function module parameters

Write intelligent function module parameters to only the control CPU of the ME1DA6HAI-Q.

Compatibility with online module change

The ME1DA6HAI-Q does not support online module change.

Supported software packages

For setting the PLC parameters for a system containing the ME1DA6HAI-Q and programming, the software packages GX Developer, GX IEC Developer and GX Works2 can be used.

In addition, the Intelligent Function Utility of GX Works2 can be used to set the intelligent function module parameters (initial settings/auto refresh settings) of the ME1DA6HAI-Q.

Depending on the CPU module used, a certain version of the software is needed since newly CPU modules are not supported by previous versions.

NOTE

Please check whether the mounted CPU module is supported or not by your version of the programming software.

^{*1} Limited within the range of I/O points for the network module.

^{*2} The ME1DA6HAI-Q can be installed to any I/O slot of a base unit.

2.2 How to Check the Function Version and Serial No. of the Modules

Using the programming software GX Developer, GX IEC Developer or GX Works2, the serial No. and the function version can be checked while the PLC is operating.

From the *Diagnostics* menu select *System Monitor* and then select *Product Inf. List.*

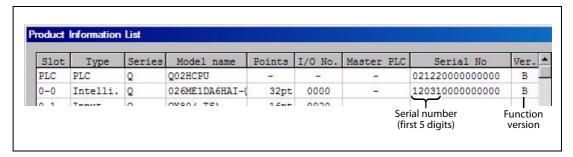


Fig. 2-1: Product Information List for a PLC with a ME1DA6HAI-Q

NOTE

The serial number displayed on the product information screen of GX Developer, GX IEC Developer or GX Works2 describes the function information of the product. The function information of the product is updated when a new function is added.

3 Detailed Description of the Module

3.1 Part Names

This section explains the names of the components for the ME1DA6HAI-Q.

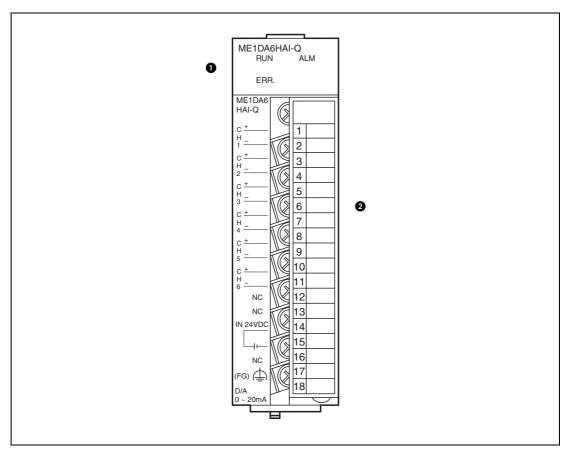


Fig. 3-1: Names of parts

No.	Name		Description		
		RUN	Displays the operating status of the ME1DA6HAI-Q. On: Normal operation Flashing: Intelligent function module setting switch 4 is not set to "0". Off: – Power supply (5 V DC) is off – A watchdog timer error has occurred.		
0	LEDs	ERR.	Displays the error status of the ME1DA6HAI-Q. On: Operation error Off: Normal operation		
		ALM	Indicates the alarm status of the ME1DA6HAI-Q. On: A short circuit at an analog output has been detected. Flashing: A disconnection at an analog output has been detected. Off: Normal operation		
9	Detacha	ble terminal block	Used for connection of the HART current input devices (slaves) or normal current input devices and the external power supply.		

Tab. 3-1: Description of the LEDs and the terminal block of the ME1DA6HAI-Q

NOTE

When two or more errors have occurred, the latest error found by the HART analog output module is indicated with the LED.

3.1.1 Signal Layout of the Terminal Block

Terminal No.	Signal	name	Description
1	CH1	+	Analog output channel 1
2	СП	-	Analog output channel i
3	CH2	+	Analog output channel 2
4	CHZ	-	Analog output channel 2
5	CH3	+	Analas autout shannal 2
6	CH3	_	Analog output channel 3
7	CH4	+	Analog output shannel 4
8	СП4	_	Analog output channel 4
9	CH5	+	Analas autout shanal 5
10	CHS	_	Analog output channel 5
11	CUC	+	Analas autout shannal C
12	CH6	_	Analog output channel 6
13	N	iC	Net connected
14	NC		Not connected
15	+ 24 V DC		Futamed a succession by
16	0	V	External power supply
17	NC		Not connected
18	(F	G)	Frame Ground

 Tab. 3-2:
 Signal layout for the detachable terminal block of the ME1DA6HAI-Q

For the wiring of the HART analog output module ME1DA6HAI-Q please refer to section 4.4.

3.2 Specifications

The specifications for the ME1DA6HAI-Q are shown in the following table. For general specifications, refer to the operation manual for the CPU module being used.

ltem		Specifications				
Number of analog outputs		6 points (6 channels)				
Analog	Current	0 to 20 mA DC				
output	External load			50 to 600 Ω		
Digital input	•		16-bit sig	ned binary (–32768 to 3	32767)	
				·		
I/O characteristics.	I/O characteristics, maximum resolution		Analog output range	Digital input value	Maximum resolution	
i, o characteristics,			0 to 20 mA	0 to 28000	714 nA	
			4 to 20 mA	0 10 28000	571 nA	
Accuracy (relative to the	Ambient temperature 25 °C ±5 °C			±0.15% (±42 digit)		
analog output range) Ambient temperature 0 to 55 °C ±0.3 % (±84 digit)						
Conversion time	with HART		220 ms ^① (Indeper	ndent to the number of	used channels)	
Conversion time	without HART		70 ms (Independ	ent to the number of u	sed channels)	
Protection func-	Disconnection detection	When the output voltage is higher than 15 V.				
tions ^②	Short circuit detection	When the external load is $<$ 30 Ω .				
	Response time	0.5 seconds for all channels (Independent to the number of used channels)				
	Between the I/O terminals and PLC power supply	Digital isolator insulation				
Insulation method	Between analog output channels	Non-insulated				
	Between I/O terminals and external power supply	Transformer insulation				
HART modem		FSK Physical Layer, multiplexed				
		– Protocol Revision 6 support				
HART functions		– 4 Process variables support (PV, SV, TV, QV)				
		– FDT/DTM support				
Number of I/O occ		32 points (I/O assignment: Intelligent 32 points)				
External wiring co				-points terminal block		
Applicable wire size		Refer to the HART specification for more details. $^{ ext{@}}$				
Applicable solderless terminals		R1.25-3 (Solderless terminals with sleeves cannot be used.)				
External	Voltage		24 V DC (+20%, -15%); ripple, spike within 500mV _{P-P}			
supply power	Current	0.28 A				
	Inrush current		5.3 A within 100 μs			
Online module cha	_ -			Not supported		
	ensumption (5 VDC)	0.32 A				
Weight			0.19 kg			

Tab. 3-3: Specifications of the ME1DA6HAI-Q

① In the PLC parameters (intelligent function module switches) the conversion time with HART communication can be set to the same value as the conversion time without HART communication (refer to section 4.5.2).

 $[\]ensuremath{@}$ The protection functions can only be used with output currents of 4 mA or more.

 $^{^{(3)}}$ Use case: For distances up to 800 m, the wire size of 0.51 mm diameter with 115 nF/km cable capacitance and 36.7 Ω /km cable resistance can be applied.

3.2.1 I/O conversion characteristics

The I/O conversion characteristics are used for converting the digital value written from the PLC CPU to an analog output value (current output). In the following figure the I/O conversion characteristics are represented by inclined straight lines.

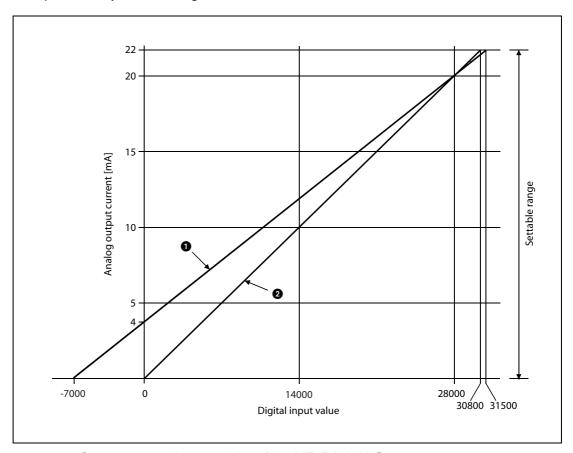


Fig. 3-2: Current output characteristics of the ME1DA6HAI-Q

No.	Output range setting	Digital in	Resolution	
	Output range setting	Normal range	Tight shut off	Resolution
0	4 to 20 mA	-7000 to 28000	31500	571 nA
2	0 to 20 mA	0 to 28000	30800	714 nA

Tab. 3-4: Shut-off values and resolution for the various output ranges

NOTES

Digital input values below 0 in the 4 to 20 mA setting range will result in output currents smaller than 4 mA.

Negative output currents are not allowed.

Choose the appropriate analog output range for each channel according to the specifications of the connected device.

If these ranges are exceeded, the maximum resolution and accuracy may not fall within the performance specifications.

3.2.2 Accuracy

The reference accuracy is the accuracy relative to the analog output range.

Even if the analog output range is changed to change the output characteristic, the reference accuracy does not vary and is kept within the range given in the performance specifications.

An accuracy of ± 0.3 % is maintained over the whole operating temperature range of the MELSEC System Q (0 to +55 °C).

3.2.3 External Dimensions

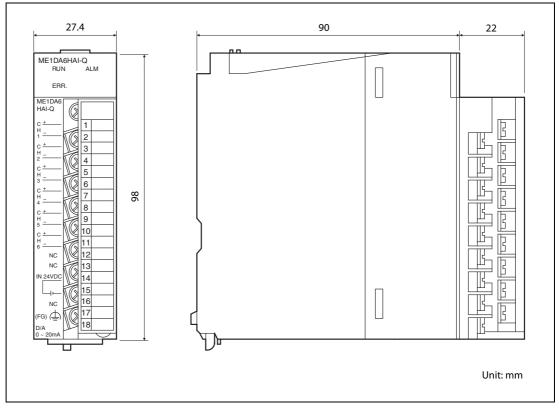


Fig. 3-3: Dimensions of the ME1DA6HAI-Q

3.3 Functions of the HART Analog Output Module

Function	Description	Reference
Analog output HOLD/ CLEAR	The output analog value can be retained when the PLC CPU module is placed in the STOP status or when an error occurs.	Section 3.3.1
Analog output test during PLC CPU STOP	When the CH□ output enable/disable flag is forced ON during PLC CPU STOP, the D/A converted analog value is output	Section 3.3.2
Rate control	The increment and decrement of the analog output value per conversion cycle can be restricted.	Section 3.3.3
Scaling	The input range of digital values can be changed to any given range between -32768 and 32767.	Section 3.3.4
Warning output	A warning is triggered if a digital input value falls outside the setting range.	Section 3.3.5
Disconnection detection	When the analog output current is 4 mA or more, the voltage across the output is watched to detect a disconnection.	Section 3.3.6
Short-circuit detection	When the analog output current is 4 mA or more, the external load resistance is monitored to detect a short circuit on a channel.	Section 3.3.7
HART Master function	HART communication support The ME1DA6HAI-Q can communicate with up to six HART-enabled devices. (One HART device connected to each channel.) Communication occurs using standard instrumentation grade wire and using standard wiring and termination practices – no additional wiring is required. FDT/DTM function support Using a commercially available FDT (Field Device Tool), reading/writing the HART device's parameters and monitoring the HART device status are executable via the ME1DA6HAI-Q.	Section 3.3.8

Tab. 3-5: Functions of the ME1DA6HAI-Q

3.3.1 Analog output HOLD/CLEAR function

For the case where the programmable controller (PLC) CPU is placed in STOP or in a stop error status, whether to hold (HOLD) or clear (CLEAR) the analog output value can be set.

Make the setting in the HOLD/CLEAR setting of the intelligent function module switch (please refer to section 4.5.2).

Depending on combinations of the HOLD/CLEAR setting, the CH \square output enable/disable flag (Y1 to Y6), the analog output range setting and whether HART communication is enabled or not, the analog output status varies as shown in the following tables.

NOTE

The offset value for the 4 to 20 mA range is 4 mA. Output currents lesser than 4 mA will be overwritten with a higher value (4 mA) in case of e.g. "PLC CPU stop error" (refer to the following table). Therefore for output currents lesser than 4 mA it is recommended to use the 0 to 20 mA range.

Setting combination			Disable				
			ble	Disable	Ena	able	Disable
Execution status	HOLD/CLEAR setting	HOLD	CLEAR	HOLD or CLEAR	HOLD	CLEAR	HOLD or CLEAR
	HART communication	Possible*3			Not possible		
PLC CPU is in RUN	Analog output	Analog value of the D/A converted digital value (4 mA)		Analog value of the D/A converted digital value *2		0 mA	
	HART communication	Possible*3		Not possible			
PLC CPU is in STOP	Analog output	Last value Offset value (4 mA)		Last value	Offset value (4 mA)	0 mA	
PLC CPU stop error occurred	HART communication	Possible*3		Not possible			
	Analog output	Last value Offset value (4 mA)		Last value	Offset value (4 mA)	0 mA	
Watchdog timer	HART communication	Not possible		Not possible			
error ^{*1} occurred	Analog output	0 mA			0 mA		

Tab. 3-6: HART communication and analog output in dependence of the setting combinations (output range: 4 to 20 mA)

- *1 A watchdog timer error occurs when program operations are not completed within the scheduled time due to a hardware problem of the D/A module. In this case, the module ready signal (X0) and the D/A module RUN LED are turned off.
- *2 The rate control and scaling function is activated.
- *3 HART communication will be stopped without notification for output currents lesser than 2 mA. It will recover automatically if the output current is 2 mA or higher again (refer to section 3.5.16).

Setting communication *3		Enable*3			Disable		
	CH□ output enable/disable flags (Y1 to Y6)	Enable		Disable	Enable		Disable
Execution status	HOLD/CLEAR setting	HOLD	CLEAR	HOLD or CLEAR	HOLD	CLEAR	HOLD or CLEAR
	HART communication	Possible*3		Not possible			
PLC CPU is in RUN	Analog output	Analog value of the D/A converted digital value*2 0 mA		Analog value of the D/A converted digital value *2 0 mA		0 mA	
PLC CPU is in STOP	HART communication	Possible ^{*3}		Not possible			
	Analog output	Last value 0 mA		Last value 0 mA		nA	
PLC CPU stop error	HART communication	Possible*3		Not possible			
occurred	Analog output	Last value 0 mA		Last value 0 mA		nA	
Watchdog timer	·			Not possible			
error*1 occurred				0 mA			

Tab. 3-7: HART communication and analog output in dependence of the setting combinations (output range: 0 to 20 mA)

- *1 A watchdog timer error occurs when program operations are not completed within the scheduled time due to a hardware problem of the D/A module. In this case, the module ready signal (X0) and the D/A module RUN LED are turned off.
- *2 The rate control and scaling function is activated.
- *3 HART communication will be stopped without notification for output currents lesser than 2 mA. It will recover automatically if the output current is 2 mA or higher again (refer to section 3.5.16).

NOTE

The following conditions should be satisfied when the analog output HOLD/CLEAR function is used on a MELSECNET/H remote I/O station.

- The master module of function version D or later and the remote I/O module of function version D or later are required.
- Validate the station unit block guarantee of the send side cyclic data. (Refer to the Q Corresponding MELSECNET/H Network System Reference Manual).
- The setting for holding the output in the case of a link error must be made in the column "Error time output mode" in the I/O assignment setting (Refer to section 4.5.1). The HOLD/CLEAR setting by the intelligent function module switch is invalid.

This setting is validated on a per-module basis, and is not made on a per channel basis. Therefore, to make the output status at a stop error or STOP of the programmable controller CPU matched with the output status at a link error, set the same HOLD/CLEAR setting to all channels (Refer to the table below.)

Output status	Setting of "Error time output mode"	HOLD/CLEAR setting (Same setting to all channels)
Hold analog output	HOLD	HOLD
Clear analog output (Output offset value)	CLEAR	CLEAR

3.3.2 Analog output test during PLC CPU STOP

During the programmable controller CPU STOP, an analog value can be output to test the correct function of the D/A module. The test is enabled by the CH \square output enable/disable flag (Y1 to Y6) as shown in the following table.

	CH□ output enable/disable flag (Y1 to Y6)		
	Enable	Disable	
Analog output test	Allowed	Not allowed	

Tab. 3-8: An analog output test is enabled by the output enable/disable flag

To conduct an analog output test, perform the following operations in GX Developer device testing:

- lacktriangle Set the output enable/disable flag (Y1to Y6) for the channel to be tested to "Enable" (OFF ightarrow ON).
- Write a digital value equivalent to the analog value to be output in CH
 digital value in the buffer memory (buffer memory addresses Un\G1 to Un\G6, refer to section 3.5.2).

3.3.3 Rate control function

The increment and decrement of the analog output value per conversion cycle (10 ms) are restricted to prevent a sudden change of the analog output value.

The rate control can be enabled or disabled for each channel by the rate control enable/disable setting (buffer memory address Un\G46). To enable rate control, write "0" to the bit position corresponding to the channel number and turn ON the operating condition setting request (Y9). As default, rate control is disabled for all channels.

The increase digital limit value and decrease digital limit value are set in the buffer memory addresses $Un\G70$ to $Un\G81$.

If HART communication is enabled the rate control function is applied to before the output signal is filtered by the FIR filter.

Example:

- Output range: 0 to 20 mA

- Increase digital limit value: 1000

Decrease digital limit value: 1000

The control example in this case is indicated below.

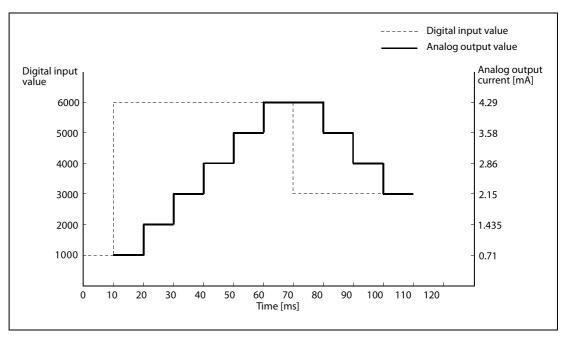


Fig. 3-4: Example for the rate control function

If the operation of the programmable controller CPU varies at the setting of D/A output enable and analog output clear, the rate control functions as indicated below.

- If the programmable controller CPU has switched from RUN to STOP (error): Rate control does not function.
- If the programmable controller CPU has switched from STOP (error) to RUN: Rate control functions.

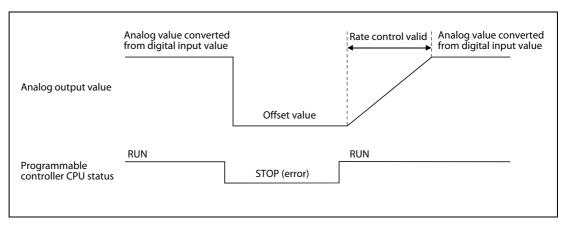


Fig. 3-5: Rate control function when the PLC CPU has switched to STOP or RUN.

3.3.4 Scaling function

The scaling function can be enabled individually for each channel by setting the corresponding bit in buffer memory address $Un\G53$.

With this function, the input range of a digital value can be changed into arbitrary ranges between -32768 and 32767.

A digital input value stored in CH \square scaling value (buffer memory addresses Un\G1 to Un\G6) is converted from the range set by CH \square scaling upper/lower limit value (buffer memory addresses Un\G54 to Un\G65) into the analog output range.

Digital input values which equal analog outputs up to 22 mA are allowed (The limit for the digital input value is 32767). Outputs greater than 22 mA will result in an error.

For both ranges, digital input values which equal analog outputs down to 0 mA are allowed (The limit for the digital input value is -32768). Outputs smaller than 0 mA will result in an error.

When the warning function is used (refer to section 3.3.5), input values converted within the scaling range are checked for warning output.

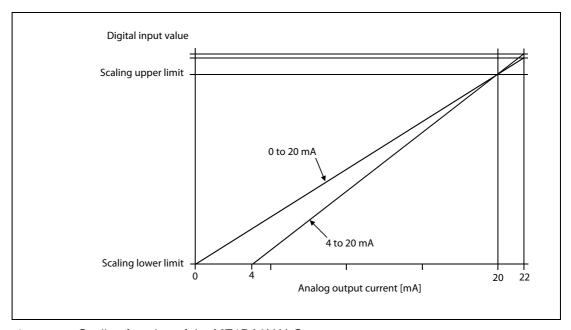


Fig. 3-6: Scaling function of the ME1DA6HAI-Q

3.3.5 Warning output function

If the digital input value written to the buffer memory (addresses Un\G1 to Un\G6) is equal to or greater than the warning output upper limit value or is equal to or less than the warning output lower limit value, the warning output flag (buffer memory address Un\G48) and warning output signal (XE) turn ON to give a warning. The warning is triggered for the D/A conversion enabled channel only. For a description of the warning output upper/lower limit value, please refer to section 3.5.15.

The warning output flag will be set if one of the following conditions is fulfilled:

- Warning output lower limit ≥ digital value
- Warning output upper limit \leq digital value

At occurrence of the warning, the analog output value is converted from the digital value at the warning output upper limit value or warning output lower limit value.

The warning output flag (buffer memory address Un\G48) and warning output signal (XE) turn OFF when the operating condition setting request (Y9) or warning output clear request (YE) turns ON.

For each channel, the warning output can be enabled or disabled by the disconnection detection/warning output setting (buffer memory address Un\G47). To enable the warning output, write "0" to the bit position corresponding to the channel number and turn ON the operating condition setting request (Y9). As default warning output is disabled for all channels.

Set the warning output upper and lower limit values to the buffer memory addresses Un\G86 to Un\G97. When the scaling function is used, input values converted within the scaling range are checked for warning output.

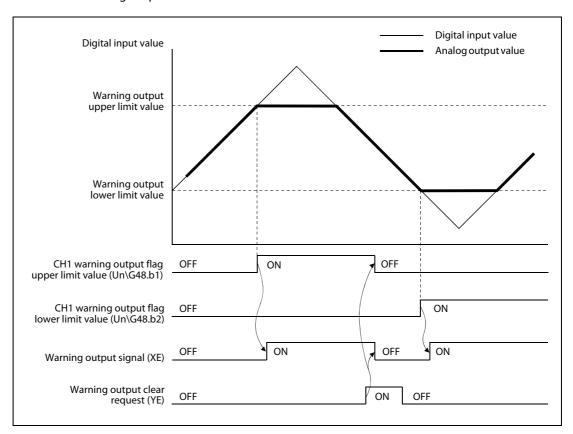


Fig. 3-7: Example for the warning output function

NOTES

If the warning is triggered immediately after D/A conversion is enabled, make a warning output clear request after writing the digital value that is less than the warning output upper limit value and is greater than the warning output lower limit value.

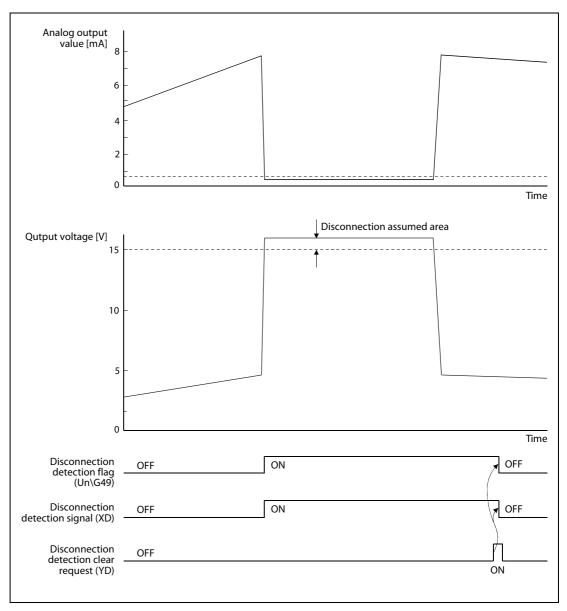
During an analog output test, the warning output function is invalid.

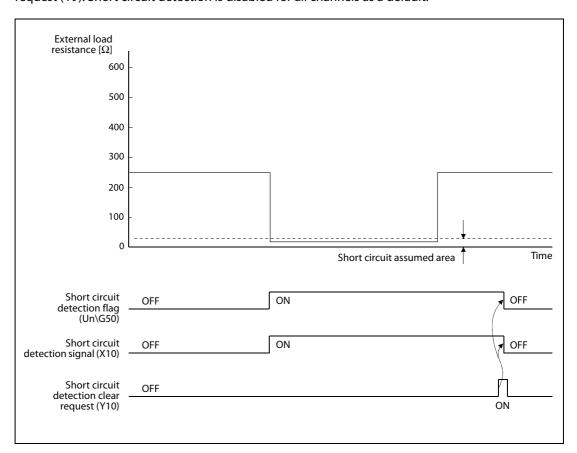
3.3.6 Disconnection detection function

When the output voltage increases to 15 V or more while an output current of 4 mA or more is set, a disconnection is detected and both the disconnection detection flag (buffer memory address Un\G49) and disconnection detection signal (XD) turn ON. The disconnection is also signalized by the flashing ALM LED. Disconnection is detected only on a channel set for D/A output enable.

The disconnection detection flag (buffer memory address Un\G49) and disconnection detection signal (XD) turn OFF when the operating condition setting request (Y9) or disconnection detection clear request (YD) turns ON.

The disconnection detection function can be enabled or disabled for each channel by the disconnection detection/warning output setting (buffer memory address Un\G47). To enable the disconnection detection, write "0" to the bit position corresponding to the channel number and turn ON the operating condition setting request (Y9). Disconnection detection is disabled for all channels as a default.




Fig. 3-8: When the output voltage is 15 V or more, a disconnection is assumed

3.3.7 Short circuit detection function

When the external load resistance falls to 30 Ω or less while an output current of 4 mA or more is set, a short circuit is detected and both the short circuit detection flag (buffer memory address Un\G50) and short circuit detection signal (X10) turn ON. In addition, the ALM LED is switched on to indicate the short circuit. A short circuit is detected only on an output enabled channel.

The short circuit detection flag (buffer memory address Un\G50) and short circuit detection signal (X10) turn OFF when the operating condition setting request (Y9) or short circuit detection clear request (Y10) turns ON.

For each channel, the short circuit detection function can be enabled or disabled by the short circuit detection setting (buffer memory address Un\G45). To enable the short circuit detection, write "0" to the bit position corresponding to the channel number and turn ON the operating condition setting request (Y9). Short circuit detection is disabled for all channels as a default.

Fig. 3-9: With an external load of 30 Ω or less, a short circuit is assumed

NOTE

If the ground connections of 2 or more actuators are connected with each other at the actuators side, a short circuit may be not detected for these channels. In such a case, disable the short circuit detection.

3.3.8 HART Master Function

What is HART?

HART stands for **H**ighway **A**ddressable **R**emote **T**ransducer.

HART Communication is a bi-directional industrial field communication protocol used to communicate between intelligent field instruments and host systems. A host system can be a handheld device, a Distributed Control System, Asset Management System, Safety System or a PLC.

There are several reasons to have a host communicate with a field instrument. These include:

- Device Configuration or re-configuration
- Device Diagnostics
- Device Troubleshooting
- Reading the values of additional measurements provided by the device
- Device Health and Status
- And much more!

How HART Works

When using the ME1DA6HAI-Q, HART communication takes place between the analog output module and a HART-enabled field device, for example an actuator for a valve. The ME1DA6HAI-Q can communicate with up to six HART-enabled devices. (One HART device connected to each channel.)

Communication occurs using standard instrumentation grade wire and using standard wiring and termination practices – no additional wiring is required.

HART provides two simultaneous communication channels: the 4 to 20 mA analog signal and a digital signal. The 4 to 20 mA signal communicates the analog output value fast, robust and reliable. Additional device information is communicated using a digital signal that is superimposed on the analog signal. The digital signal contains information from the device including device status, diagnostics, etc.

The HART protocol makes use of the Bell 202 Frequency Shift Keying (FSK) standard to superimpose digital communication signals at a low level on top of the 4 to 20 mA analog signal.

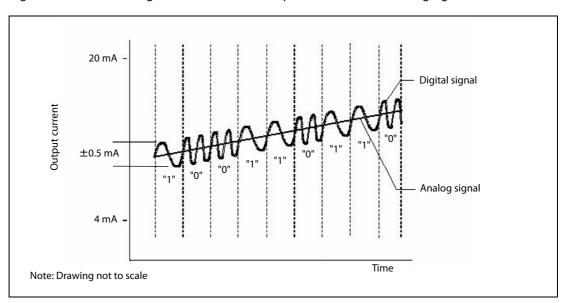


Fig. 3-10: Digital communication is superimposed on the analog signal

A digital signal with a frequency of 2200 Hz is interpreted as logical "0", whereas a frequency of 1200 Hz is interpreted as logical "1".

The HART protocol communicates without interrupting the 4 to 20 mA signal and allows a host appli-

cation (in this case the ME1DA6HAI-Q) to get two or more digital updates per second from a field device. As the digital FSK signal is phase continuous, there is no interference with the analog 4 to 20 mA signal.

HART is a master/slave protocol which means that a field (slave) device only speaks when spoken to by the ME1DA6HAI-Q (master). This is done by commands send by the ME1DA6HAI-Q. Codes vary by manufacturer/device.

Examples for commands:

- Set Primary Variable Units
- Set Upper Range
- Set Lower Range
- Set Damping Value
- Set Tag
- Set Date
- Set Descriptor
- Perform Loop Test Force loop current to specific value
- Initiate Self Test Start device self test
- Get More Status Available Information

NOTE

The supported commands are depended on the specification of the HART transmitter.

The ME1DA6HAI-Q can operate as a HART master with protocol revision 6.

NOTE

The start up time of the connected HART devices must be considered. If it is long, HART communication errors may occur after switching on the system.

HART Data

The following list is only a brief overview of the data transmitted via the HART protocol. Fore more information please refer to the description of the buffer memory (Section 3.5.1).

- Digital data: 35 to 40 valuable data items standard in every HART device
- Device identification: device tag, supplier, device type and revision, device serial number
- Calibration data: upper and lower range values, upper and lower sensor limits, PV damping, last calibration date
- Process variables: primary variable plus secondary measurements and multivariable parameters
- Status/diagnostic alerts: device malfunction, configuration change, power fail restart, loop current fixed or saturated, primary or secondary variable out of limits, communication error etc.

More information

This short overview about the HART protocol is only a extract of the information provided on the website of the HART Communication Foundation. You can find much more information about HART and answers to frequently asked questions on their website at www.hartcomm2.org.

FDT/DTM function support

Using a commercially available FDT, reading/writing the HART transmitter's parameters and monitoring the HART transmitter status are executable via the ME1DA6HAI-Q.

Refer to section 4.6 (Setting of the HART Devices) for more details about the FDT/DTM* system structure.

^{*} FDT stands for **Field Device Tool** and DTM stands for **Device Type M**anager. FDT/DTM is a communication technique for the manufacturer-independent configuration of processing systems at a field bus.

3.4 I/O Signals for the Programmable Controller CPU

3.4.1 List of I/O signals

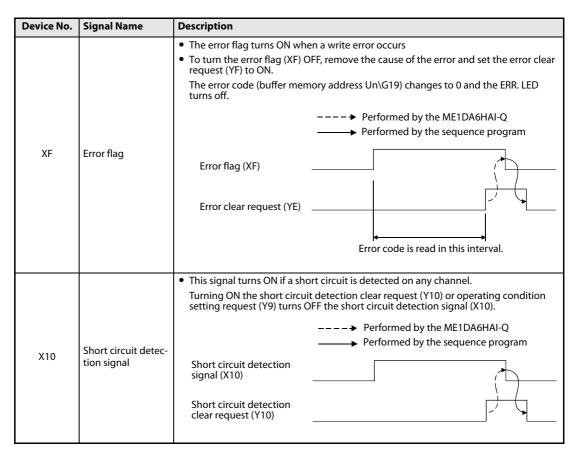
Note that I/O numbers (X/Y) shown in this section and thereafter are the values when the start I/O number for the ME1DA6HAI-Q is set to 0 (i.e. the module is mounted to the I/O slot 0 of the main base unit).

Signal direction CPU Module ← ME1DA6HAI-Q		Signal direction CPU Module → ME1DA6HAI-Q		
Device No. (Input)	Signal name	Device No. (Output)	Signal name	
X0	Module ready	Y0	Use prohibited	
X1		Y1	CH1 Output enable/disable flag	
X2		Y2	CH2 Output enable/disable flag	
Х3		Y3	CH3 Output enable/disable flag	
X4	Use prohibited	Y4	CH4 Output enable/disable flag	
X5	ose prombited	Y5	CH5 Output enable/disable flag	
Х6		Y6	CH6 Output enable/disable flag	
X7		Y7	Lice prohibited	
X8		Y8	Use prohibited	
Х9	Operating condition setting completed flag	Y9	Operating condition setting request	
XA		YA		
ХВ	Use prohibited	YB	Use prohibited	
XC		YC		
XD	Disconnection detection signal	YD	Disconnection detection clear request	
XE	Warning output signal	YE	Warning output clear request	
XF	Error flag	YF	Error clear request	
X10	Short circuit detection signal	Y10	Short circuit detection clear request	
X11 to X1F	Use prohibited	Y11 to Y1F	Use prohibited	

Tab. 3-9: I/O signals of the ME1DA6HAI-Q

NOTE

The "Use prohibited" signals cannot be used by the user since they are for system use only. If these are turned ON/OFF by the sequence program, the performance of the HART analog output module cannot be guaranteed.


3.4.2 Details of I/O signals

Input signals

Device No.	Signal Name	Description
XO	Module ready	 When the programmable controller CPU is powered on or reset, this signal turns on once the preparation for D/A conversion has been completed. Afterwards D/A conversion processing is performed. When the analog output module has a watchdog timer error*, "Module ready" (X0) turns OFE (In this case D/A conversion processing is not performed.)
Х9	Operating condition setting completed flag	turns OFF (In this case D/A conversion processing is not performed.) • This signal is used as an interlock condition to turn ON/OFF the Operating condition setting request (Y9) when any of the following settings has been changed. - Short-circuit detection setting (buffer memory address Un\G45) - Rate control enable/disable setting (buffer memory address Un\G46) - Disconnection detection/warning output setting (buffer memory address Un\G47) - Scaling function setting (buffer memory address Un\G53) - Increase/decrease digital limit value (buffer memory addresses Un\G70 to 81) • The operating condition setting completed flag (X9) turns OFF when the operating condition setting request (Y9) is ON. > Performed by the ME1DA6HAI-Q → Performed by the sequence program Module ready (X0) Operation condition setting completed flag (X9)
		NOTE If the "Intelligent function utility" is used for configuration, the settings made with this function are restored under the following conditions: - CPU Power off → CPU RUN - CPU RESET → CPU RUN - CPU STOP → CPU RUN
XD	Disconnection detection signal	 This input turns ON if a disconnection is detected on any channel. Turning ON the disconnection detection clear request (YD) or operating condition setting request (Y9) turns OFF the disconnection detection signal (XD). Performed by the ME1DA6HAI-Q Performed by the sequence program Disconnection detection signal (XD) Disconnection detection clear request (YD)
XE	Warning output signal	 This signal turns ON if the digital input value on any of the channels enabled for D/A conversion rises to or above the warning output upper limit value or falls below the warning output lower limit value. Turning ON the warning output clear request (YE) or operating condition setting request (Y9) turns OFF the warning output signal (XE). Performed by the ME1DA6HAI-Q Performed by the sequence program Warning output signal (XE) Warning output clear request (YE)

Tab. 3-10: Detailed description of the input signals (Signal direction ME1DA6HAI-Q \rightarrow CPU Module)

 $^{^{*}\,\,}$ When a watchdog timer error occurs, the RUN LED of the analog output module turns off.

Tab. 3-11: Detailed description of the input signals (Signal direction ME1DA6HAI-Q \rightarrow CPU Module)

Output signals

Device No.	Signal Name	Description
		Specifies whether to output the D/A converted value or offset value for each channel.
Y1 to Y6	CH□ output	– ON: D/A converted value
111010	enable/disable flag	– OFF: Offset value
		 The D/A conversion speed is constant regardless of whether the output enable/disable flag is ON or OFF.
		Turn ON this signal when changing any of the following settings to make the settings valid.
		 Short-circuit detection setting (buffer memory address Un\G45)
	Operating	 Rate control enable/disable setting (buffer memory address Un\G46)
Y9	condition setting request	 Disconnection detection/warning output setting (buffer memory address Un\G47)
		 Scaling function setting (buffer memory address Un\G53)
		 Increase/decrease digital limit value (buffer memory addresses Un\G70 to 81)
		• For the ON/OFF timing, please refer to the entry for input X9 in table 3-10.
	Disconnection	Turn ON this signal to clear the disconnection detection.
YD	detection clear request	• For the ON/OFF timing, please refer to the entry for input XD in table 3-10.
YE	Warning output	Turn ON this signal to clear the warning output.
'-	clear request	• For the ON/OFF timing, please refer to the entry for input XE in table 3-10.
YF	Error clear request	Turn this signal ON to clear a write error.
1 1	Elloi clear request	• For the ON/OFF timing, please refer to the entry for input XF in table 3-11.
Y10	Short circuit detec-	Turn ON this signal to clear the short circuit detection.
110	tion clear request	• For the ON/OFF timing, please refer to the entry for input X10 in table 3-11.

Tab. 3-12: Detailed description of the output signals (Signal direction CPU Module \rightarrow ME1DA6HAI-Q)

3.5 Buffer Memory

The HART analog output module has a memory range assigned as a buffer for temporary storage of data, such as digital values intended for D/A conversion or HART device data. The PLC CPU can access this buffer and both read the stored values from it and write new values to it which the module can then process (digital values, settings for the module's functions etc).

Each buffer memory address consists of 16 bits.

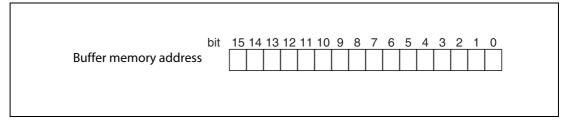


Fig. 3-11: Assignments of bits to a buffer memory address

NOTE

Do not write data in the "system areas" of the buffer memory. If data is written to any of the system areas, the PLC system may not be operated properly. Some of the user areas contain partially system areas. Care must be taken when reading/writing to the buffer memory.

Also, do not write data (e.g. in a sequence program) to the buffer memory area where writing is disabled. Doing so may cause malfunction.

The "Default" value indicated in the following tables is the initial value set after the power is turned on or the PLC CPU is reset.

Instructions for data exchange with the buffer memory

Communication between the PLC CPU and the buffer memory of special function modules is performed with FROM and TO instructions.

The buffer memory of a special function module can also accessed directly, e. g. with a MOV instruction. The special function module addressed in this way can be mounted on a base unit or an extension base unit but not in remote I/O stations.

Format of the device address: Un\Gn

- Un: Head address of the special function module
- Gn: Buffer memory address (decimal)

For example the device address U3\G11designates the buffer memory address 11 in the special function module with the head address 3 (X/Y30 to X/Y3F).

In this User's Manual the latter form of addressing is used throughout.

For full documentation of all the instructions with examples please refer to the Programming Manual for the A/Q series and the MELSEC System Q, art. no. 87431.

Buffer memory assignment 3.5.1

Add	Address					
Hexa- decimal	Decimal	Descri	otion	Default	R/W [*]	Reference
0н	0	System	area	_		_
1н	1	CH1				
2н	2	CH2				
3н	3	CH3	Digital value	0	R/W	Section
4н	4	CH4	Digital value		11/ VV	3.5.2
5н	5	CH5				
6н	6	CH6				
7н	7					
8н	8	System	aroa			
9н	9	Jystein	area			
Ан	10					
Вн	11	CH1				
Сн	12	CH2				
Dн	13	CH3	Set value check code	0	R	Section
Ен	14	CH4	Set value check code	U	IN.	3.5.3
Fн	15	CH5				
10н	16	CH6				
11н	17	System	aroa			
12н	18	System	aica			
13н	19	Error co	ode	0	R	Section 3.5.4
14н	20	Setting	range (CH1 to CH4)	0000н	R	Section
15н	21	Setting	range (CH5 and CH6)	ООООН	IN.	3.5.5
16н	22					
to	to	System	area	_	_	_
2Сн	44					
2Dн	45	Short c	ircuit detection setting	003Fн	R/W	Section 3.5.6
2Ен	46	Rate co	ntrol enable/disable setting	003Fн	R/W	Section 3.5.7
2Fн	47	Discon	nection detection setting & Warning output setting	3F3Fн	R/W	Section 3.5.8
30н	48	Warnin	Warning output flag		R	Section 3.5.9
31н	49	Discon	Disconnection detection flag		R	Section 3.5.10
32н	50	Short c	ircuit detection flag	0	R	Section 3.5.11
33н	51	System	area			
34н	52	Jysteili	ai-ca			

Tab. 3-13: Buffer memory assignment of the ME1DA6HAI-Q (1/11)

^{*} Indicates whether reading from and writing to a sequence program are enabled. R: Read enabled W: Write enabled

Add	Iress						
Hexa- decimal	Decimal	Descri	ption		Default	R/W [*]	Reference
35н	53	Scaling	g enable/disable sett	ing	003Fн	R/W	Section 3.5.12
36н	54	CH1	Scaling	Lower limit value			
37н	55	СПІ	Scaling	Upper limit value			
38н	56	CH2	Scaling	Lower limit value			
39н	57	CITZ	Scaling	Upper limit value			
3Ан	58	CH3	Scaling	Lower limit value			
3Вн	59	Citis	Scaming	Upper limit value	0	R/W	Section
3Сн	60	CH4	Scaling	Lower limit value		.,	3.5.13
3Dн	61	C	Jeaming .	Upper limit value	_		
3Ен	62	CH5	Scaling	Lower limit value	_		
3Fн	63	C5	Jeaming .	Upper limit value	_		
40н	64	CH6	Scaling	Lower limit value			
41н	65		- 209	Upper limit value			
42н	66						
to	to	System	n area		-	_	_
45н	69		1				
46н	70	CH1	Rate control	Increase digital limit value	32000		
47н	71	Citi	nace control	Decrease digital limit value	32000		
48н	72	CH2	Rate control	Increase digital limit value	32000		
49н	73	CITZ	hate control	Decrease digital limit value	32000		
4Ан	74	СПЗ	Data control	Increase digital limit value	32000		
4Вн	75	CH3	Rate control	Decrease digital limit value	32000	R/W	Section
4Сн	76	CUA	Data assistant	Increase digital limit value	32000	K/VV	3.5.14
4Dн	77	CH4	Rate control	Decrease digital limit value	32000		
4Ен	78	c		Increase digital limit value	32000		
4 F _H	79	CH5	Rate control	Decrease digital limit value	32000		
50н	80			Increase digital limit value	32000		
51н	81	CH6	Rate control	Decrease digital limit value	32000		
52н	82		I				
to	to	System	n area		_	_	_
55н	85	1					
56н	86			Upper limit value	0		
57н	87	CH1	Warning output	Lower limit value	0		
58н	88			Upper limit value	0		
59н	89	CH2	Warning output	Lower limit value	0		
5Ан	90			Upper limit value	0		
5Вн	91	CH3	Warning output	Lower limit value	0		Coction
5Cн	92			Upper limit value	0	R/W	Section 3.5.15
5Dн	93	CH4	Warning output	Lower limit value	0		
5Eн	94			Upper limit value	0		
<u> 5Ен</u> 5Fн	95	CH5	Warning output	Lower limit value	0		
				Upper limit value	0		
60н	96	CH6	Warning output				
61н	97			Lower limit value	0		
62н	98	- -					
to	to	System	n area		-	_	
9Fн	159						

Tab. 3-14: Buffer memory assignment of the ME1DA6HAI-Q (2/11)

Indicates whether reading from and writing to a sequence program are enabled. R: Read enabled W: Write enabled

Add	ress							
Hexa- decimal	Decimal	Descri	ption			Default	R/W*	Reference
А0н	160		CH1 to CH6 enab	le		0000н	R/W	Section 3.5.16
А 1н	161	HART	Scan list			0000н	R	Section 3.5.17
А2н	162]'''	Current cycle tim	e		0	R	
А3н	163		Maximum cycle t	ime		0	R	Section 3.5.18
А4н	164		Minimum cycle ti	ime		0	R	3.3.10
А 5н	165							
to	to	System	area			_	_	_
АГн	175	1						
В0н	176	CH1						
В1н	177	CH2						
В2н	178	CH3	LIADT		_	D //	Section	
ВЗн	179	CH4	HART maximum	retries		3	R/W	3.5.19
В4н	180	CH5	1					
В5н	181	CH6	1					
В6н	182							
to	to	System	area			_	_	_
ВЕн	190	1						
ВГн	191	HART d	levice information	refresh interval [second	ds]	30	R/W	Section 3.5.20
СОн	192							
to	to	System	area			_	_	_
ЕFн	239							
F0н	240		HART field device	e status		0000н	R	Section 3.5.21
F1н	241		HART extended f	ield device status		0000н	R	Section 3.5.22
F2н	242		HART device	Primary value (PV), secondary value (SV)		0000н	R	Section
F3 н	243		variable status	Tertiary value (TV), fourth value (FV)		0000н	R	3.5.23
F4 _H	244	CH1		D: 1 (C) ()	Low word	0000н		
F 5н	245			Primary value (PV)	High word	7FС0н	R	
F6 н	246			Carandan I (C.O.	Low word	0000н	5	1
F7 _H	247	1	Due se	Secondary value (SV)	High word	7FС0н	R	Section 3.5.24
F8н	248		Process variable	Tantian conduct (T.O.	Low word	0000н	Б	
F9 _H	249	1		Tertiary value (TV)	High word	7FC0н	R	
FАн	250			Low	Low word	0000н		
FВн	251	1		Fourth value (FV)	High word	7FC0н	R	

 Tab. 3-15:
 Buffer memory assignment of the ME1DA6HAI-Q (3/11)

^{*} Indicates whether reading from and writing to a sequence program are enabled. R : Read enabled W : Write enabled

Add	Iress								
Hexa- decimal	Decimal	Descri	ption			Default	R/W [*]	Reference	
FСн	252		HART field device	e status		0000н	R	Section 3.5.21	
FDн	253		HART extended f	ield device status		0000н	R	Section 3.5.22	
FЕн	254		HART device	Primary value (PV), secondary value (SV)		0000н	R	Section	
FFн	255		variable status	Tertiary value (TV), fourth value (FV)		0000н	R	3.5.23	
100н	256	CH2		Deien ann an Ion (DV)	Low word	0000н	D.		
101н	257			Primary value (PV)	High word	7FC0 н	R		
102н	258			6 1 (0.0	Low word	0000н			
103н	259			Secondary value (SV)	High word	7FС0н	R	Section	
104н	260	1	Process variable		Low word	0000н		3.5.24	
105н	261	1		Tertiary value (TV)	High word	7FС0н	R		
106н	262	1			Low word	0000н		-	
107н	263	1		Fourth value (FV)	High word	7FC0н	R		
108н	264		HART field device	status	Tilgii Word	0000н	R	Section 3.5.21	
109н	265		HART extended f	ield device status		0000н	R	Section 3.5.22	
10Ан	266		HART device	Primary value (PV), secondary value (SV)		0000н	R	Section	
10Вн	267		variable status	Tertiary value (TV), fourth value (FV)		0000н	R	3.5.23	
10Сн	268	CH3		D: 1 (D)()	Low word	0000н	R		
10Dн	269			Primary value (PV)	High word	7FC0 н			
10Ен	270	1			6 1 (0.0)	Low word	0000н	_	
10Fн	271	1		Secondary value (SV) Hig	High word	7FС0н	R	Section 3.5.24	
110н	272		Process variable	le L	Low word	0000н	R		
111н	273			Tertiary value (TV)	High word	7FC0 н			
112н	274	1			Low word	0000н			
113н	275	1		Fourth value (FV)	High word	7FС0н	R		
114н	276		HART field device	status	<u> </u>	0000н	R	Section 3.5.21	
115н	277		HART extended f	ield device status		0000н	R	Section 3.5.22	
116н	278		HART device	Primary value (PV), secondary value (SV)		0000н	R	Section	
117н	279		variable status	Tertiary value (TV), fourth value (FV)		0000н	R	3.5.23	
118н	280	CH4			Low word	0000н	_		
119н	281	1		Primary value (PV)	High word	7FС0н	R		
11Ан	282	1	Process variable —		Low word	0000н		1	
11Вн	283	1		Secondary value (SV)	High word	7FС0н	R	Section	
11C _H	284	1			Low word	0000н		3.5.24	
11D _H	285	1		Tertiary value (TV)	High word	7FC0н	R	3.5.24	
11Ен	286	1		Fourth value (FV)	Low word	0000н			
11FH	287	1			High word	7FC0н	R		
1111	207	<u> </u>			. ligit word	/1 COn			

Tab. 3-16: Buffer memory assignment of the ME1DA6HAI-Q (4/11)

^{*} Indicates whether reading from and writing to a sequence program are enabled. R : Read enabled W : Write enabled

Add	lress						*	
Hexa- decimal	Decimal	Descri	otion			Default	R/W [*]	Reference
120н	288		HART field device	status		0000н	R	Section 3.5.21
121н	289		HART extended field device status		0000н	R	Section 3.5.22	
122н	290		HART device	Primary value (PV), secondary value (SV)		0000н	0000н R	Section
123н	291		variable status	Tertiary value (TV), fourth value (FV)		0000н	R	3.5.23
124н	292	CH5		2	Low word	0000н		
125н	293			Primary value (PV)	High word	7FС0н	R	
126н	294			6 1 (0.0	Low word	0000н		
127н	295			Secondary value (SV)	High word	7FС0н	R	Section
128н	296		Process variable		Low word	0000н	_	3.5.24
129н	297			Tertiary value (TV)	High word	7FС0н	R	
12Ан	298				Low word	0000н	_	
12Вн	299			Fourth value (FV)	High word	7FС0н	R	
12Сн	300		HART field device	e status	1 3	0000н	R	Section 3.5.21
12Dн	301		HART extended f	ield device status		0000н	R	Section 3.5.22
12Ен	302		HART device	Primary value (PV), secondary value (SV)		0000н	R	Section
12Fн	303		variable status	Tertiary value (TV), fourth value (FV)		0000н	R	3.5.23
130н	304	CH6		Tourth value (i v)	Low word	0000н		
131н	305	СПО		Primary value (PV)	Primary value (PV) High word	7FC0н	R	
132н	306	1		Secondary value (SV)	Low word	0000н	_	Section
133н	307				High word	7FC0н	R	
134н	308		Process variable	Tertiary value (TV)	Low word	0000н		3.5.24
135н	309				High word	7FC0н	R	
136н	310	-		Fourth value (FV) Low word High word High word		0000н		-
130н	311	4			7FC0н	R		
					nigh word	/FCOH		
138н	312	C						
to	to	System	area			_	_	
15F _H	351			D . (I				
160 _H	352	4		Request flag		0		
161н	353	4		Channel		0000н	R/W	
162н	354	HART (Command	Code		0000н		Section
163н	355	(Reque		Data size		0		3.5.25
164н	356	4						
to	to	4		Data to be sent		0	R/W	
1ЕЗн	483	<u> </u>						
1Е4н	484	1						
to	to	System	area			-	_	-
1EF _H	495			T				
1F0н	496	1		Answer flag		0000н		
1F1н	497	1		Channel		0000н	R	
1F2н	498	HADT	Command	Code		0000н	••	Costin
1F3н	499	(Answe		Data size		0		Section 3.5.26
1F4н	500		,					
to	to			Received data		0	R	
273н	627							

 Tab. 3-17:
 Buffer memory assignment of the ME1DA6HAI-Q (5/11)

^{*} Indicates whether reading from and writing to a sequence program are enabled. R : Read enabled W : Write enabled

Add	lress						
Hexa- decimal	Decimal	Descrip	otion		Default	R/W [*]	Reference
274н	628						
to	to	System	area		_	_	_
37Fн	895						
380н	896						
to	to			Tag	0000н	R	
383н	899						
384н	900						
to	to			Message	0000н	R	
393н	915						
394н	916						
to	to			Descriptor	0000н	R	
39Вн	923						
39Сн	924			Manufacturer ID / Expanded manufacturer ID (HART 7)	0000н	R	
39Dн	925	CH1	Information about HART device	Device Type / Expanded device type (HART 7)	0000н	R	Section 3.5.27
39Ен	926			Device ID	0000н	R	
39Fн	927			Device ID	ООООН	ĸ	
3А0н	928			Revisions	0000н	R	
3А1н	929			nevisions	ООООН	n	
3А2н	930			Device function flags	0000н	R	
3А3н	931						
to	to			Long tag	0000н	R	
3В2н	946						
3В3н	947			Private label distributor code (HART 7)	0000н	R	
3В4н	948			Device profile (HART 7)	0000н	R	
3В5н	949	System	area		_	_	_
3В6н	950			Final and a shall be a shall be a	0000	D.	
3В7н	951			Final assembly number	0000н	R	
3В8н	952			Dete	0000	D.	
3В9н	953			Date	0000н	R	
3ВАн	954			Write Protect	0	R	
3ВВн	955			PV range unit code	0000н	R	
3ВСн	956			DVIII	0000	D.	
3ВОн	957			PV Upper range value	0000н	R	
3ВЕн	958	CH1	Information about HART device	DV/ Lauren nam ar a control	0000	Г	Section 3.5.27
3ВГн	959	1	TANT GEVICE	PV Lower range value	0000н	R	3.3.27
3С0н	960			DV Damaniu l	0000		1
3С1н	961			PV Damping value	0000н	R	
3С2н	962			Transfer function	0000н	R	
3С3н	963			PV Unit code	0000н	R	
3С4н	964			SV Unit code	0000н	R	
3С5н	965	1		TV Unit code	0000н	R	
3С6н	966			FV Unit code	0000н	R	
3С7н	967	System	area	1	_	_	_

Tab. 3-18: Buffer memory assignment of the ME1DA6HAI-Q (6/11)

^{*} Indicates whether reading from and writing to a sequence program are enabled. R : Read enabled W : Write enabled

Add	lress						
Hexa- decimal	Decimal	Descrip	otion		Default	R/W [*]	Reference
3С8н	968						
to	to			Tag	0000н	R	
3СВн	971						
3ССн	972						
to	to			Message	0000н	R	
3DB _H	987						
3DСн	988						
to	to			Descriptor	0000н	R	
3Е3н	995						
3Е4н	996			Manufacturer ID / Expanded manufacturer ID (HART 7)	0000н	R	
3Е5н	997	CH2	Information about HART device	Device Type / Expanded device type (HART 7)	0000н	R	Section 3.5.27
3Е6н	998			Device ID	0000н	R	
3Е7н	999			Device ID	ООООН	n	
3Е8н	1000			Revisions	0000н	R	
3Е9н	1001			Revisions	0000H	I.	
3ЕАн	1002			Device function flags	0000н	R	
3ЕВн	1003						
to	to			Long tag	0000н	R	
3FАн	1018						
3FВн	1019			Private label distributor code (HART 7)	0000н	R	
3FСн	1020			Device profile (HART 7)	0000н	R	
3FD _H	1021	System	area		_	_	_
3FЕн	1022			Final assembly number	0000н	R	
3FF _H	1023			Final assembly number	ООООН	n	
400н	1024			Date	0000н	R	
401н	1025			Date	ООООН	n	
402н	1026			Write Protect	0	R	
403н	1027			PV range unit code	0000н	R]
404н	1028			PV Upper range value	0000н	R	
405н	1029		Information of sect	1 v Opper range value	ООООН	n	Cartina
406н	1030	CH2	Information about HART device	PV Lower range value	0000н	R	Section 3.5.27
407н	1031		and device	T v Lower range value	ООООН	n	
408н	1032		Tr P\ SV	PV Damping value	0000н	R	
409н	1033			T v Damping value	ООООН	n	
40Ан	1034			Transfer function	0000н	R	
40Вн	1035			PV Unit code	0000н	R	
40Сн	1036			SV Unit code	0000н	R	
40Dн	1037			TV Unit code	0000н	R	
40Ен	1038			FV Unit code	0000н	R	
40Гн	1039	System	area		_	_	_

Tab. 3-19: Buffer memory assignment of the ME1DA6HAI-Q (7/11)

Indicates whether reading from and writing to a sequence program are enabled. R: Read enabled W: Write enabled

Add	lress						
Hexa- decimal	Decimal	Descrip	ption		Default	R/W [*]	Reference
410н	1040						
to	to			Tag	0000н	R	
413н	1043						
414н	1044						
to	to			Message	0000н	R	
423н	1059						
424н	1060						
to	to			Descriptor	0000н	R	
42Вн	1067						
42Сн	1068			Manufacturer ID / Expanded manufacturer ID (HART 7)	0000н	R	
42Dн	1069	CH3	Information about HART device	Device Type / Expanded device type (HART 7)	0000н	R	Section 3.5.27
42Ен	1070			Device ID	0000н	R	
42Fн	1071			Device ID	ООООН	n	
430н	1072			Revisions	0000н	R	
431н	1073			Revisions	ООООН	11	
432н	1074			Device function flags	0000н	R	
433н	1075						
to	to			Long tag	0000н	R	
442н	1090						
443н	1091			Private label distributor code (HART 7)	0000н	R	
444 _H	1092			Device profile (HART 7)	0000н	R	
445н	1093	System	area		_	_	_
446н	1094			Final assembly number	0000н	R	
447н	1095			Final assembly number	ООООН	n	
448н	1096			Date	0000н	R	
449н	1097			Date	ООООН	I.	
44A H	1098			Write Protect	0	R	
44Вн	1099			PV range unit code	0000н	R	
44Сн	1100			PV Upper range value	0000н	R	
44Dн	1101		Information of sect	i v Opper range value	ООООН	n	Cartina
44Ен	1102	CH3	Information about HART device	PV Lower range value	0000н	R	Section 3.5.27
44Fн	1103			1 v Lower range value	OUUUH	11	
450н	1104		-	PV Damping value	0000н	R	
451н	1105			1 v Damping value	OUUUH	11	
452н	1106			Transfer function	0000н	R	
453н	1107	F	PV Unit code	0000н	R		
454н	1108		SV Unit code	0000н	R		
455н	1109		TV	TV Unit code	0000н	R	
456н	1110			FV Unit code	0000н	R	
457н	1111	System	area		_	_	_

Tab. 3-20: Buffer memory assignment of the ME1DA6HAI-Q (8/11)

Indicates whether reading from and writing to a sequence program are enabled. R: Read enabled W: Write enabled

Add	lress						
Hexa- decimal	Decimal	Descrip	otion		Default	R/W [*]	Reference
458н	1112						
to	to			Tag	0000н	R	
45Вн	1115						
45Сн	1116						
to	to			Message	0000н	R	
46Вн	1131						
46Сн	1132						
to	to			Descriptor	0000н	R	
473н	1139						
474н	1140			Manufacturer ID / Expanded manufacturer ID (HART 7)	0000н	R	
475н	1141	CH4	Information about HART device	Device Type / Expanded device type (HART 7)	0000н	R	Section 3.5.27
476н	1142			Device ID	0000н	R	
477н	1143			DEVICE ID	ООООН	n	
478н	1144			Revisions	0000н	R	
479н	1145			nevisions	ООООН	n	
47 A H	1146			Device function flags	0000н	R	
47Вн	1147						
to	to			Long tag	0000н	R	
48Ан	1162						
48Вн	1163			Private label distributor code (HART 7)	0000н	R	
48Сн	1164			Device profile (HART 7)	0000н	R	
48Dн	1165	System	area		_	_	_
48Ен	1166			Final and a shall be a shall be a	0000	0	
48Fн	1167			Final assembly number	0000н	R	
490н	1168			Dete	0000	0	
491н	1169			Date	0000н	R	
492н	1170			Write Protect	0	R	
493н	1171			PV range unit code	0000н	R	
494н	1172			DV I Innor range value	0000	D	
495н	1173			PV Upper range value	0000н	R	
496н	1174	CH4	Information about HART device	DVI ower range walve	0000	D	Section 3.5.27
497н	1175		THAIT GEVICE	PV Lower range value	0000н	R	3.3.27
498н	1176			DV Damping value	0000	D	
499н	1177		Tr PY SN	PV Damping value	0000н	R	
49Ан	1178			Transfer function	0000н	R	
49Вн	1179			PV Unit code	0000н	R	
49Сн	1180			SV Unit code	0000н	R	
49Dн	1181	1		TV Unit code	0000н	R	
49Ен	1182			FV Unit code	0000н	R	
49Гн	1183	System	area		_	_	_

Tab. 3-21: Buffer memory assignment of the ME1DA6HAI-Q (9/11)

Indicates whether reading from and writing to a sequence program are enabled. R: Read enabled W: Write enabled

Add	lress						
Hexa- decimal	Decimal	Descrip	otion		Default	R/W [*]	Reference
4А0н	1184						
to	to			Tag	0000н	R	
4А3н	1187						
4А4н	1188						
to	to			Message	0000н	R	
4В3н	1203						
4В4н	1204						
to	to			Descriptor	0000н	R	
4ВВн	1211						
4ВСн	1212			Manufacturer ID / Expanded manufacturer ID (HART 7)	0000н	R	
4BDн	1213	CH5	Information about HART device	Device Type / Expanded device type (HART 7)	0000н	R	Section 3.5.27
4ВЕн	1214			Device ID	0000н	R	
4ВГн	1215			Device iD	ООООН	11	
4С0н	1216			Revisions	0000н	R	
4С1н	1217			Revisions	ООООН	11	
4C2	1218			Device function flags	0000н	R	
4С3н	1219						
to	to		Long tag	0000н	R		
4D2н	1234						
4 D3н	1235			Private label distributor code (HART 7)	0000н	R	
4D4н	1236			Device profile (HART 7)	0000н	R	
4D5н	1237	System	area		-		_
4D6н	1238			Final assembly number	0000н	R	
4D7н	1239			Final assembly number	ООООН	n	
4D8н	1240			Date	0000н	R	
4D9н	1241			Date	ООООН	n	
4DA _H	1242			Write Protect	0	R	
4DBн	1243			PV range unit code	0000н	R	
4DC _H	1244			PV Upper range value	0000н	R	
4DD _H	1245			Pv Opper range value	ООООН	n	
4DE _H	1246	CH5	Information about HART device	PV Lower range value	0000н	R	Section 3.5.27
4DF _H	1247		That device	FV Lower range value	ООООН	n	
4Е0н	1248			PV Damping value	0000н	R	
4Е1н	1249			r v Damping value	ООООН	r.	
4Е2н	1250		Transfer function	0000н	R		
4Е3н	1251		_	PV Unit code	0000н	R	1
4Е4н	1252		SV Unit code	0000н	R	_	
4Е5н	1253		TV	TV Unit code	0000н	R	
4Е6н	1254			FV Unit code	0000н	R	
4Е7н	1255	System	area		_		_

Tab. 3-22: Buffer memory assignment of the ME1DA6HAI-Q (10/11)

* Indicates whether reading from and writing to a sequence program are enabled. R : Read enabled W : Write enabled

Add	lress						
Hexa- decimal	Decimal	Descrip	ption		Default	R/W [*]	Reference
4Е8н	1256						
to	to			Tag	0000н	R	
4ЕВн	1259						
4ЕСн	1260						
to	to			Message	0000н	R	
4FBн	1275						
4ГСн	1276						
to	to			Descriptor	0000н	R	
503н	1283						
504н	1284			Manufacturer ID / Expanded manufacturer ID (HART 7)	0000н	R	
505н	1285	CH6	Information about HART device	Device Type / Expanded device type (HART 7)	0000н	R	Section 3.5.27
506н	1286			Device ID	0000н	R	
507н	1287			Device ID	ООООН	n	
508н	1288			Revisions	0000н	R	
509н	1289			Revisions	ООООН	11	
50Ан	1290			Device function flags	0000н	R	
50Вн	1291						
to	to			Long tag	0000н	R	
51Ан	1306						
51Вн	1307			Private label distributor code (HART 7)	0000н	R	
51Сн	1308			Device profile (HART 7)	0000н	R	
51Dн	1309	System	area		_	_	_
51Ен	1310			Final assembly number	0000	R	
51Fн	1311			Final assembly number	0000н	n	
520н	1312			Date	0000н	R	
521н	1313			Date	ООООН	n	
522н	1314			Write Protect	0	R	
523н	1315			PV range unit code	0000н	R	
524н	1316			PV Upper range value	0000н	R	
525н	1317		lafamanti l	i v Opper range value	ООООН	n	C
526н	1318	CH6	Information about HART device	PV Lower range value	0000н	R	Section 3.5.27
527н	1319		and device	I v Lower range value	ООООН	n	
528н	1320		Tr PV SV	PV Damping value	0000н	R	
529н	1321			T v Damping value	ООООН	n	
52Ан	1322			Transfer function	0000н	R	
52Вн	1323			PV Unit code	0000н	R	
52Сн	1324			SV Unit code	0000н	R	
52Dн	1325			TV Unit code	0000н	R	
52Ен	1326			FV Unit code	0000н	R	
52Fн	1327	System	area				

Tab. 3-23: Buffer memory assignment of the ME1DA6HAI-Q (11/11)

Indicates whether reading from and writing to a sequence program are enabled. R: Read enabled W: Write enabled

3.5.2 CH□ digital value (Un\G1 to Un\G6)

- This area is used by the programmable controller CPU to write digital values for performing D/A conversion. These values are written as 16-bit signed binary code.
- If a value outside the settable range is written, the upper or lower limit value of the range is used for D/A conversion. Also, if this happens, a check code and an error code will be stored in the Set value check code (Un\G11to Un\G16) and Error code (Un\G19) respectively.

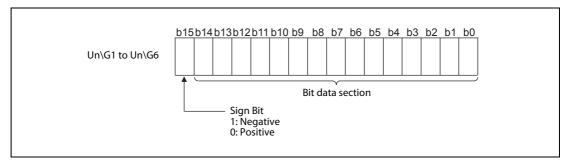


Fig. 3-12: The digital values are stored in 16-bit signed binary format

Output range setting	Digital input value			
Output range setting	Normal range	Tight shut off		
4 to 20 mA	-7000 to 28000	31500		
0 to 20 mA	0 to 28000	30800		

Tab. 3-24: Output range setting and digital value range

Digital input values below 0 in the 4 to 20 mA setting range result in output currents smaller than 4 mA. Negative output currents are not allowed. The output characteristics are shown in the following figure.

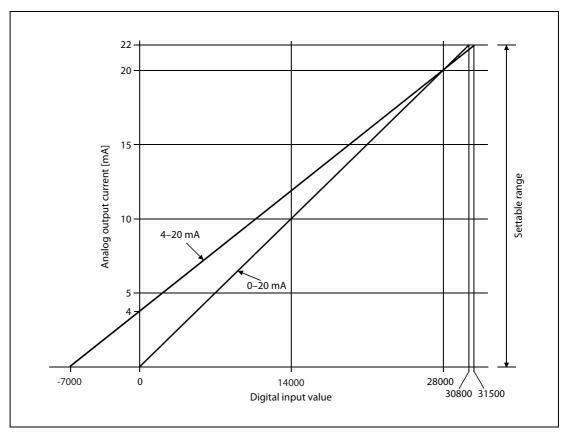


Fig. 3-13: Output characteristics of the ME1DA6HAI-Q

3.5.3 CH□ set value check codes (Un\G11 to Un\G16)

- Digital values set in CH□ Digital value (Un\G1 to Un\G6) are checked and if any of them is outside the settable range, the check result is stored in this area.
- When a digital value outside the settable range is written, one of the check codes listed in the table below is stored.

Check code	Description
000Fн	A digital value exceeding the valid range was written.
00F0н	A digital value that falls short of the valid range was written.
00FFн	A digital value that either falls short or exceeds the valid range was written. For example, the 00FFH check code is stored if a digital value exceeding the valid range was written, and then, without the check code being reset, a digital value that falls short of the valid range was written.

Tab. 3-25: Set value check codes

- Once a check code is stored, it will not be reset even if the digital value is within the valid range.
- To reset the CH□ set value check code, set the error clear request (YF) to ON after rewriting the digital value so that it is within the valid range.

3.5.4 Error code (Un\G19)

- An error code generated by the D/A converter module is stored in the buffer memory address Un\G19.
- For more details of the error codes, please refer to section 6.1.

3.5.5 Setting range (Un\G20, Un\G21)

These read only areas can be used to confirm the setting ranges of the respective channels. For the setting use the intelligent function module switches in the PLC parameters (refer to section 4.5.2).

	b15	to	b12	b11	to	b8	b7	to	b4	b3	to	b0
Un\G20		CH4			CH3			CH2			CH1	
Un\G21		— (0н)			— (0 н)			CH6			CH5	

Fig. 3-14: The setting range information of all channels is stored in two buffer memory addresses.

The correlation between the output range and the settings in Un\G20 and Un\G21 is shown in the following table.

Output range	Setting value
4 to 20 (mA)	Он
0 to 20 (mA)	1н
Illegal (not allowed)	Other settings

Tab. 3-26: Output ranges of the ME1DA6HAI-Q

3.5.6 Short circuit detection setting (Un\G45)

- This area is used to define whether to enable or disable the short circuit detection on each channel. (Refer to section 3.3.7.)
- To validate the short circuit detection setting, the operating condition setting request (Y9) must be turned ON/OFF. (Refer to section 3.4.2.)
- All channels are set to disable as the default setting.

Fig. 3-15: Assignment of the bits in buffer memory address 45

3.5.7 Rate control enable/disable setting (Un\G46)

- This area is used to define whether to enable or disable the rate control on each channel. (Refer to section 3.3.3.)
- To validate the rate control setting, the operating condition setting request (Y9) must be turned ON/OFF. (Refer to section 3.4.2)
- All channels are set to disable as the default setting.

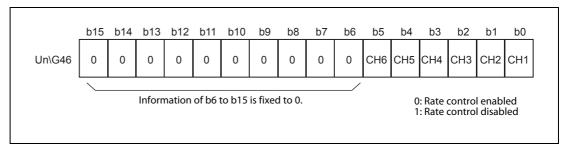


Fig. 3-16: Assignment of the bits in buffer memory address 46

3.5.8 Disconnection detection/warning output setting (Un\G47)

- This area is used to set whether to enable or disable the disconnection detection and warning output on each channel. (For the disconnection detection, refer to section 3.3.6, and for the warning output refer to section 3.3.5.)
- To validate the disconnection detection/warning output setting, the operating condition setting request (Y9) must be turned ON/OFF. (Refer to section 3.4.2)
- As default, the disconnection detection and the warning output is disabled for all channels.

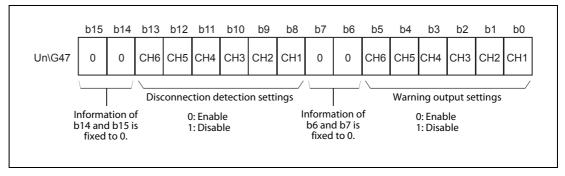


Fig. 3-17: Assignment of the bits in buffer memory address 47

3.5.9 Warning output flags (Un\G48)

- When the digital input value falls outside the CH□ warning output upper limit value/lower limit value (buffer memory addresses Un\G86 to Un\G97) range, the bit corresponding to the channel turns to "1". (Refer to section 3.3.5)
- Whether the warning is the upper or lower limit value warning can be checked on each channel.
- If a warning is detected on any of the channels enabled for conversion, the warning output signal (XE) also turns ON.
- Turning ON the operating condition setting request (Y9) or warning output clear request (YE) clears the warning output flag.

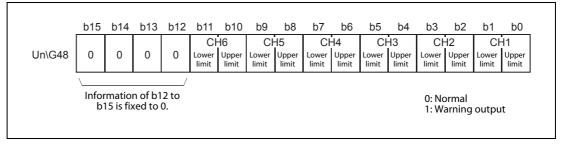


Fig. 3-18: Assignment of the bits in buffer memory address 48

3.5.10 Disconnection detection flags (Un\G49)

- If a disconnection occurs while an output of 4 mA or more is set, the bit corresponding to the channel turns to "1". (Refer to section 3.3.6)
- In addition, the disconnection detection signal (XD) also turns ON if a disconnection is detected on any channel.
- When the operating condition setting request (Y9) or disconnection detection clear request (YD) is turned ON, the disconnection detection flags are cleared.

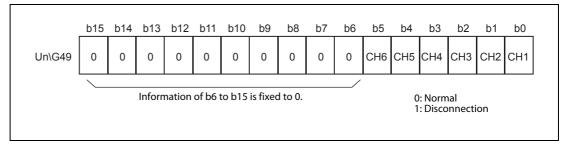


Fig. 3-19: Assignment of the bits in buffer memory address 49

3.5.11 Short circuit detection flag (Un\G50)

- In case of a short circuit, the bit corresponding to the channel turns to "1".
- If a short circuit is detected on any channel, the short circuit detection signal (X10) also turns ON.
- The short circuit detection flags are cleared when the operating condition setting request (Y9) or short circuit clear request (Y10) is turned ON.

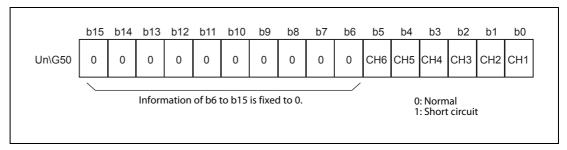


Fig. 3-20: Assignment of the bits in buffer memory address 50

3.5.12 Scaling enable/disable setting (Un\G53)

- Whether to enable or disable the scaling function for each channel is set in this area.
- To validate the scaling function, the operating condition setting request (Y9) must be turned ON/OFF.
 (Refer to section 3.4.2)
- The default setting for all channels is "Disable".

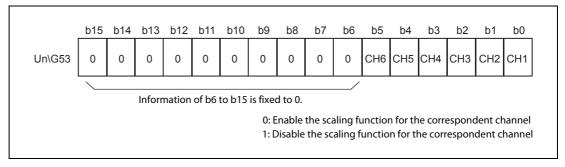


Fig. 3-21: Assignment of the bits in buffer memory address 53

3.5.13 CH□ scaling upper/lower limit values (Un\G54 to Un\G65)

- Set a scaling conversion range for each channel.
- To validate the settings, the operating condition setting request (Y9) must be turned ON/OFF. (Refer to section 3.4.2)
- The setting range is -32768 to 32767.

For details of the scaling function, refer to section 3.3.4.

NOTES

Setting a value outside the above setting range or a value that does not meet the inequality "Upper limit > Lower limit" will cause an error. If this occurs, an error code is stored in the buffer memory address Un\G19, the Error flag (XF) is switched ON, and the module will operate under the setting before the error.

Since the default setting is 0, changing of the setting is required for operation.

When the Scaling enable/disable setting (Un\G53) is set to "Disable", scaling upper/lower limit values are ignored.

3.5.14 CH□ Increase/decrease digital limit values (Un\G70 to Un\G81)

- For rate control, set the range where the digital value can be incremented and decremented in a single conversion cycle (10 ms). (Refer to section 3.3.3.)
- The setting range is 0 to 32000. If any value outside the setting range is set, an error occurs and the corresponding error code is stored in buffer memory address Un\G19.
- The operating condition setting request (Y9) must be turned ON/OFF to validate the increase digital limit values and decrease digital limit values. (Refer to section 3.4.2.)

3.5.15 CH□ Warning output upper/lower limit values (Un\G86 to Un\G97)

- Set the upper and lower limit values of the digital input value for providing the warning output. (Refer to section 3.3.5.)
- The setting range is -32768 to 32767. Make the settings so that the upper limit value is greater than the lower limit value. If any value outside the setting range is set, an error occurs and the corresponding error code is stored in buffer memory address Un\G19.
- To validate the settings, the operating condition setting request (Y9) must be turned ON/OFF (Refer to section 3.4.2.)

3.5.16 HART enable (Un\G160)

• After the bit corresponded to each channel is set, HART communication will be automatically started in the indicated channel.

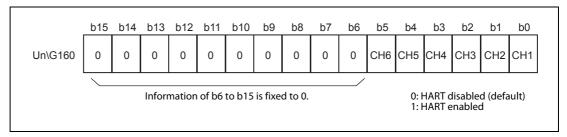


Fig. 3-22: Assignment of the bits in buffer memory address 160

NOTE

HART communication will be stopped without notification for output currents lesser than 2 mA. Depending on the specifications of the connected HART slave, communication may stop earlier at currents lesser than 4 mA (refer to the slave specification for the minimum current). It will recover automatically if the output current is 2 mA or higher again. The HART scan list (Un\G161, section 3.5.17) can be used to check the status of each HART device.

3.5.17 **HART scan list (Un\G161)**

 After HART functionality is enabled, the ME1DA6HAI-Q will automatically detect the HART device which is connected with the enabled channel. After the device information are stored into the buffer memory, the corresponding bit in the "HART Scan list" is set. (Refer to the figures below.)

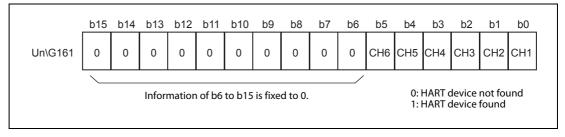


Fig. 3-23: Assignment of the bits in the HART scan list (buffer memory address 161)

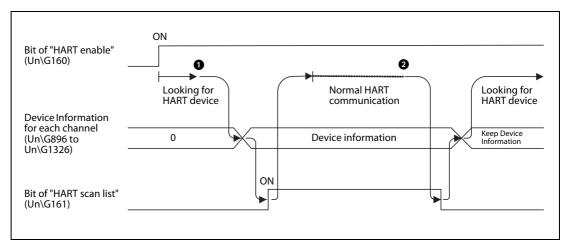


Fig. 3-24: Operation when HART device is detected and missing

- When a HART device is detected, the device information is stored, the HART communication is initialized, and the corresponding bit in the HART scan list is set.
- ② When the HART communication is interrupted due to a missing HART device, the corresponding bit in the HART scan list is reset and the HART device information is kept.

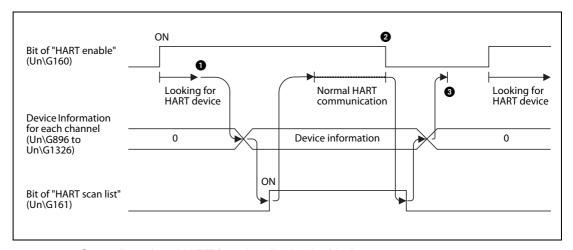


Fig. 3-25: Operation when HART functionality is disabled

- When a HART device is detected, the device information is stored, the HART communication is initialized, and the corresponding bit in the HART scan list is set.
- **2** When the HART communication is disabled, the corresponding bit in the HART scan list is reset and the HART device information is cleared.
- 3 Since the HART enable bit in Un\G160 is reset, the HART communication is stopped.

3.5.18 HART cycle time (Un\G162 to Un\G164)

- The current, maximum and minimum HART cycle time is stored in Un\G162, Un\G163 and Un\G164 respectively.
- The HART cycle time is the total time required for accessing each HART enabled channel or rather the time period between two accesses to the same HART channel.
- The unit of the HART cycle time is 10 ms.
- These values are reset after a power reset or PLC CPU reset.

3.5.19 HART maximum retries (Un\G176 to Un\G181)

- Set the maximum number of command retries for each HART channel.
- The range is 0 to 30, default is 3 retries.

3.5.20 HART device information refresh interval (Un\G191)

- Set the maximum interval in which the device information shall be read from a HART device.
- The range is 0 to 60 seconds, default is 30 seconds.
- This setting can speed up the FDT/DTM communication when changing configuration data via the DTM.

The affected HART device information data is located in the buffer memory addresses Un\G896 to Un\G1326. The HART Process Variables (Un\G240 to Un\G311) are not affected, they are updated cyclically.

3.5.21 HART field device status (Un\G240, Un\G252, Un\G264...)

Information about the status of the HART field device are stored in the corresponding buffer memory address (Channel 1: $Un\252$, CH 2: $Un\254$, CH 3: $Un\254$, $Un\254$,

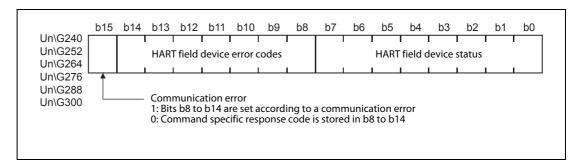


Fig. 3-26: Assignment of bits for HART field device error codes and status

The meaning of the bits b0 to b7 is as follows:

Bit	Meaning (when bit is set to "1")
b0	Primary variable out of limits
b1	Non-primary variable out of limits
b2	Loop current saturated
b3	Loop current fixed
b4	More status available
b5	Cold start
b6	Configuration changed
b7	Device malfunction

Tab. 3-27: HART field device status

Whether the bits b8 to b14 store information about a communication error or a command specific response code is indicated by b15:

Bit	When b15 is "1": Communication error	When b15 is "0": Command specific response code* The code is the binary value of the bits b8 to b14.		
Dit.	Meaning (when bit is set to "1")			
b8	_			
b9	Buffer overrun	0: No error 5: Not enough data received		
b10	_	6: Device command error		
b11	Checksum error	7: Write protection		
b12	Framing error	16: Access restricted 32: Device busy		
b13	UART overrun	64: Command not implemented		
b14	Parity error	·		

Tab. 3-28: HART field device error codes

3.5.22 Extended HART field device status (Un\G241, Un\G253, Un\G265...)

Information about the extended status of the HART field device are stored in the corresponding buffer memory address. (Channel 1: $Un\G241$, CH 2: $Un\G253$, CH 3: $Un\G265$ etc.)

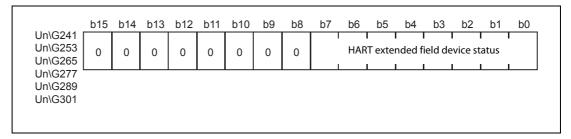


Fig. 3-27: Assignment of bits for HART extended field device status

The meaning of the bits b0 to b7 is as follows:

Bit	Meaning (when bit is set to "1")	Description
b0	Maintenance required	This bit is set to indicate that, while the device has not mal- functioned, the field device requires maintenance.
b1	Device variable alert	This bit is set if any device variable is in an alarm or warning state. The host should identify the device variable(s) causing this to be set using the device variable status indicators.
b2	Critical Power Failure	For devices that can operate from stored power. This bit is set when that power is becoming critically low. For example, a device powered by a rechargeable battery will set this bit if the battery voltage is becoming low. Devices must be able to sustain their network connection for at least 15 minutes from the moment when this bit is set. A device may disconnect from the network if its power level drops too low.
b3	_	_
b4	_	_
b5	_	_
b6	-	
b7		

Tab. 3-29: HART extended field device status

^{*} Listed in this table are some commonly used codes. For the codes available for the connected HART field device, please refer to the instruction manual of the device.

3.5.23 Device variable status (Un\G242 & Un\G243, Un\G254 & Un\G255...)

- The status of each HART device (process) variable according to the HART Command summary specification is stored in these buffer memory addresses.
- For each channel two buffer memory addresses are occupied.
- The Device Variable Status is read by HART command #9. If command #9 is not supported by the device, HART command #3 can be used instead. In this case the Device Variable Status is derived form the communication status ("Good" and "Bad" only).
- If a certain variable is not present in the device, the status is set to "bad".

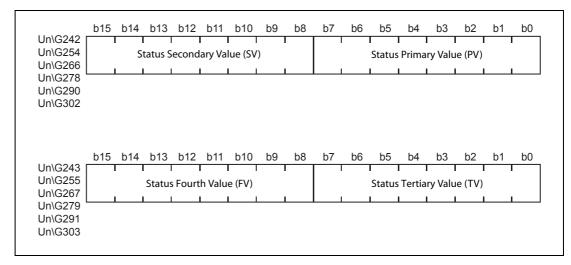


Fig. 3-28: The status of up to four device variables is stored

Each status has the following structure.

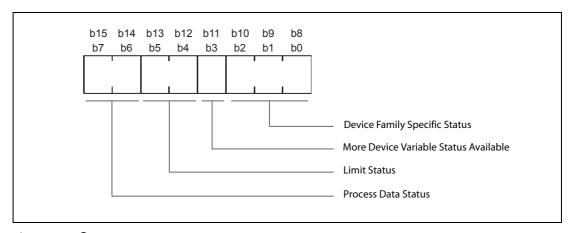


Fig. 3-29: Status structure

Item	Description	Remark
Device Family Specific Status	Device Family depended	_
More Device Variable Status Available	The availability of additional Device Family-specific status is stored. • 1 = More Device Variable Status available • 0 = More Device Variable Status not available	This bit indicates if the Device Family Specific Status is available via the Device Family Command.

Tab. 3-30: Contents of the Device Variable status

Item	Description	Remark		
Limit Status	Shows whether the Device Variable value is limited. • 11 = Constant • 01 = Low Limited • 10 = High Limited • 00 = Not Limited	The combinations of these 4 bits within each status show the status of Device Variable's value. For example, if the Process Data Status is		
Process Data Status	The overall status of the Device or Dynamic Variable value is stored. • 11 = Good • 01 = Poor Accuracy • 10 = Manual/Fixed • 00 = Bad	"Manual/Fixed" and the Limit Status is "Not Limited" then the value is being manually controlled.		

Tab. 3-30: Contents of the Device Variable status

3.5.24 HART process variables (Un\G244 to Un\G251, Un\G256 to Un\G263...)

- These areas store the HART Process Variables as transmitted with command #9 or if not available with command #3.
- Up to four Process Variables are stored per channel.
- Each Process Variable occupies two successive buffer memory addresses. The values are stored as 32-bit floating point numbers.
- If a certain variable is not present the corresponding buffer memory addresses are set to NaN (not a number) which is 7FA00000H.

NOTE

For a detailed description of floating point numbers please refer to the Programming Manual for the A/Q series and the MELSEC System Q, art. no. 87431.

3.5.25 HART Command Request (Un\G352 to Un\G483)

HART Command Request Flag (Un\G352)

- For execution of a HART command, set the HART Command Request Flag to "1".
- Set the HART Command, the contents of the data buffer and data size before setting this flag.
- When the HART Command Answer Flag is "1" the HART Command Request Flag shall be reset.

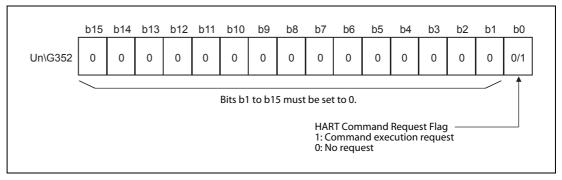


Fig. 3-30: Bit 0 of the buffer memory address Un\G352 is the request flag for a HART Command

The operation for a HART Command Request and the appropriate answer is shown in the following figure.

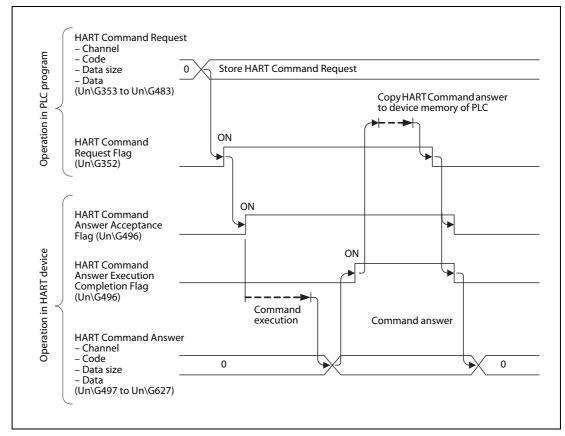


Fig. 3-31: HART command execution chart

HART Command Request Channel (Un\G353)

 Un\G353 contains the channel number (1 to 6) to which the subsequent HART Command shall be sent.

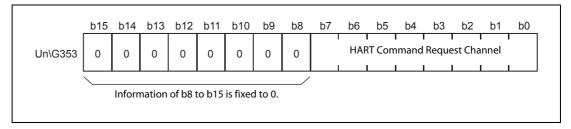


Fig. 3-32: The contents of the high byte of Un\G353 is fixed to "0"

• The relation between the setting value for the HART Command Request Channel and the channel No. is as follows:

Setting value	Command Request Target Channel
1	Channel 1
2	Channel 2
3	Channel 3
4	Channel 4
5	Channel 5
6	Channel 6

Tab. 3-31: Channel selection

HART Command Request Code (Un\G354)

• Stores the HART command according to HART specification or the instruction manual of the HART transmitter.

HART Command Request Data Size (Un\G355)

- Stores the amount of valid data to be sent in the HART Data Buffer (Un\G356 to Un\G483).
- The maximum setting value is 255.

HART Command Request Data (Un\G356 to Un\G483)

- Data to be sent to a HART device is stored in these 128 buffer memory addresses.
- The amount of data is determined by the Data Size (Un\G355). Surplus data is ignored.

3.5.26 HART Command Answer (Un\G496 to Un\G627)

HART Command Answer Flag (Un\G496)

- The high byte (b8 to b15) of Un\G496 forms the HART Command Acceptance Flag. As a reaction of a HART Command Request (refer to section 3.5.25), the HART device writes one of the following two values into this byte:
 - "0": Command not accepted or no request
 - "1": Command accepted
- The low byte (b0 to b7) contains the HART Command Execution Complete Flag. This byte has also only two states and is written by the HART device:
 - "0": Command not complete or no request
 - "1": Command complete.

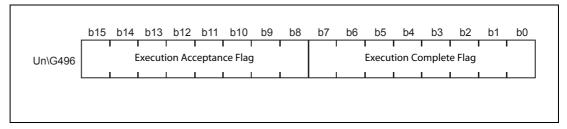


Fig. 3-33: Un\G496 is shared by the Execution Acceptance Flag and the Execution Complete Flag

HART Command Answer Channel (Un\G497)

- The channel number which has received the subsequent HART Command Answer is stored in the low byte of Un\G497.
- Range for the channel number: 1 to 6

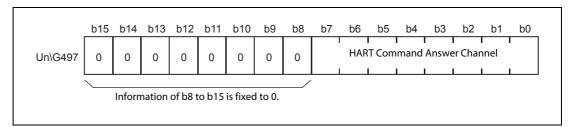


Fig. 3-34: The low byte of Un\G497 indicates the channel No.

HART Command Answer Code (Un\G498)

Stores the HART command from the device's answer

HART Command Answer Data Size (Un\G499)

Stores the amount of valid data in the HART Command Answer Data Buffer (Un\G500 to Un\G627).

HART Command Answer Data (Un\G500 to Un\G627)

- The received data from the device according to HART specification is stored in these 128 buffer memory addresses.
- The first two bytes are the device's status.

3.5.27 Information about HART Device (Un\G896 to Un\G966, Un\G968 to Un\G1038...)

Detailed information about the connected HART devices is stored in the following areas of the buffer memory:

HART device connected to channel	Information storage area
1	Un\896 to Un\966
2	Un\968 to Un\1038
3	Un\1040 to Un\1110
4	Un\1112 to Un\1182
5	Un\1184 to Un\1254
6	Un\1256 to Un\1326

Tab. 3-32: Assignment of buffer memory areas

The refresh interval for the HART device information can be set in buffer memory address Un\G191 (refer to section 3.5.20).

HART Tag

- The user defined HART Tag is read by HART Command #13.
- The Tag occupies four successive buffer memory addresses.
- 8 characters in ASCII format are stored, the first character in the low byte (LSB) of the lowest address.
- End of string is filled with space characters (20H).

HART Message

- The HART Message is read by HART Command #12.
- The Message occupies 16 successive buffer memory addresses.
- 32 characters in ASCII format are stored, beginning with the first character in the low byte (LSB)
 of the lowest address.
- End of string is filled with space characters (20H).

HART Descriptor

- The user defined HART Descriptor is read by HART Command #13.
- The Descriptor occupies 8 successive buffer memory addresses.
- 16 characters in ASCII format are stored, starting with the first character in the low byte (LSB) of the lowest address.
- End of string is filled with space characters (20H).

HART Manufacturer ID

- This indicates the manufacturer of the HART device. The name is given as a code established by the HART Communication Foundation and set by manufacturer.
- The Manufacturer ID is read by HART Command #0
- The amount of data depends on the HART Field Communications Protocol used:
 - HART 5/6: 1 byte
 - HART 7: 2 bytes

Hart Device Type

- The Hart Device Type is set by the manufacturer and read by HART Command #0.
- The amount of data depends on the HART Field Communications Protocol used:
 - HART 5/6: 1 byte
 - HART 7: 2 bytes

HART Device ID

- The HART Device ID is read by HART Command #0.
- Two successive buffer memory addresses are reserved for the Device ID.
- The Device ID occupies 3 bytes.

HART Revisions

- The HART Revisions are set by the manufacturer and read by HART Command #0.
- The revision information occupies two successive buffer memory addresses.

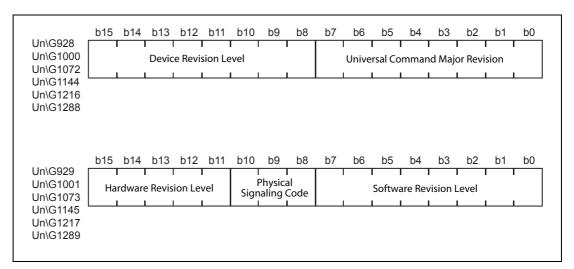


Fig. 3-35: Various revision information is stored

HART Device Function Flags

The HART Device Function Flags are read by HART Command #0.

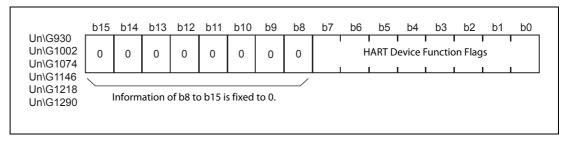


Fig. 3-36: The flags are stored in the low byte of the corresponding buffer memory address.

The meaning of the bits b0 to b7 is as follows:

Bit	Meaning (when bit is set to "1")
b0	Multi-Sensor Field Device
b1	EEPROM Control
b2	Protocol Bridge Device
b3	IEEE 802.15.4 2.4GHz DSSS with O-QPSK Modulation
b4	-
b5	-
b6	C8psk Capable Field Device
b7	C8psk In Multi-Drop only

Tab. 3-33: HART Device Function Flags

HART Long Tag

- The Long Tag with international (ISO Latin 1) characters allows consistent implementation of the longer tag names required by many industry users.
- The HART Long Tag is read by HART Command #20.
- The Long Tag occupies 16 successive buffer memory addresses.
- 32 characters in ASCII format are stored, beginning with the first character in the low byte (LSB)
 of the lowest address.
- End of string is filled with space characters (20H).

HART Private Label Distributor

- This function is available with HART 7 only.
- The HART Private Label Distributor is read by HART Command #0 and consists of 2 bytes.

HART Device Profile

- This function is available with HART 7 only.
- The HART Device Profile is read by HART Command #0.
- The information is stored in 1 byte and in accordance with the HART Common Tables Specification (Table 57).

HART Final Assembly Number

- The HART Final Assembly Number is read by HART Command #16.
- Two successive buffer memory addresses are reserved for the Final Assembly Number.
- The received information is stored in 3 bytes.

HART Date

- The HART Date (date of last calibration) is read by HART Command #13.
- The received data is stored in two successive buffer memory addresses.

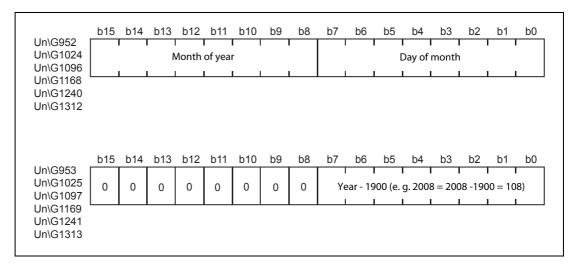


Fig. 3-37: The HART Date consists of information about day, month and year

HART Write Protect

- The HART Write Protect status is read by HART Command #15.
- One of the following three values is stored:
 - 0: Not write protected
 - 1: Write protected
 - 251: Write protection is not supported by the device

HART PV Range Unit Code

- The HART PV Range Unit Code is read by HART Command #15.
- The code indicates the units used for the range settings for the primary variable (PV). The code values are defined in the HART specification.

HART PV Upper and Lower Range Value

- The upper and lower range limits for the Primary Variable (PV) are read by command #15.
- For each range value two successive buffer memory addresses are reserved. The values are stored
 as 32-bit floating point numbers.

NOTE

For a detailed description of floating point numbers please refer to the Programming Manual for the A/Q series and the MELSEC System Q, art. no. 87431.

HART PV Damping Value

- Damping constant for the primary variable (PV) in seconds, read by HART command #15.
- The Damping Value is stored in two successive buffer memory addresses as a 32-bit floating point number.

NOTE

For a detailed description of floating point numbers please refer to the Programming Manual for the A/Q series and the MELSEC System Q, art. no. 87431.

HART Transfer Function

- The HART Transfer Function is read by HART command #15.
- The code values are defined in the HART specification.

HART Unit Code (PV, SV, TV and FV)

- The HART Unit Code for the process variables is read by HART Commands #3 or #9.
- The code indicates the units used for the respective data item. The code values are defined in the HART specification.

4 Setup and Procedures before Operation

4.1 Handling Precautions

- Do not drop the module or subject it to heavy impact.
- Do not remove the PCB of the module from its case. Doing so may cause the module to fail.
- Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
- Before handling the module, touch a grounded metal object to discharge the static electricity from the human body.

Failure to do so may cause the module to fail or malfunction.

• Tighten the screws such as module fixing screws within the following ranges. Loose screws may cause short circuits, failures, or malfunctions.

Screw location	Tightening torque range
Module fixing screw (M3 screw, optional)	0.36 to 0.48 Nm
Terminal block screws (M3 screws)	0.42 to 0.58 Nm
Terminal block mounting screws (M3.5 screws)	0.66 to 0.89 Nm

Tab. 4-1: Tightening torques

• To mount the module on the base unit, fully insert the module fixing latch into the fixing hole in the base unit and press the module using the hole as a fulcrum.

Improper installation may result in a module malfunction, or may cause the module to fall off.

4.2 Setup and Procedures before Operation

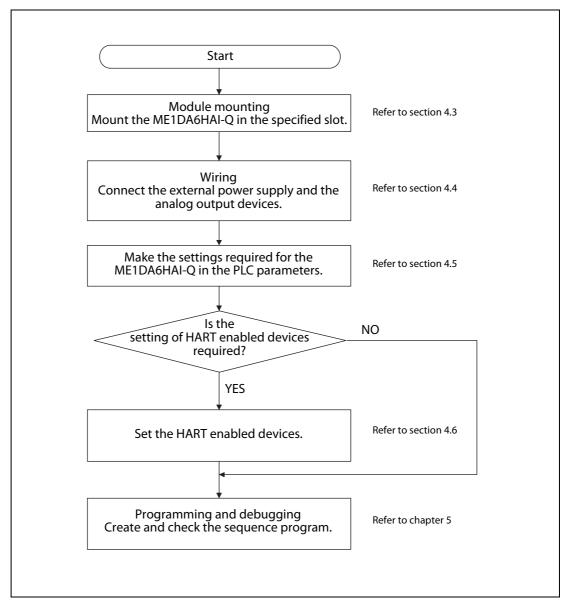


Fig. 4-1: Function chart for the setup of the HART analog output module

4.3 Installation of the Module

The ME1DA6HAI-Q can be combined with a CPU module or, when mounted to a remote I/O station, with a master module for MELSECNET/H (refer to section 2.1).

CAUTION:

- Cut off all phases of the power source externally before starting the installation or wiring work.
- Always insert the module fixing latch of the module into the module fixing hole of the base unit. Forcing the hook into the hole will damage the module connector and module.
- Do not touch the conductive parts of the module directly.
- ① After switching of the power supply, insert the module fixing latch into the module fixing hole of the base unit.
- 2) Push the module in the direction of the arrow to load it into the base unit.

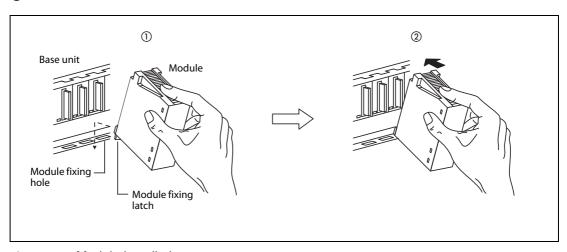


Fig. 4-2: Module installation

3 Secure the module with an additional screw (M3 x 12) to the base unit if large vibration is expected. This screw is not supplied with the module.

4.4 Wiring

4.4.1 Wiring precautions

In order to optimize the functions of the HART analog output module and ensure system reliability, external wiring that is protected from noise is required. Please observe the following precautions for external wiring:

- Use separate cables for the AC control circuit and the external output signals of the analog output module to prevent influences of AC surge or induction.
- Do not lay cables for analog signals close to the main circuit, high-voltage power lines, or load lines. Otherwise effects of noise or surge induction are likely to take place. Keep a safe distance of more than 100 mm from the above when wiring.
- The FG terminal of ME1DA6HAI-Q must be connected to the ground certainly.
- The shield wire or the shield of the shielded cable must be grounded at one end.
- Observe the following items for wiring the terminal block. Ignorance of these items may cause electric shock, short circuit, disconnection, or damage of the product:
 - Use solderless terminals for the connection. Twist the end of stranded wires and make sure there are no loose wires.
 - Solderless terminals with insulating sleeves cannot be used for the terminal block. Covering
 the cable-connection portion of the solderless terminal with a marked tube or an insulation
 tube is recommended.
 - Do not solder-plate the electric wire ends.
 - Connect only electric wires of regular size.
 - Tightening of terminal block screws should follow the torque described on the previous page.
 - Fix the electric wires so that the terminal block and connected parts of electric wires are not directly stressed.
- When wiring to the module placed on the right side of the ME1DA6HAI-Q is difficult, remove the ME1DA6HAI-Q before wiring.

4.4.2 External wiring

The ME1DA6HAI-Q is designed for current output only. Devices requiring a current input for instance as setting value such as actuators, servo amplifiers or inverters can be connected. It is also possible to mix standard (not HART enabled) devices with HART devices. For HART enabled devices, no additional wiring is required since the analog output wiring is used for communication between the ME1DA6HAI-Q and the device (refer to section 3.3.8).

To each output channel of the ME1DA6HAI-Q one HART enabled device can be connected in a point-to-point configuration. Multidrop network connection (more than one device to one channel) is not possible.

Applicable cables

Concerning to the applicable cable, refer to the HART specification for more details.

External power supply

For operation of the ME1DA6HAI-Q, an external power supply of 24 V DC (+20%, -15%, which gives a voltage range of 20.4 to 28.8 V DC), is required.

Connection of the external wiring

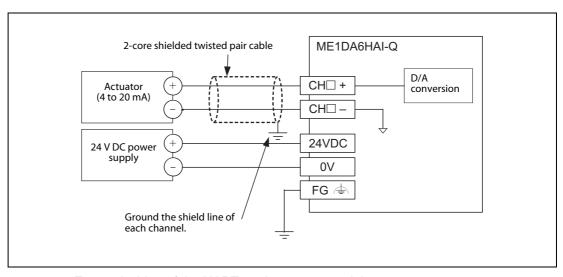


Fig. 4-3: External wiring of the HART analog output module

4.5 PLC Parameter Setting

In the PLC parameters the I/O assignment for the ME1DA6HAI-Q, the analog output range for each channel and the HOLD/CLEAR function are set.

NOTE

For setting the parameters of the ME1DA6HAI-Q, the intelligent function utility of GX Works2 can be used also (please refer to chapter 5).

4.5.1 I/O assignment

Start GX Developer or GX IEC Developer and open up the project with the ME1DA6HAI-Q. After the selection of *Parameter* in the Project Navigator Window, double-click on *PLC parameter*. The Q parameter setting window will appear. Click on the *I/O assignment* tab.

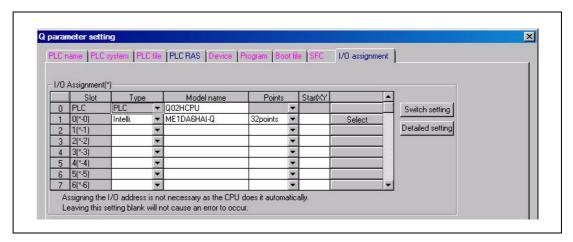


Fig. 4-4: I/O assignment setting screen

Set the following for the slot in which the ME1DA6HAI-Q is mounted:

Type: Select "Intelli."

Model name: ME1DA6HAI-Q (Entering of the module model name is optional. The entry is used

for documentation only and has no effect on the function of the module.)

Points: Select 32 points.

Start I/O number for the ME1DA6HAI-Q. (Assigning of the I/O address is not

necessary as the address is automatically assigned by the PLC CPU.)

When using in the standard system configuration (on the main or extension base), select **Detailed settings** to specify the control CPU of the ME1DA6HAI-Q in a multiple CPU system. It is unnecessary to set the "Error time output mode" or "H/W error time PLC operation mode" since these settings are invalid for the ME1DA6HAI-Q.

When the ME1DA6HAI-Q is mounted to a MELSECNET/H remote I/O station, if the analog output is to be held in the case of a link error, "Error time output mode" (in the **Detailed settings**) must be set to "Hold". (Refer to section 3.3.1 for further details.)

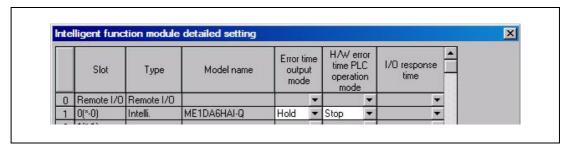


Fig. 4-5: Detailed settings for intelligent function modules

4.5.2 Intelligent function module switch settings

The analog output range for each channel of the ME1DA6HAI-Q is selected by two "switches" in the PLC parameters. There are no switches at the module itself.

The intelligent function module switches are set using 16 bit data (4 hexadecimal digits).

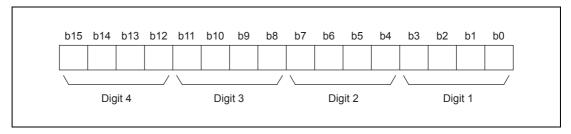


Fig. 4-6: Bit assignment for one switch

In the I/O assignment setting screen (section 4.5.1) click on **Switch setting** to display the screen shown below, then set the switches as required. The switches can easily be set if values are entered in hexadecimal. Change the entry format to hexadecimal and then enter the values.

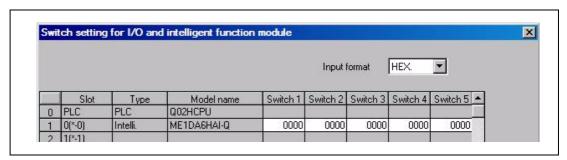
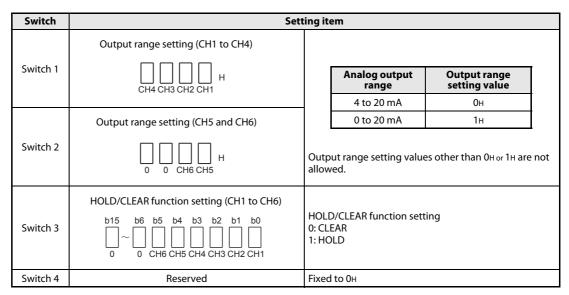
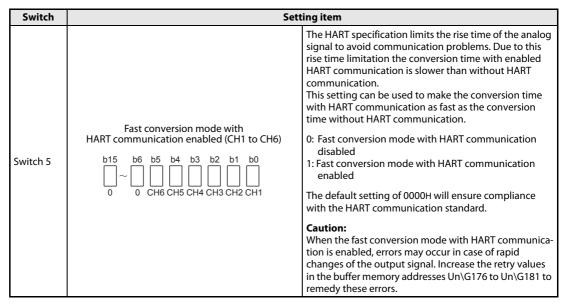




Fig. 4-7: Switch setting for intelligent function module screen

When the intelligent function module switches are not set, the default value for switches 1 to 5 is 0000H.

Tab. 4-2: Switch settings for the ME1DA6HAI-Q

Tab. 4-2: Switch settings for the ME1DA6HAI-Q

NOTE

When the ME1DA6HAI-Q is mounted to a MELSECNET/H remote I/O station, the HOLD/CLEAR setting by the intelligent function module switch is invalid. (Refer to section 3.3.1.)

Setting example

The configuration shown below is used for the setting example.

Channel	Output range		HOLD/CLEAR function setting		Fast conversion mode with HART communication	
	0 to 20 mA	4 to 20 mA	HOLD	CLEAR	Disabled	Enabled
1		•		•		•
2	•		•		•	
3	•		•		•	
4		•		•	•	
5		•		•		•
6	Not cor	nnected	Not cor	nnected	Not con	nected

Tab. 4-3: Output ranges and HOLD/CLEAR settings for this example

Setting value for switch 1:0110H

Setting value for switch 2:0000H

Setting value for switch 3: 0000 0000 0000 0110 = 0006H

Setting value for switch 4: 0000H (fixed)

Setting value for switch 5: 0000 0000 0001 0001 = 0011H

4.6 Setting of the HART Devices

For setting the parameters and monitoring the status of HART devices, MX CommDTM-HART can be used.

It supports serial CPU port connection (RS-232, USB, Ethernet via QnUDE) as well as Ethernet modules and MELSEC networks.

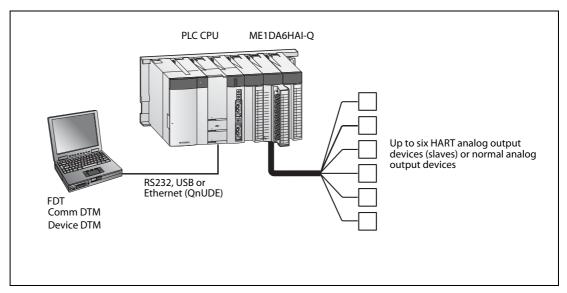


Fig. 4-8: System configuration for the connection of MX CommDTM-HART to the PLC CPU

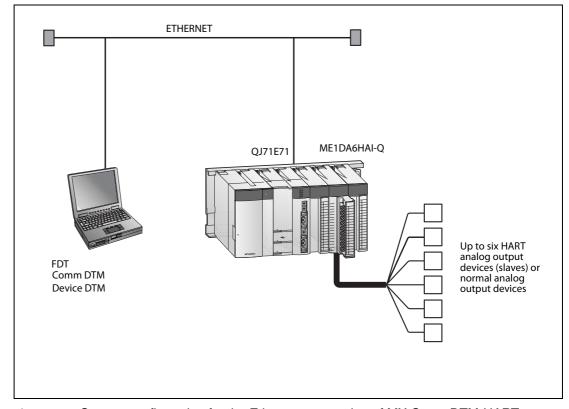


Fig. 4-9: System configuration for the Ethernet connection of MX CommDTM-HART

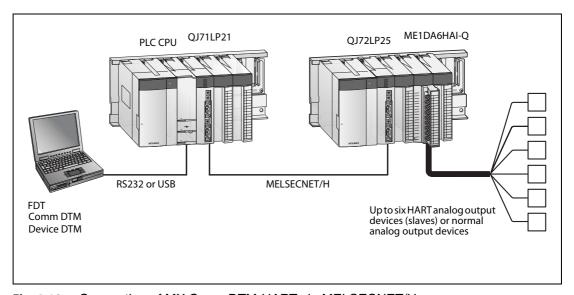


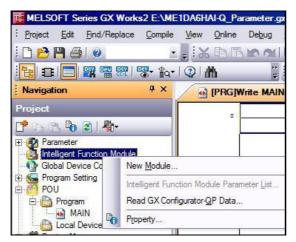
Fig. 4-10: Connection of MX CommDTM-HART via MELSECNET/H

● CommDTM for ME1DA6HAI-Q

It can be downloaded from the following web-site: $http://www.mitsubishi-automation.com/mymitsubishi_index.html \\ Menu "MyMitsubishi" \rightarrow (Login) \rightarrow "Downloads" \rightarrow "Tools"$

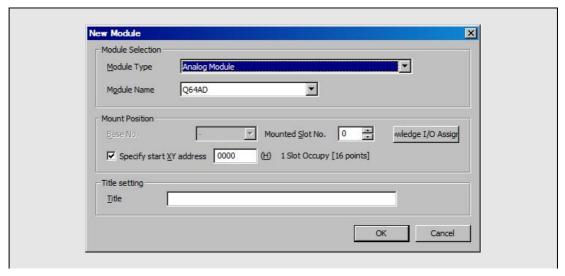
• Device DTM for each HART device

Please ask the manufacturer of the HART device.


5 Intelligent Function Utility (GX Works2)

The programming software GX Works2 allows the quick and easy parameter setting for intelligent function modules like the ME1DA6HAI-Q.

Programming is reduced because the initial setting and automatic data exchange between PLC CPU and ME1DA6HAI-Q can be configured on the screen. In addition, the "switches" of intelligent function modules can be set easily.


5.1 Addition of a new Module to the Project

To add a new intelligent function module to a project, click on *Intelligent Function Module* in the Project Navigation window. After a right click, select *New Module*.

Fig. 5-1: Addition of a new intelligent function module

The window **New Module** is displayed.

Fig. 5-2: Selection of an intelligent function module

Select HART Analog Module.

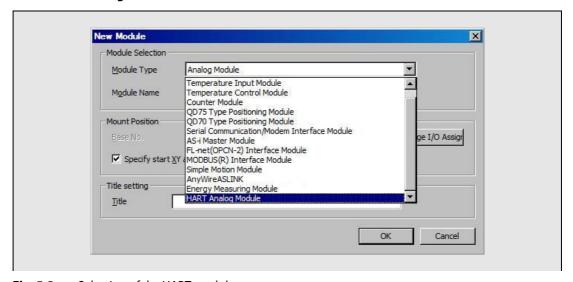


Fig. 5-3: Selection of the HART modules

Afterwards, select ME1DA6HAI-Q.

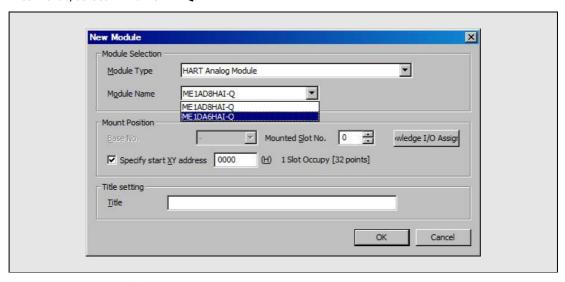
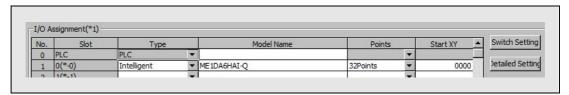



Fig. 5-4: Selection of the ME1DA6HAI-Q

Enter the slot No. where the module is mounted (**Mounted Slot No.**) and the start I/O number. As **Title** you can, for instance, enter an individual name for the module. This name is then displayed in the Project Navigation window.

Afterwards click on OK.

The settings are reflected in the PLC parameters automatically. An I/O assignment (section 4.5.1) there is no longer required.

Fig. 5-5: Display of the I/O assignment in the PLC parameters

5.2 Switch Setting

The "switches" of intelligent function modules, otherwise set in the PLC parameters (refer to section 4.5.2), can be set very clearly with GX Works2.

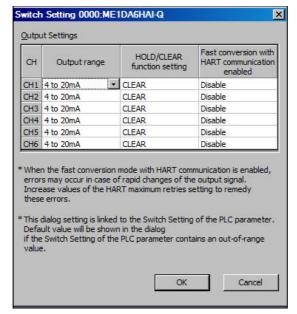


Fig. 5-6:

In the Project Navigation window, click on the plus sign in front of the module name in order to show the setting options.

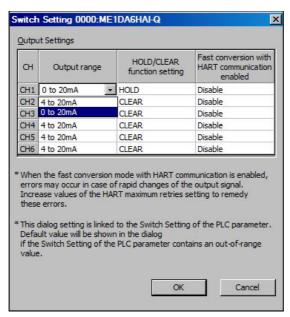
Fig. 5-7:Double-click on **Switch Setting**.

Fig. 5-8: In this dialog box the output range of each channel and other options can be set.

Setting options

Output range

0 to 20 mA or 4 to 20 mA


HOLD/CLEAR function setting

Holding or clearing of the output value when the PLC CPU is stopped.

• Fast conversion with HART communication enabled

The fast conversion mode can be disabled or enabled.

The settings are described in detail in section 4.5.2.

Fig. 5-9:Select the desired output range and the options and click on **OK** afterwards.

The settings are reflected in the PLC parameters automatically. Therefore switch setting is no longer required there.

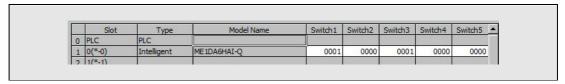


Fig. 5-10: Display of the switch settings in the PLC parameters

5.3 Parameter Setting

Fig. 5-11: Double-click on **Parameter**.

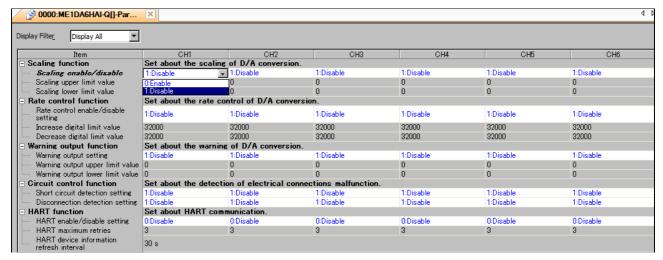


Fig. 5-12: Dialog box for parameter setting

Double-click an item to change the setting. Depending on the type of item this action displays a pull-down list with options to choose from or a setting value can be entered directly.

The individual settings are shown on the next page.

Item		Reference (section)
	Scaling enable/disable setting	3.5.12
Scaling function	Scaling upper limit value	3.5.13
	Scaling lower limit value	3.3.13
	Rate control enable/disable setting	3.5.7
Rate control function	Increase digital limit value	3.5.14
	Decrease digital limit value	3.5.14
	Warning output setting	3.5.8
Warning output function	Warning output upper limit value	3.5.15
	Warning output lower limit value	3.3.13
Circuit control function	Short circuit detection function	3.5.6
Circuit control function	Disconnection detection setting	3.5.8
	HART enable/disable setting	3.5.16
HART function	HART maximum retries	3.5.19
	HART device information refresh interval	3.5.20

 Tab. 5-1:
 Adjustable parameter of the ME1DA6HAI-Q

5.4 Auto Refresh Settings

Data in the device memory of the PLC CPU can be transferred to the buffer memory of the analog output module or moved from the analog module to the PLC CPU automatically. By using the auto refresh function, the transfer of this data by the sequence program is unnecessary.

The buffer memory that was set for automatic refresh is automatically read or written to when the END command for the programmable controller CPU is executed.

Fig. 5-13:
Double-click on Auto Refresh

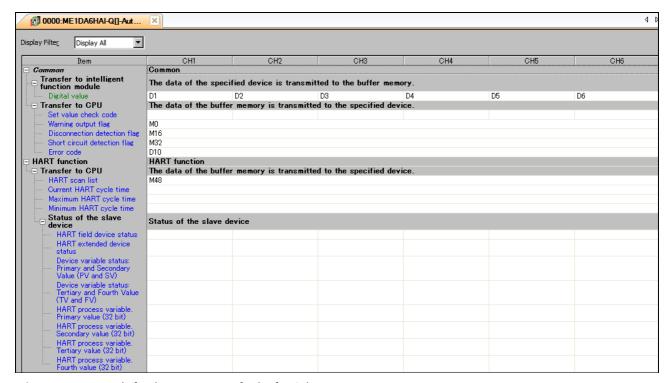


Fig. 5-14: Example for the automatic refresh of PLC devices

NOTES

Available devices for auto refresh are: X, Y, M, L, B, T, C, ST, D, W, R and ZR.

When a bit device is used, set the head address to "0" or to a value that is divisible by 16 points (example: X10, Y120, M16).

When storing in bit devices, the data in the buffer memory are stored in 16 points of devices from the set device No. (Example: When M16 is set, the data is stored in M16 to M31.)

5.5 Writing the Intelligent Function Module Settings to the PLC

When writing the settings for the intelligent function module to the PLC, make sure that the "Intelligent Function Module Parameter" are tagged in the **Online Data Operation** dialog box.

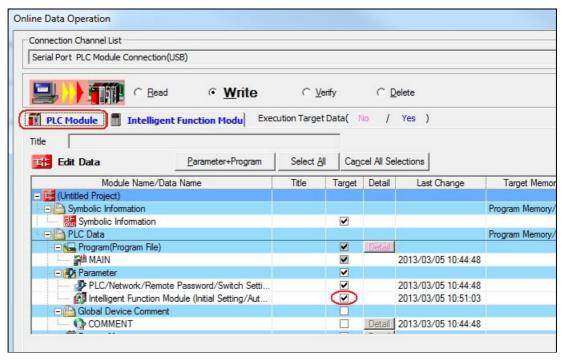
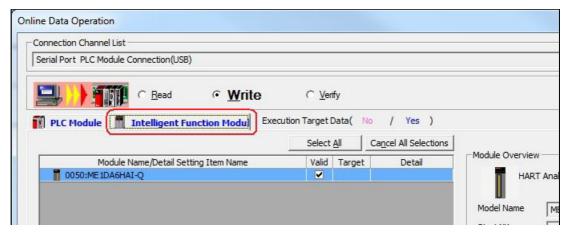



Fig. 5-15: Selection of intelligent function module parameters on the tab "PLC Module"

On the tab "Intelligent Function Module", select the ME1DA6HAI-Q.

Fig. 5-16: Selection of the HART analog output module

6 Programming

This chapter describes the programs of the HART analog output module ME1DA6HAI-Q.

NOTE

When applying any of the program examples introduced in this chapter to the actual system, verify the applicability and confirm that no problems will occur in the system control.

6.1 Programming Procedure

Create a program that will execute the digital-analog conversion of the ME1DA6HAI-Q in the following procedure.

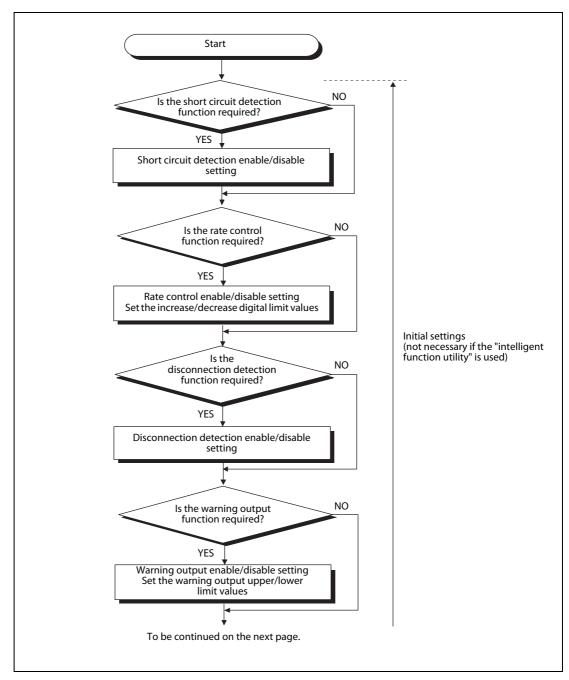


Fig. 6-1: Programming procedure for the ME1DA6HAI-Q

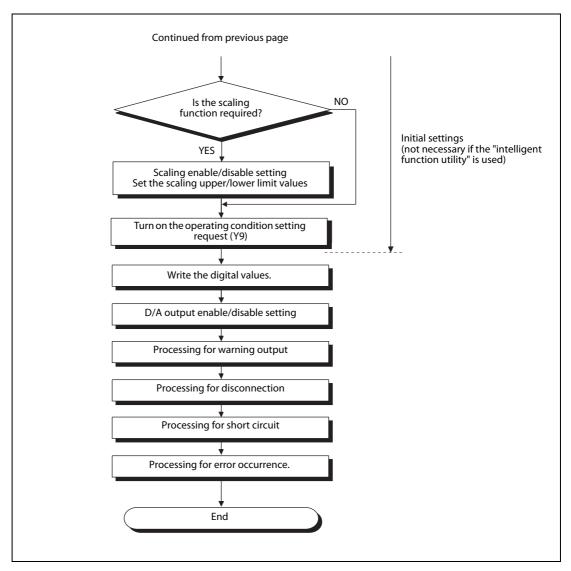
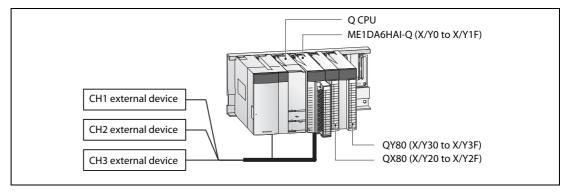



Fig. 6-2: Programming procedure for the ME1DA6HAI-Q

6.2 Example 1: ME1DA6HAI-Q combined with PLC CPU

The following figure shows the system configuration used for this example. Three HART enabled analog devices are connected to a ME1DA6HAI-Q.

Fig. 6-3: In this example the ME1DA6HAI-Q is mounted on the main base unit together with an input and an output module.

Channel	Output range setting	HOLD/CLEAR function setting	Fast conversion mode with HART communication enabled
CH1	4 to 20 mA	CLEAR	
CH2	0 to 20 mA	HOLD	Disabled
CH3	4 to 20 mA	CLEAR	
CH4 to CH6	not used	_	_

Tab. 6-1: Conditions for the intelligent function module switch setting

Program conditions

- CH1 uses the rate control function (Refer to section 3.3.3.)
 - CH1 increase digital limit value: 100
 - CH1 decrease digital limit value: 30
- CH2 uses the warning output function (Refer to section 3.3.5.)
 - CH2 warning output upper limit value: 10000
 - CH2 warning output lower limit value: 3000

If a warning is triggered, the warning output flag status is read and processing for the warning output is performed.

- CH3 uses the scaling function (Refer to section 3.3.4)
 - CH3 scaling upper limit value: 20000 (equals 20 mA)
 - CH3 scaling lower limit value: 4000 (equals 4 mA)
- Disconnection detection is enabled for CH1 and CH3.

In case of a disconnection, the disconnection detection flag status is read and processing for the disconnection is performed.

• Short circuit detection is enabled for CH1 and CH3.

When a short circuit occurs, the short circuit detection flag status is read and processing for the short circuit is performed.

- In the event of an error, the error code shall be displayed in BCD format.
 The error code shall be reset after removal of the cause.
- A warning lamp for each channel is switched ON if the connected device is malfunctioning.

6.2.1 Before creating a program

Perform the following steps before creating a program.

Wiring of external devices

Mount the ME1DA6HAI-Q on the base unit and connect the external power supply and the external devices. For details, refer to section 4.4.

Fig. 6-4: External wiring required for this example

Intelligent function module switch setting

Based on the setting conditions given previously, make the intelligent function module switch settings.

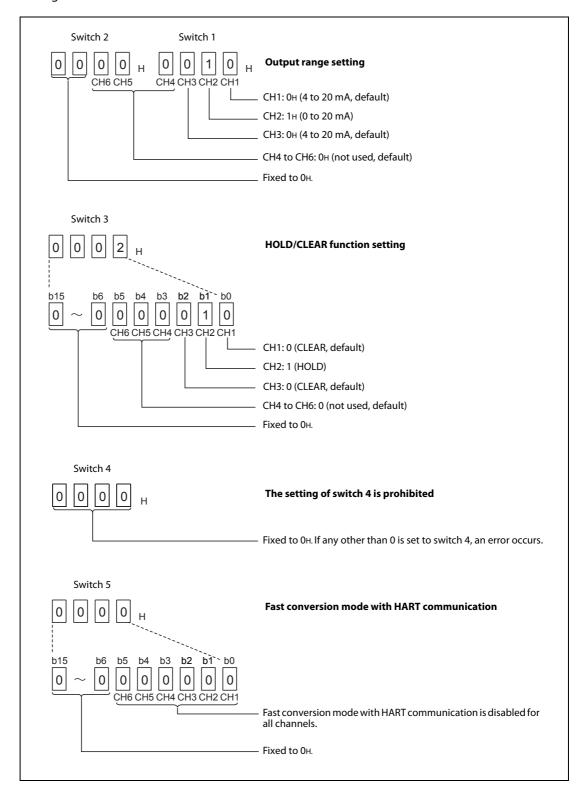


Fig. 6-5: Setting of the switches 1 to 5 for this example

On GX Developer's or GX IEC Developer's **Parameter setting** screen, select the *I/O assignment* tab, click *Switch setting*, and make settings of the switches 1 to 5 as on the screen shown below (for details about the setting, refer to section 4.5.2).

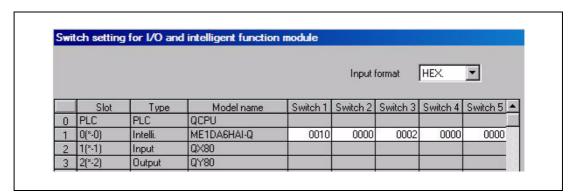


Fig. 6-6: Switch setting for this example

6.2.2 Program

Dev	ice	Function	Remark	
	X0	Module ready		
	X9	Operating condition setting completed flag		
	XD	Disconnection detection signal	ME1DACHALO (VO to V1E)	
	XE	Warning output signal	ME1DA6HAI-Q (X0 to X1F)	
	XF	Error flag	7	
	X10	Short circuit detection signal		
	X20	Output enable		
Inputs	X21	Digital value write signal		
	X22	Warning output reset signal		
	X23	Disconnection detection reset signal		
	X24	Short circuit reset signal	QX80 (X20 to X2F)	
	X25	Error code reset signal		
	X26	CH1 HART device communication request		
	X27	CH2 HART device communication request		
	X28	CH3 HART device communication request		
	Y1	CH1 output enable		
	Y2	CH2 output enable		
	Y3	CH3 output enable		
	Y9	Operating condition setting request	ME1DA6HAI-Q (Y0 to Y1F)	
	YE	Warning output clear request		
Outputs	YF	Error clear request		
	Y10	Short circuit detection clear request		
	Y30 to Y3B	Error code display (BCD 3 digits)		
	Y3C	Warning lamp: CH1 output device malfunction	QY80 (Y30 to Y3F)	
	Y3D	Warning lamp: CH2 output device malfunction		
	Y3F	Warning lamp: CH3 output device malfunction		
	M12	CH2 Warning output flag (Upper limit)	The warning output flags for all	
	M13	CH2 Warning output flag (Lower limit)	channels are stored in M10 to M21.	
	M30	CH1 Disconnection detection flag	The disconnection detection	
	M32	CH3 Disconnection detection flag	flags for all channels are stored in M30 (CH1) to M35 (CH6).	
	M40	CH1 Short circuit detection flag	The short circuit detection flags	
Internal relays	M42	CH3 Short circuit detection flag	for all channels are stored in M40 (CH1) to M45 (CH6).	
internal relays	M100 M101	HART device found at CH1, CH2 and CH3	M100 to M105 are set when a HART device is detected at the	
	M102	, , , , , , , , , , , , , , , , , , , ,	channels 1 to 6.	
	M117	CH1 device malfunction	M110 to M117: Status of HART field device connected to CH1	
	M127	CH2 device malfunction	M120 to M127: Status of HART field device connected to CH2	
	M137	CH3 device malfunction	M130 to M137: Status of HART field device connected to CH3	
	D1	CH1 Digital value	•	
Register	D2	CH2 Digital value		
	D3	CH3 Digital value		

Tab. 6-2: List of used devices

Initial settings

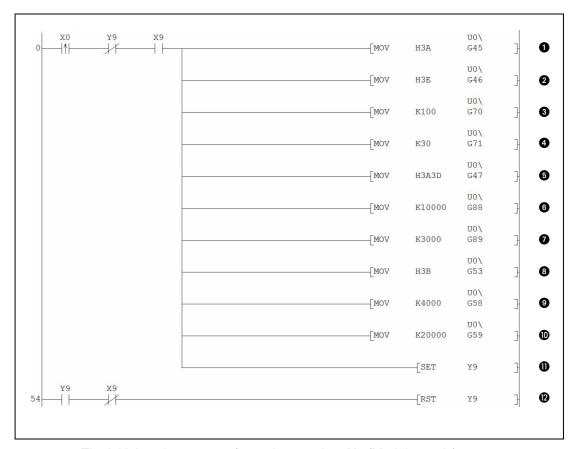


Fig. 6-7: The initial settings are performed once when X0 (Module ready) turns on.

Number	Description
0	Short circuit detection enable/disable setting (CH1, CH3: enable)
2	Rate control enable/disable setting (CH1: enable)
3	Rate control: Setting of the CH1 increase digital limit value
4	Rate control: Setting of the CH1 decrease digital limit value
	The following settings are written to the buffer memory address U0\G47:
6	High byte: Disconnection detection enable/disable setting (CH1, CH3: enable)
	Low byte: Warning output enable/disable setting (CH2: enable)
6	CH2 warning output setting: Upper limit value
0	CH2 warning output setting: Lower limit value
8	Scaling enable/disable setting (CH3: enable)
9	Setting of the CH3 scaling lower limit value
0	Setting of the CH3 scaling upper limit value
0	The operation condition setting request (Y9) is turned ON.
Ø	When the setting is completed, the operation condition setting request is turned OFF.

Tab. 6-3: Description of the program for the initial settings

Communication with HART devices

The following part of the program is optional. If the HART devices are set and monitored with the tool MX CommDTM-HART, these instructions can be omitted.

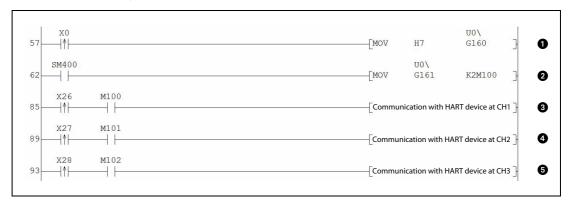


Fig. 6-8: Communication with HART devices

Number	Description		
0	HART enable/disable setting (CH1, CH2, CH3: HART enabled)		
0	The HART scan list is moved to the internal relays M100 to M107. Since SM400 is always ON, this MOV instruction is executed in every program cycle.		
3		CH1	
4	Sending of commands to the HART device, reading of information received from the HART device etc.		
6	That defice etc.	CH3	

Tab. 6-4: Description of the program shown above

Writing of digital values and analog output enable setting

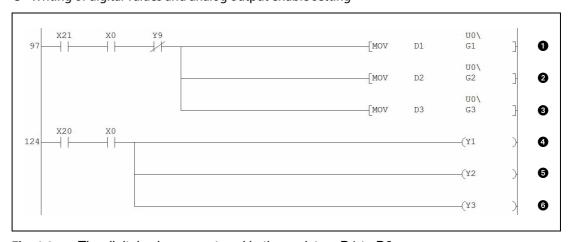


Fig. 6-9: The digital values are stored in the registers D1 to D3.

Number	Description	
0	The digital values are moved from the registers where they were temporary stored by	CH1
0		CH2
3	instructions eisewhere in the program to the corresponding burier memory addresses.	CH3
4	<u> </u>	CH1
6		CH2
6		CH3

Tab. 6-5: Description of the program shown above

Warning occurrence status and processing at warning occurrence

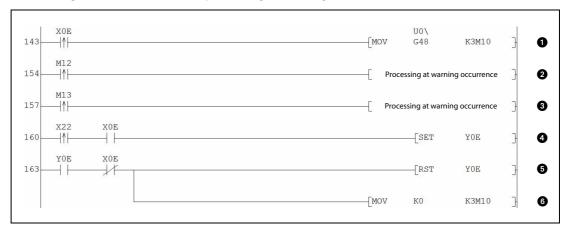


Fig. 6-10: Program part for warning processing

Number	Description		
0	When the warning output signal (X0E) is ON, the status of the warning output flags is moved to the internal relays M10 to M21.		
2	Processing at warning occurrence	CH2 upper limit value warning	
3	Processing at warning occurrence	CH2 lower limit value warning	
4	When X22 (Warning output reset signal) is switched ON while the warning output signal is ON, the warning output clear request (Y0E) is turned ON.		
6	When there is no warning indicated, the warning output clear request (Y0E) is turned OFF.		
6	The internal relays storing the warning output flags are also cleared.		

Tab. 6-6: Description of the program shown above

• Disconnection detection status and processing at disconnection detection

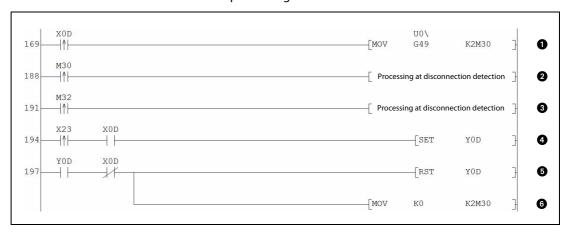


Fig. 6-11: Sequence program for disconnection detection

Number	Description		
0	When the disconnection detection signal (X0D) is ON, the status of the disconnection detection flags is moved to the internal relays M30 to M35.		
2	Processing at disconnection detection	CH1	
3	Processing at disconnection detection	CH3	
4	When X23 (Disconnection detection reset signal) is switched ON while the disconnection detection signal is ON, the disconnection detection clear request (Y0D) is turned ON.		
6	When there is no disconnection indicated, the disconnection detection clear request (Y0D) is turned OFF.		
6	The internal relays storing the disconnection detection flags are also cleared.		

Tab. 6-7: Description of the program shown above

• Short circuit detection status and processing at short circuit detection

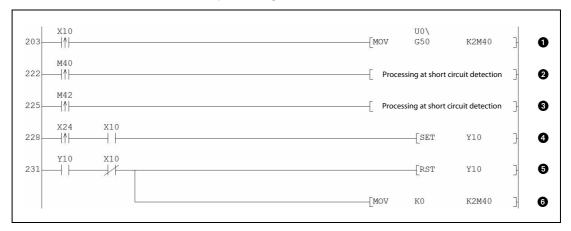


Fig. 6-12: Sequence program for short circuit detection

Number	Description		
0	When the short circuit detection signal (X10) is ON, the status of the short circuit detection flags is moved to the internal relays M40 to M45.		
2	Processing at short circuit detection	CH1	
8	Processing at short circuit detection	CH3	
4	When X24 (Short circuit detection reset signal) is switched ON while the short circuit detection signal is ON, the short circuit detection clear request (Y10) is turned ON.		
6	When there is no short circuit indicated, the short circuit detection clear request (Y10) is turned OFF.		
6	The internal relays storing the short circuit detection flags are also cleared.		

Tab. 6-8: Description of the program shown above

Error detection and display

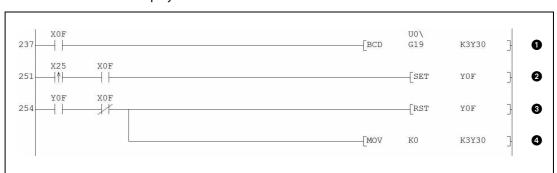


Fig. 6-13: Error detection, display and handling

Number	Description
0	In case of an error the error code is output in BCD.
2	When an error has been detected and the reset signal (X25) is ON, the error clear request (Y0F) is set.
3	When there is no error indicated, the error clear request (Y0F) is turned OFF.
4	The error code outputs are also cleared.

Tab. 6-9: Description of the program shown above

• HART field device status check and processing at device malfunction

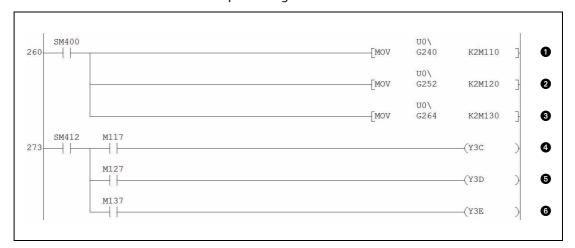


Fig. 6-14: HART field device status check and error processing

Number	Description		
0	The HART field device status is read and stored in internal	Status of device connected to CH1	
2	relays (These MOV instructions are executed in every program	Status of device connected to CH2	
3	cycle since SM400 is always ON.).	Status of device connected to CH3	
4	A malfunction of a HART field device is indicated by a flashing lamp. SM412 is a 1 second clock signal.	Device malfunction at CH1	
•		Device malfunction at CH2	
6	Tampi Sin 112 is a 1 second clock signal.	Device malfunction at CH3	

Tab. 6-10: Description of the program shown above

6.3 Example 2: ME1DA6HAI-Q used in Remote I/O Network

System configuration

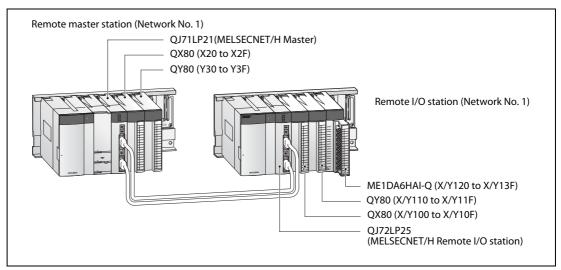


Fig. 6-15: For this example the ME1DA6HAI-Q is installed in a remote I/O station.

Channel	Output range setting	HOLD/CLEAR function setting
CH1	4 to 20 mA	CLEAR
CH2	0 to 20 mA	HOLD
CH3	4 to 20 mA	CLEAR
CH4 to CH6	not used	_

Tab. 6-11: Conditions for the intelligent function module switch setting

Program conditions

- CH1 uses the rate control function (Refer to section 3.3.3.)
 - CH1 increase digital limit value: 100
 - CH1 decrease digital limit value: 30
- CH2 uses the warning output function (Refer to section 3.3.5.)
 - CH2 warning output upper limit value: 10000
 - CH2 warning output lower limit value: 3000

If a warning is triggered, the warning output flag status is read and processing for the warning output is performed.

- CH3 uses the scaling function (Refer to section 3.3.4)
 - CH3 scaling upper limit value: 20000
 - CH3 scaling lower limit value: 4000
- Disconnection detection is enabled for CH1 and CH3.

In case of a disconnection, the disconnection detection flag status is read and processing for the disconnection is performed.

Short circuit detection is enabled for CH1 and CH3.

When a short circuit occurs, the short circuit detection flag status is read and processing for the short circuit is performed.

In the event of an error, the error code shall be displayed in BCD format.

The error code shall be reset after removal of the cause.

• If one of the connected HART device is malfunctioning, error processing is performed.

6.3.1 Before creating a program

Before creating the program, perform the steps described in section 6.2.1.

The PLC parameters for a remote I/O module can be set in the same manner as for the CPU module. However, for a remote I/O station only the required items can be set.

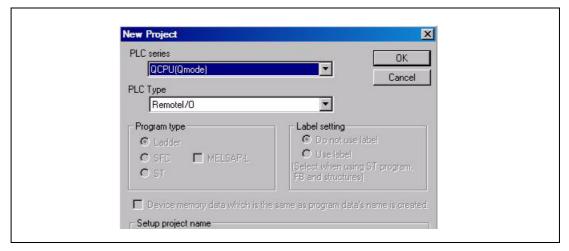


Fig. 6-16: When creating a project for a remote I/O station, select "Remote I/O" as PLC Type.

To write the intelligent function module parameters, set the target remote I/O station from the Online menu (Transfer setup) on GX Developer or GX IEC Developer. They can be written by:

- Directly connecting GX (IEC) Developer to the remote I/O station.
- Connecting GX (IEC) Developer to another device such as a CPU module and passing through the network.

List of devices

Device		Function	Remark		
	X20	Output enable			
	X21	Digital value write signal			
	X22	Warning output reset signal			
	X23	Disconnection detection reset signal			
Inputs	X24	Short circuit reset signal	QX80 (X20 to X2F)		
(in main base unit)	X25	Error code reset signal	QA60 (A20 to A2F)		
	X26	CH1 HART device communication request			
	X27	CH2 HART device communication request			
	X28	CH3 HART device communication request			
	X2F	Initial setting request signal			
	X120	Module ready			
	X129	Operating condition setting completed flag			
Inputs (in remote	X12D	Disconnection detection signal	ME1DA6HAI-Q (X120 to X13F)		
I/O station)	X12E	Warning output signal	METDAGHAI-Q (X120 to X13F)		
,	X12F	Error flag			
	X130	Short circuit detection signal			
Outputs (in main base unit)	Y30 to Y3B	Error code display (BCD 3 digits)	QY80 (Y30 to Y3F)		

Tab. 6-12: List of used devices

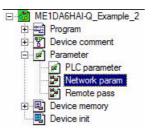
Device		Function	Remark			
	Y121	CH1 output enable				
	Y122	CH2 output enable	1			
Outputs	Y123	CH3 output enable				
(in remote	Y129	Operating condition setting request	ME1DA6HAI-Q (Y120 to Y13F)			
I/O station)	Y12E	Warning output clear request				
	Y12F	Error clear request	7			
	Y130	Short circuit detection clear request	7			
	M12	CH2 Warning output flag (Upper limit)	The warning output flags for all			
	M13	CH2 Warning output flag (Lower limit)	channels are stored in M10 to M21.			
	M30	CH1 Disconnection detection flag	The disconnection detection			
	M32	CH3 Disconnection detection flag	flags for all channels are stored in M30 (CH1) to M35 (CH6).			
	M40	CH1 Short circuit detection flag	The short circuit detection flags			
	M42	CH3 Short circuit detection flag	for all channels are stored in M40 (CH1) to M45 (CH6).			
	M100 M101 M102	HART device found at CH1, CH2 and CH3	M100 to M105 are set when a HART device is detected at the channels 1 to 6.			
	M117	CH1 device malfunction	M110 to M117: Status of HART field device connected to CH1			
	M127	CH2 device malfunction	M120 to M127: Status of HART field device connected to CH2			
	M137	CH3 device malfunction	M130 to M137: Status of HART field device connected to CH3			
	M200	REMTO instruction is completed normally				
	M201	REMTO instruction is completed with an error				
	M210	REMTO instruction is completed normally				
	M211	REMTO instruction is completed with an error				
	M220	REMTO instruction is completed normally				
	M221	REMTO instruction is completed with an error	REMTO instructions for initial			
Internal relays	M230	REMTO instruction is completed normally	setting of the ME1DA6HAI-Q			
	M231	REMTO instruction is completed with an error				
	M240	REMTO instruction is completed normally				
	M241	REMTO instruction is completed with an error				
	M250	REMTO instruction is completed normally				
	M251	REMTO instruction is completed with an error				
	M260	REMTO instruction is completed normally	REMTO instruction for writing			
	M261	REMTO instruction is completed with an error	the digital values			
	M300	REMFR instruction is completed normally	REMFR instruction for reading			
	M301	REMFR instruction is completed with an error	the HART scan list			
	M310	REMFR instruction is completed normally	REMFR instruction for reading			
	M311	REMFR instruction is completed with an error	the warnings			
	M320	REMFR instruction is completed normally	REMFR instruction for reading			
	M321	REMFR instruction is completed with an error	the disconnection status.			
	M330	REMFR instruction is completed normally	REMFR instruction for reading			
	M331	REMFR instruction is completed with an error	the short circuit status.			
	M340	REMFR instruction is completed normally	REMFR instruction for reading			
Ţ	M341	REMFR instruction is completed with an error	the error code.			
	M350	REMFR instruction is completed normally	REMFR instruction for reading			
	M351	REMFR instruction is completed with an error	the status of the HART field device connected to CH1			
	M360	REMFR instruction is completed normally	REMFR instruction for reading			
	M361	REMFR instruction is completed with an error	the status of the HART field device connected to CH2			
	M370	REMFR instruction is completed normally	REMFR instruction for reading			
	M371	REMFR instruction is completed with an error	the status of the HART field device connected to CH3			

Tab. 6-12: List of used devices

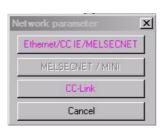
Device		Function	Remark					
M1000		Master control instruction for the processing concerning the ME1DA6HAI-Q						
Internal relays	M1001	Initial setting of ME1DA6HAI-Q requested						
Internal relays	M1002	Perform initial setting of ME1DA6HAI-Q						
	M1010	Scanning of HART field device status in progress						
	SB20	Module status						
	SB47	Baton pass status (host)	Link status of MELSECNET/H					
Link Devices	SB49	Host data link status	remote master station					
LITIK Devices	SW70	Baton pass status of each station	Link status of MELSECNET/H					
	SW74	Cyclic transmission status of each station	remote I/O station (station No. 1)					
	SW78	Parameter communication status of each station						
	T100	Baton pass status						
	T101	Data link status						
Timer	T102	Baton pass status	Delay for network communication errors.					
	T103	Cyclic transmission status						
	T104	Parameter communication status						
	D1 to D161	Temporary storage for the parameters and flags of the ME1DA6HAI-Q. These registers are an image of the corresponding buffer memory addresses.	D1 -> Un\G1, D2 -> Un\G2, D3 -> Un\G3					
Register	D240	·	D161 -> Un\G161					
	D240	CH1 Field Device status	Contents of Un\G240					
	D252	CH2 Field Device status	Contents of Un\G252					
	D264	CH3 Field Device status	Contents of Un\G264					

Tab. 6-12: List of used devices

NOTE

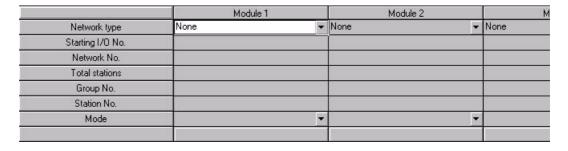

In this program example REMFR instructions are used to read the data from the buffer memory of the analog output module mounted to the remote I/O station.

REMTO instructions are used to write data to the buffer memory of the analog output module. For further information about these instructions or the MELSECNET/H remote I/O network refer to the MELSECNET/H Network System Reference Manual.


6.3.2 Network parameter

Network parameter setting

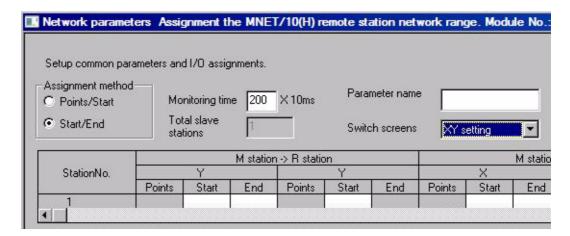
① Using the programming software, call up the **Network Parameter** selection box by double clicking on the highlighted option.



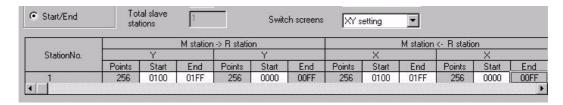
② When the box has been opened, select Ethernet/CCIE/MELSECNET.

This opens up the dialogue box to allow the MELSECNET module to be configured which can be seen below.

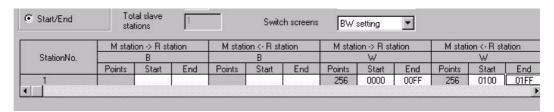
③ In the *Network type* window, click on the down arrow, to show the available selections.



(4) Select MNET/H (Remote-Master) and enter the other items as shown below.


	Module 1	Module 2
Network type	MNET/H(Remote master) ▼	None
Starting I/O No.	0000	
Network No.	1	: [
Total stations	1	
Group No.		
Station No.		
Mode	On line ▼	
	Network range assignment	
	Refresh parameters	
	Interrupt settings	

The dialogue box now shows the specific setting options for the module. The buttons in the bottom half of the table that are in red are for setting the mandatory parts of the module, those in magenta are optional.


(5) Click on Network range assignment and Switch screens to XY setting.

6 Enter the following:

Switch screens to BW setting and enter the following:

(8) When the settings have been made, click *End* to return to the main network parameter setting window. Note that the *Network range assignment* button has now changed to blue, indicating that changes have been made.

).	Module 1	Module 2
Network type	MNET/H(Remote master) ▼	None
Starting I/O No.	0000	
Network No.	.1	1
Total stations	1	
Group No.		
Station No.	<u> </u>	
Mode	On line	
7	Network range assignment	
)	Refresh parameters	
	Interrupt settings	

Next, click on Refresh parameters to bring up the following dialogue. This is where the settings
 for the data exchange between MELSECNET/H and PLC CPU will be made. Enter the values shown
 below.

	Link side					PLC side					
	Dev. i	name	Points	Start	End		Dev.	name	Points	Start	End
Transfer SB	SB		512	0000	01FF	+	SB		512	0000	01FF
Transfer SW	SW		512	0000	01FF	+	SW		512	0000	01FF
Random cyclic	LB					+		-			
Random cyclic	LW					+		-			
Transfer1	LB		8192	0000	1FFF	+	В	-	8192	0000	1FFF
Transfer2	LW	-	8192	0000	1FFF	+	W	-	8192	0000	1FFF
Transfer3	LX	-	512	0000	01FF	+	X	-	512	0000	01FF
Transfer4	LY		512	0000	01FF	+	Y		512	0000	01FF
Transfer5		-				+		-			
Transfer6		*				+		-	I.	J.	

- (10) When the settings have been made, click **End** to return to the main network parameter setting window.
- ① Click **End** to check and close the main network parameter setting dialogue. These settings will be sent to the PLC next time the parameters are downloaded.

6.3.3 Program

Remote I/O station status check

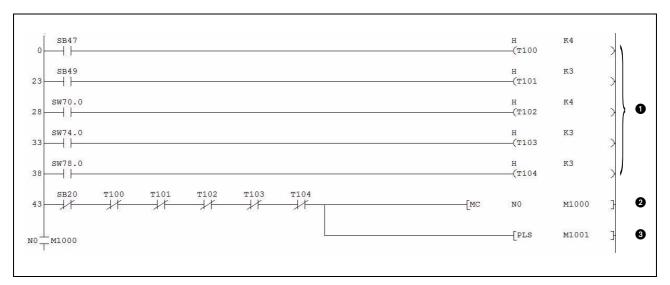


Fig. 6-17: Status checking of the remote I/O station

Number	Description
0	To prevent the control from stopping even if the network detects an instantaneous error due to a cable problem, noise or any other condition, the errors are delayed. Note that the above "4" and "3" represent standard values.
0	When the communication with the MELSECNET/H remote I/O station is without fault, the master control instruction is switched ON.
8	When the communication with the MELSECNET/H remote I/O station is possible, the initial setting request (M1001) is set.

Tab. 6-13: Description of the program shown above

NOTE

The following program for initial setting and processing of the ME1DA6HAI-Q will only be executed if the input condition of the master control instruction is set, i.e. M1000 is "1".

Initial settings

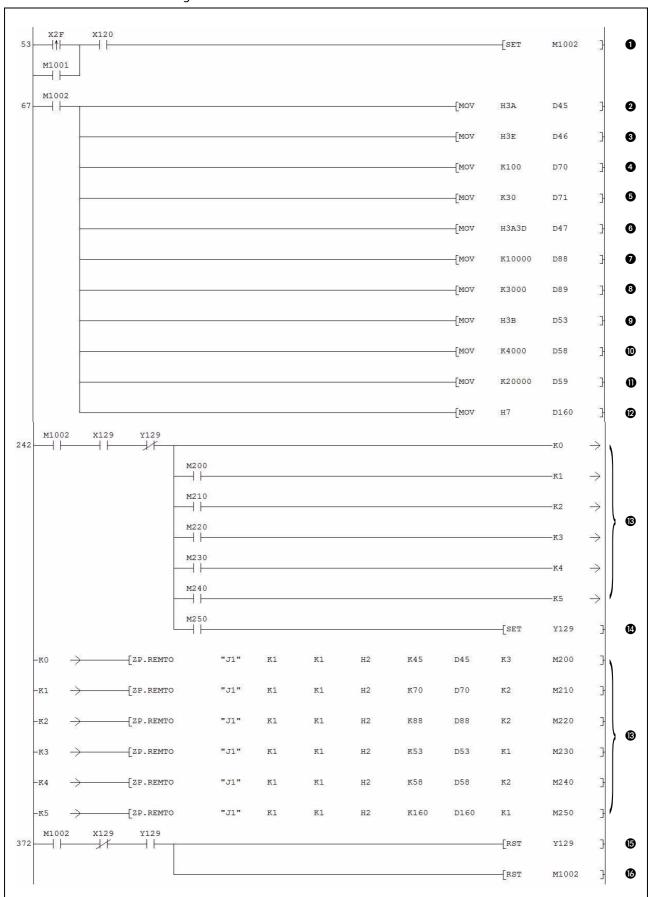


Fig. 6-18: Initial settings performed by the sequence program

Number	Description	
0	When an initial setting command (X2F) or a request for initial setting of the ME1DA6HAI-Q (M1001) is issued, the internal relay M1002 ("Perform initial setting") is set	
2	Short circuit detection enable/disable setting (CH1, CH3: enable)	
3	Rate control enable/disable setting (CH1: enable)	
4	Rate control: Setting of the CH1 increase digital limit value	
6	Rate control: Setting of the CH1 decrease digital limit value	
	The following settings are written to the register D47 (Buffer memory address U0\G47):	
6	High byte: Disconnection detection enable/disable setting (CH1, CH3: enable)	
	Low byte: Warning output enable/disable setting (CH2: enable)	
0	CH2 warning output setting: Upper limit value	
8	CH2 warning output setting: Lower limit value	
9	Scaling enable/disable setting (CH3: enable)	
0	Setting of the CH3 scaling lower limit value	
0	Setting of the CH3 scaling upper limit value	
0	HART enable/disable setting (CH1, CH2, CH3: HART enabled) These instructions are optional. If the HART devices are set and monitored with the tool MX CommDTM-HART, these instructions can be omitted.	
®	The parameters are written to the buffer memory of the ME1DA6HAI-Q. Several REMTO instructions are used since these parameters are not consecutively in the buffer memory. They are executed successively because these REMTO instructions use all the same communication channel.	
(When the last REMTO instruction has been executed, the operation condition setting request is turned ON.	
6	When the setting is completed, the operation condition setting request is turned OFF.	
16	Since the initial setting is completed, the "Perform initial setting" relay is also reset.	

Tab. 6-14: Description of the program shown above

Communication with HART devices

The following part of the program is optional. If the HART devices are set and monitored with the tool MX CommDTM-HART, these instructions can be omitted. The HART enable/disable setting was done earlier in the initial settings (refer to ② in fig. 5-18).

Fig. 6-19: Communication with HART devices

Number	Description	
0	The HART scan list is moved to the register D161. Since SM400 is always ON, this REMFR instruction is executed in every program cycle.	
0	When the REMFR instruction has been executed without an error, the HART scan list is moved to the internal relays M100 to M107.	
3	Sending of commands to the HART device, reading of informa- tion received from the HART device etc.	CH1
4		CH2
•	don'teceived nom the 19,411 device etc.	CH3

Tab. 6-15: Description of the program shown above

Writing of digital values and analog output enable setting

Fig. 6-20: Writing of the digital values to the ME1DA6HAI-Q

Number	Description	
0	The digital values are moved from the registers D1 to D3 where they were temporary stored by instructions elsewhere in the program to the buffer memory addresses Un\G1 to Un\G3.	
2		CH1
3	The analog output is enabled.	CH2
4		CH3

Tab. 6-16: Description of the program shown above

Warning occurrence status and processing at warning occurrence

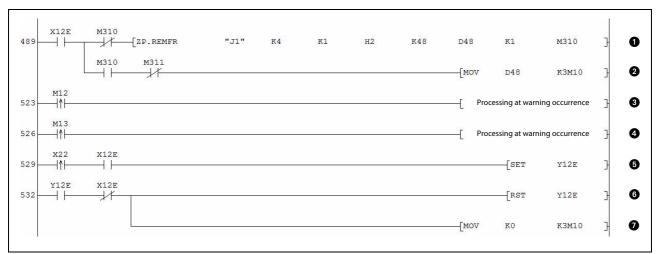


Fig. 6-21: Program part for warning processing

Number	Description		
0	When the warning output signal (X12E) is ON, the status of the warning output flags is moved to the register D48.		
0	When the REMFR instruction has been executed without an error, the status of the warning output flags is moved from D48 to the internal relays M10 to M21.		
3	Processing at warning occurrence	CH2 upper limit value warning	
4	Processing at warning occurrence	CH2 lower limit value warning	
6	When X22 (Warning output reset signal) is switched ON while the warning output signal is ON, the warning output clear request (Y12E) is turned ON.		
6	When there is no warning indicated, the warning output clear request (Y12E) is turned OFF.		
0	The internal relays storing the warning output flags are also cleared.		

Tab. 6-17: Description of the program shown above

• Disconnection detection status and processing at disconnection detection

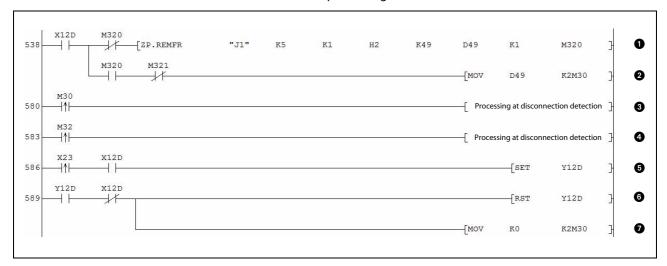


Fig. 6-22: Sequence program for disconnection detection

Number	Description		
0	When the disconnection detection signal (X12D) is ON, the status of the disconnection detection flags is moved to the register D49.		
0	When the REMFR instruction has been executed without an error the status of the disconnection detection flags is moved further to the internal relays M30 to M35		
3	Processing at disconnection detection	CH1	
4	Processing at disconnection detection	CH3	
•	When X23 (Disconnection detection reset signal) is switched ON while the disconnection detection signal is ON, the disconnection detection clear request (Y12D) is turned ON.		
6	When there is no disconnection indicated, the disconnection detection clear request (Y12D) is turned OFF.		
Ð	The internal relays storing the disconnection detection flags are also cleared.		

Tab. 6-18: Description of the program shown above

• Short circuit detection status and processing at short circuit detection

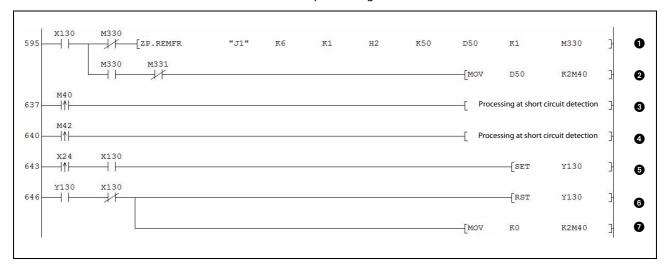


Fig. 6-23: Sequence program for short circuit detection

Number	Description	
0	When the short circuit detection signal (X130) is ON, the status of the short circuit detection flags is moved to the register D50.	
0	When the REMFR instruction has been executed without an error the status of the short circuit detection flags is moved to the internal relays M40 to M45.	
3	Processing at short circuit detection	CH1
4	Processing at short circuit detection	CH3
•	When X24 (Short circuit detection reset signal) is switched ON while the short circuit detection signal is ON, the short circuit detection clear request (Y130) is turned ON.	
6	When there is no short circuit indicated, the short circuit detection clear request (Y130) is turned OFF.	
0	The internal relays storing the short circuit detection flags are also cleared.	

Tab. 6-19: Description of the program shown above

Error detection and display

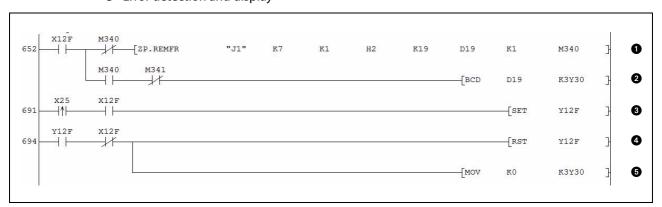


Fig. 6-24: Error detection, display and handling

Number	Description	
0	In case of an error the error code the error code is read and stored in register D19.	
2	When the REMFR instruction has been executed without an error the error code is output in BCD.	
3	When an error has been detected and the reset signal (X25) is ON, the error clear request (Y12F) is set.	
4	When there is no error indicated, the error clear request (Y12F) is turned OFF.	
6	The error code outputs are also cleared.	

Tab. 6-20: Description of the error detection and handling

• HART field device status check and processing at device malfunction

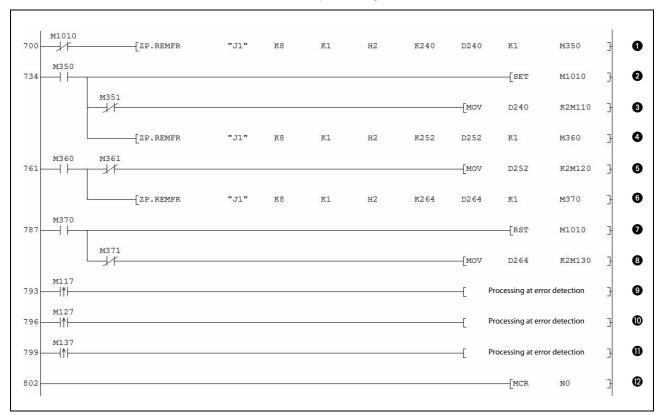


Fig. 6-25: HART field device status check and error processing

Number	Description	
0	The status of the device connected to CH1 is read and stored in D240.	
2	When the REMFR instruction has been executed an internal	relay for controlling the scan sequence is set.
8	When the REMFR instruction has been executed without an error the CH1 HART field device status is moved into M110 to M117.	
4	The next REMFR instruction, which reads the status of device	e connected to CH2, is started.
6	When the REMFR instruction has been executed without an error the CH2 HART field device status is moved into M120 to M127.	
6	The next REMFR instruction, which reads the status of device connected to CH3, is started.	
0	After execution of the third REMFR instruction the internal relay controlling the execution sequence of the REMFR instructions is reset. In the next program scan the REMFR instruction for reading the CH1 field device status will be executed again.	
8	When the REMFR instruction has been executed without an error the CH2 HART field device status is moved into M130 to M137.	
9		Device malfunction at CH1
0	Processing when a malfunction of a HART field device is detected.	Device malfunction at CH2
0	- detected.	Device malfunction at CH3
Ø	Master control reset (Only when the input condition for the MC instruction (fig. 5-18) is set, the instructions between the MC and the MCR instruction are executed.)	

Tab. 6-21: Description of the error detection and handling

Error Code List Troubleshooting

7 Troubleshooting

The following section explains the types of errors that may occur when the HART analog output module ME1DA6HAI-Q is used, and how to troubleshoot such errors.

7.1 Error Code List

If an error occurs in the analog output module while writing to or reading data from the program-mable controller CPU, an error code is written to buffer memory address 19 (Un\G19).

Error code (decimal)	Error description	Corrective action
10□	The output range is set with an illegal value in the intelligent function module switch setting in the PLC parameter. □ indicates the number of the channel set incorrectly.	Set a correct parameter value in the parameter setting using GX Developer or GX IEC Developer. (Refer to section 4.5.)
111	Hardware error of the module.	Turn the power OFF and ON again. If the error occurs again, the module may be malfunctioning. Please consult your local Mitsubishi representative, explaining the detailed description of the problem.
13□ ^{*1}	HART communication error. The device answer is erroneous or timed out. □ indicates the channel number.	 Make sure the HART device's polling address is set to "0". Check the connection to the HART device. Increase the "HART Maximum Retries" setting in the buffer memory. (Refer to section 3.5.24.)
60□*1	The specified digital value is outside the valid range. □ indicates the number of the channel set incorrectly.	Set a value that is within the valid range.
61□ ^{*1}	The warning output upper/lower limit value setting is outside the range -32768 to 32767. □ indicates the number of the channel set incorrectly.	Correct the contents of the warning output upper limit value/lower limit value (Un\G86 to Un\G97) to within the range -32768 to 32767.
62□ ^{*1}	The warning output lower limit value is equal to or greater than the warning output upper limit value. □ indicates the channel number.	Make setting so that the warning output lower limit value is lesser than the warning output upper limit value.
80□*1	The increase/decrease digital limit value setting is outside the range 0 to 32000. ☐ indicates the number of the channel set incorrectly.	Correct the contents of the buffer memory addresses Un\G70 to Un\G81 to within the range 0 to 32000.
90□ ^{*1}	The scaling upper/lower limit value (Un\G54 to Un\G65) is set outside the range of -32768 to 32767. ☐ indicates the number of the channel set incorrectly.	Correct the scaling upper/lower limit value within the range of -32768 to 32767.
91□ ^{*1}	In the scaling upper/lower limit value setting (Un\G54 to Un\G65) the lower limit is greater than the upper limit. ☐ indicates the number of the channel set incorrectly.	Set them again so that the scaling lower limit value is lesser than the scaling upper limit value.

Tab. 7-1: Error code list

NOTES

When two or more errors have occurred, the latest error found by the analog output module is stored.

An error described with *1 can be cleared by turning ON the error clear request (YF).

7.2 Troubleshooting using the LEDs of the Module

7.2.1 When the "RUN" LED is flashing or turned off

Check item	Corrective action
Is the intelligent function module setting switch 4 set to	Using GX Developer or GX IEC Developer parameter setting, set the intelligent function module setting switch 4 to "0" (Refer to section 4.5).

Tab. 7-2: When the "RUN" LED is flashing

Check item	Corrective action
Is the power being supplied?	Confirm that the supply voltage for the power supply module is within the rated range.
Is the capacity of the power supply module adequate?	Calculate the current consumption of the CPU module, I/O modules and intelligent function modules mounted on the base unit to see if the power supply capacity is adequate.
Has a watchdog timer error occurred?	Reset the programmable controller CPU and verify that it is lit. If the RUN LED does not light even after doing this, the module may be malfunctioning. Please consult your local Mitsubishi representative, explaining the detailed description of the problem.
Is the module correctly mounted on the base unit?	Check the mounting condition of the module.

Tab. 7-3: When the "RUN" LED is off

7.2.2 When the "ERR." LED is on

Check item	Corrective action
Is an error being generated?	Confirm the error code and take corrective action described in section 6.1.

Tab. 7-4: When the "ERR" LED is on

7.2.3 When the "ALM" LED is on or flashing

Check item	Corrective action	
Has a short circuit occurred?	Check the short circuit detection flag (buffer memory address Un\G50).	

Tab. 7-5: When the "ALM" LED is on

Check item	Corrective action	
Has disconnection occurred?	Check the disconnection detection flag (buffer memory address Un\G49).	

Tab. 7-6: When the "ALM" LED is flashing

7.3 When an Analog Output Value is Not Output

Check item	Corrective action	
Is 24 V DC external supply power being supplied?	Check that the external supply power terminals (terminals 15 (+24 V DC) and 16 (0V)) are supplied with a 24 V DC voltage.	
Is there any fault with the analog signal lines such as disconnection or wire break?	Check for faulty condition of the signal lines by a visual check and a continuity check.	
Is the CPU module in the STOP status?	Set the CPU module to the RUN status.	
Is the output range setting correct?	Check the contents of the buffer memory addresses Un\G20 and Un\G21 in the monitor of GX Developer or GX IEC Developer. If the output range setting is incorrect, redo the GX (IEC) Developer intelligent function module switch setting (Refer to section 4.5).	
Is the digital value being written to the channel to be output?	Verify the contents of the buffer memory addresses 1 to 6 (Un\G1 to Un\G6) in the monitor of GX Developer or GX IEC Developer.	
Has the operating condition setting request (Y9) been executed?	From GX Developer or GX IEC Developer, turn the operating condition setting request (Y9) from ON to OFF and check that the analog output is normal. If normal analog output is obtained, review the initial setting of the sequence program (Refer to section 3.4.)	

Tab. 7-7: Troubleshooting when an analog output value is not output

NOTE

If the analog output value is not output after the proper corrective action is taken in accordance with the above check item, the possible cause is a module failure.

Please consult your local Mitsubishi representative, explaining the detailed description of the problem.

7.4 When an Analog Output Value is Not Held

Check item	Corrective action	
Is the HOLD/CLEAR setting correct?	Using GX Developer or GX IEC Developer parameter setting, check the setting of the intelligent function module setting switch 3 (Refer to section 4.5).	
Is the D/A module used on a MELSECNET/H remote I/O station?	Please refer to the NOTE in section 3.3.1 and take corrective action.	

Tab. 7-8: Troubleshooting when an analog value is not held while the CPU is placed in STOP or in a stop error status.

7.5 Checking the Analog Output Module Status

When the analog output module detail information is selected in GX Developer or GX IEC Developer system monitor, an error code and the status of the intelligent function module switch setting can be checked.

- Operating GX Developer
 In the **Diagnostics** menu select **System monitor**.
- Operating GX IEC Developer
 In the **Debug** menu select **System monitor**.

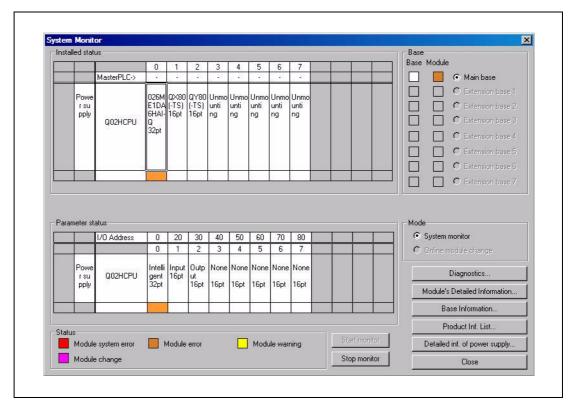


Fig. 7-1: The System Monitor displays comprehensive information of the connected PLC

For further information about a module, click on the module and then click **Module Detailed Information**.

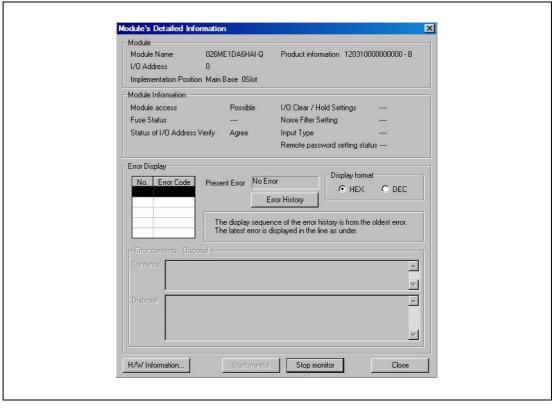


Fig. 7-2: Detailed information on the selected module allow an easy and quick troubleshooting

Contents of Module's Detailed Information

Module

- Module Name: Shows the designation of the module, e.g. ME1DA6HAI-Q
- I/O Address: Head address of the module
- Implementation Position: Shows whether the module is mounted to the main base or to an
 extension base and the position of the module.
- Product information: Serial No. of the module. The letter shows the function version.

Module Information

- Module access: Shows whether the module is ready or not.
- Fuse status: Not relevant for the HART analog output module ME1DA6HAI-Q.
- Status of I/O Address Verify: Indicates whether the parameter set module and the installed module are identical.
- I/O Clear / Hold Settings, Noise Filter Setting, etc.: Not relevant for the ME1DA6HAI-Q.

Error Display

Checking the error code
 The error code stored in buffer memory address 19 (Un\G19) of the ME1DA6HAI-Q is displayed in the **Present Error** field.

When the *Error History* button is pressed, the contents displayed in the **Present Error** field is displayed in the No. 1 field.

Index

A	Error clear request (output signal) 3-19
Accuracy	Error code list 7-1
ALM LED	Error flag (input signal)
Analog output HOLD/CLEAR function	External power supply
Overview	Specifications
Settings with intelligent function module	Wiring 4-5
switches4-7	F
Troubleshooting7-3	.
Analog output range	Function version 2-3
I/O conversion characteristics	
Settings with intelligent function module	G
switches4-7	GX Works2
Auto refresh	Auto refresh 5-7
_	New intelligent function module 5-1
В	Parameter setting for intelligent
Buffer memory	function modules 5-5
Overview	Setting switches for intelligent
Structure	function modules 5-3
C	Н
	LIADT
CHn output enable/disable flag (output signal) 3-19	HART Command request 3-44
Conversion time	Date
Current output characteristics	Descriptor
D	Device Function Flags
	Device ID
D/A conversion	Device Profile
Setting range	Device Type
Disconnection detection (input signal)3-17	Final Assembly Number
Disconnection detection clear request	Long Tag
(output signal)	Manufacturer ID
Disconnection detection function	Message
Enable/disable	Private Label Distributor
Flags in buffer memory	PV Damping Value 3-51
Overview	PV Range Unit Code
Program example (1)	PV Upper and Lower Range Value 3-51
Program example (2) 6-24	Revisions
E	Tag
Enable/disable setting	Transfer Function
Disconnection detection	Unit Code
HART communication	Write Protect 3-50
Rate control	
Scaling function	
Short circuit detection	
Warning output function	
ERR. LED	
LIUGELD	

HART Command	M
Answer Channel 3-46	ME1DA6HAI-Q
Answer Code	Accuracy
Answer Data	Dimensions
Answer Data Size	I/O assignment
Answer Flag	I/O characteristics
Request Channel 3-45	Installation4-3
Request Code	Intelligent function module switch settings 4-7
Request Data 3-45	LEDs3-1
Request Data Size 3-45	Parameter setting4-6
Request Flag	Specifications
HART function	MELSEC System Q CPU modules 2-1
Applicable cables 4-5	MELSECNET/H remote I/O station
Command answer 3-46	Module ready (input signal)
Communication enable/disable setting \dots 3-38	Multiple CPU system2-2
Device variable status 3-42	MX CommDTM-HART
Extended field device status 3-41	
Field device status 3-40	0
Information about HART devices 3-47	Online module change
Scan list	Operating condition
Write data error code	Setting completed flag3-17
HART Master function	Setting request (output signal) 3-19
HOLD/CLEAR function	Output range see Analog output range
Overview	Output signal
Settings with intelligent function	CHn output enable/disable flag3-19
module switches 4-7	Disconnection detection clear request 3-19
1	Error clear request
Input signal	Operating condition setting request 3-19
Disconnection detection 3-17	Short circuit detection clear request3-19
Error flag	Warning output clear request 3-19
Module ready	
Operating condition setting completed 3-17	R
Short circuit detection signal 3-18	Rate control function
Warning output	Enable/disable setting
Intelligent function module parameter setting 4-6	Increase/decrease digital limit values3-37
Intelligent function module switches	Overview
setting in GX Works2 5-3	RUN LED
setting in PLC parameters 4-7	
· .	
L	
LEDs	
ALM 7-2	
ERR	
Overview	
RUN 7-2	

S
Scaling function
Enable/disable settings
Overview
Upper/lower limit storage area 3-37
Setting range
Short circuit detection (input signal) 3-18
Short circuit detection clear request
(output signal)
Short circuit detection function
Enable/disable
Flags in buffer memory
Overview
Program example (1) 6-11
Program example (2) 6-25
Switch settings for intelligent function module 4-7
System monitor 7-4

Т
Troubleshooting
W
Warning output (input signal)
Enable/disable.3-35Flags in buffer memory.3-35Overview.3-11Program example (1).6-10Program example (2).6-23Upper/lower limit values.3-38
Wiring Connection ot external devices

HEADQUARTERS	
MITSUBISHI ELECTRIC EUROPE B.V. German Branch Gothaer Straße 8 D-40880 Ratingen Phone: +49 (0)2102 / 486-0 Fax: +49 (0)2102 / 486-1120	EUROPE
rax. +49 (t)/21027 400-1120 MITSUBISHI ELECTRIC EUROPE B.Vorg.sl. CZ Czech Branch Avenir Business Park, Radlická 714/113a CZ-158 00 Praha 5 Phone: +420 - 251 551 470	ECH REP.
Fax: +420 - 251-551-471 MITSUBISHI ELECTRIC EUROPE B.V. French Branch 25, Boulevard des Bouvets	FRANCE
F-92741 Nanterre Cedex Phone: +33 (0)1 / 55 68 55 68 Fax: +33 (0)1 / 55 68 57 57 MITSUBISHI ELECTRIC EUROPE B.V.	IRELAND
Irish Branch Westgate Business Park, Ballymount I RL-Dublin 24 Phone: +353 (0)1 4198800 Fax: +353 (0)1 4198890	
MITSUBISHI ELECTRIC EUROPE B.V. Italian Branch Viale Colleoni 7 I-20041 Agrate Brianza (MB) Phone: +39 039 / 60 53 1 Fax: +39 039 / 60 53 312	ITALY
MITSUBISHI ELECTRIC EUROPE B.V. Poland Branch Krakowska 50 PI-32-083 Balice Phone: +48 (0)12 / 630 47 00 Fax: +48 (0)12 / 630 47 01	POLAND
MITSUBISHI ELECTRIC EUROPE B.V. 52, bld. 3 Kosmodamianskaya nab 8 floor RU-115054 Moscow Phone: +7 495 721-2070 Fax: +7 495 721-2071	RUSSIA
MITSUBISHI ELECTRIC EUROPE B.V. Spanish Branch Carretera de Rubí 76-80 E-08190 Sant Cugat del Vallés (Barcel Phone: 902 131121 // +34 935653131 Fax: +34 935891579	SPAIN ona)
MITSUBISHI ELECTRIC EUROPE B.V. UK Branch Travellers Lane UK-Hatfield, Herts. AL10 8XB Phone: +44 (0)1707 / 27 61 00 Fax: +44 (0)1707 / 27 86 95	UK
MITSUBISHI ELECTRIC CORPORATION Office Tower "Z" 14 F 8-12,1 chome, Harumi Chuo-Ku Tokyo 104-6212 Phone: +81 3 622 160 60	JAPAN
Fax: +81 3 622 160 75 MITSUBISHI ELECTRIC AUTOMATION, Inc. 500 Corporate Woods Parkway Vernon Hills, I 60061 Phone: +1 847 478 21 00 Fax: +1 847 478 22 53	USA

EUROPEAN REPRESEN	
GEVA Wiener Straße 89	AUST
AT-2500 Baden	
Phone: +43 (0)2252 / 85 55 20	
Fax: +43 (0)2252 / 488 60	DELA
TECHNIKON Oktyabrskaya 19, Off. 705	BELA
BY-220030 Minsk	
Phone: +375 (0)17 / 210 46 26	
Fax: +375 (0)17 / 210 46 26 ESCO DRIVES & AUTOMATION	BELG
Culliganlaan 3	DELG
BE-1831 Diegem	
Phone: +32 (0)2 / 717 64 30 Fax: +32 (0)2 / 717 64 31	
Koning & Hartman b.v.	BELG
Woluwelaan 31	DELG
BE-1800 Vilvoorde	
Phone: +32 (0)2 / 257 02 40 Fax: +32 (0)2 / 257 02 49	
INEA RBT d.o.o. BOSNIA AND	HERZEGOV
Aleja Lipa 56	
BA-71000 Sarajevo Phone: +387 (0)33 / 921 164	
Fax: +387 (0)33/524539	
AKHNATON	BULGA
4, Andrei Ljapchev Blvd., PO Box 21	
BG-1756 Sofia Phone: +359 (0)2 / 817 6000	
Fax: +359 (0)2 / 97 44 06 1	
INEA RBT d.o.o.	CR0/
Losinjska 4 a	
HR-10000 Zagreb Phone: +385 (0)1 / 36 940 - 01/ -02/ -()3
Fax: +385 (0)1 / 36 940 - 03	
	ECH REPUE
Technologická 374/6 CZ-708 00 Ostrava-Pustkovec	
Phone: +420 595 691 150 Fax: +420 595 691 199	
Fax: +420 595 691 199 Beijer Electronics A/S	DENMA
Fax: +420 595 691 199	DENM
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DK-4000 Roskilde Phone: +45 (0)46/ 75 76 66	DENM
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 56 26	
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46 / 75 56 26 Beijer Electronics Eesti OÜ	
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DK-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 56 26 Beijer Electronics Eesti OÜ Pärnu mnt.160i EE-11317 Tallinn	
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 26 Beijer Electronics Eesti ÖÜ Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6 / 51 81 40	DENMA
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 26 Beijer Electronics Eesti 0Ü Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6 / 51 81 40 Fax: +372 (0)6 / 51 81 49	ESTO
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 26 Beijer Electronics Eesti ÖÜ Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6 / 51 81 40	ESTO
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DK-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Beijer Electronics Eesti OÜ Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6/51 81 40 Fax: +372 (0)6/51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila	ESTO
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Beijer Electronics Eesti ÖÜ Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6/51 81 40 Fax: +372 (0)6/51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540	
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Beijer Electronics Eesti 0Ü Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6/51 81 40 Fax: +372 (0)6/51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541	ESTO FINL
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Beijer Electronics Eesti OÜ Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6/51 81 40 Fax: +372 (0)6/51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTFCO 5, Mavrogenous Str.	ESTO FINL
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 26 Beijer Electronics Eesti 0Ü Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6 / 51 81 40 Fax: +372 (0)6 / 51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTECO S, Mavrogenous Str. GR-18542 Piraeus	ESTO FINL
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Beijer Electronics Eesti ÖÜ Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6/51 81 40 Fax: +372 (0)6/51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTECO 5,6R-18542 Piraeus Phone: -30 211 / 1206 900	ESTO FINL
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Beijer Electronics Eesti ÖÜ Päärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6/51 81 40 Fax: +372 (0)6/51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTECO 5, Mavrogenous Str. GR-18542 Piraeus Phone: +30 211 / 1206 990 Fax: +30 211 / 1206 999	ESTO FINL/ GRE
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Beijer Electronics Eesti ÖÜ Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6/51 81 40 Fax: +372 (0)6/51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTECO 5,6R-18542 Piraeus Phone: -30 211 / 1206 900	ESTO FINL
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 26 Beijer Electronics Eesti OÜ Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6 / 51 81 40 Fax: +372 (0)6 / 51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 UIvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTECO 5, Mavrogenous Str. GR-18542 Piraeus Phone: +30 211 / 1206 900 Fax: +30 211 / 1206 999 MELITRADE Kft. Fertő utca 14. HU-1107 Budapest	ESTO FINL/ GRE
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Beijer Electronics Eesti ÖÜ Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6/51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTECO 5, Tayrogenous Str. 6R-18542 Piraeus Phone: +30 211 / 1206 999 MELTRADE Kft. Fertő utca 14. HU-1107 Budapest Phone: +36 (0)1 / 431-9726	ESTO FINL:
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Beijer Electronics Eesti ÖÜ Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6/51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTECO 5, Mavrogenous Str. GR-18542 Piraeus Phone: +30 211 / 1206 990 MELIRADE Kft. Fertő utca 14. HU-1107 Budapest Phone: +36 (0)1 / 431-9726 Fax: +36 (0)1 / 431-9727	FINL/ GRE HUNG
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 26 Beijer Electronics Eesti OÜ Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6 / 51 81 40 Fax: +372 (0)6 / 51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 UIvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTECO 5, Mavrogenous Str. GR-18542 Piraeus Phone: +30 211 / 1206 900 Fax: +30 211 / 1206 999 MELITRADE Kft. Fertő utca 14. HU-1107 Budapest	ESTO FINL/ GRE
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 26 Beijer Electronics Eesti 0Ü Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6 / 51 81 40 Fax: +372 (0)6 / 51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTECO 5, Mavrogenous Str. GR-18542 Piraeus Phone: +30 211 / 1206 990 MBLITRADE Kft. Fertő utca 14. HU-1107 Budapest Phone: +36 (0)1 / 431-9726 Fax: +36 (0)1 / 431-9727 Beijer Electronics SIA Ritausmas iela 23 LV-1058 Riga	FINL/ GRE HUNG
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Beijer Electronics Eesti 0Ü Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6/51 81 40 Fax: +372 (0)6/51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTFCO 5, Tarvogenous Str. 6R-18542 Piraeus Phone: +30 211 / 1206 990 MELTRADE Kft. Fertő utca 14. HU-1107 Budapest Phone: +36 (0)1 / 431-9726 Fax: +36 (0)1 / 431-9727 Beijer Electronics SIA Ritausmas iela 23 LV-1058 Riga Phone: +371 (0)784 / 2280	FINL/ GRE HUNG
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Beijer Electronics Eesti 0Ü Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6/51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTECO 5, Tayrogenous Str. 6R-18542 Piraeus Phone: +30 211 / 1206 990 MELTRADE Kft. Fertő utca 14. HU-1107 Budapest Phone: +36 (0)1 / 431-9726 Fax: +36 (0)1 / 431-9727 Beijer Electronics SIA Rittausmas iela 23 LV-1058 Riga Phone: +371 (0)784 / 2280 Fax: +371 (0)784 / 2281	FINL/ GRE HUNG
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DM-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Beijer Electronics Eesti 0Ü Pärnu mnt.160i EE-11317 Tallinn Phone: +372 (0)6/51 81 40 Fax: +372 (0)6/51 81 49 Beijer Electronics OY Peltoie 37 FIN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTFCO 5, Tarvogenous Str. 6R-18542 Piraeus Phone: +30 211 / 1206 990 MELTRADE Kft. Fertő utca 14. HU-1107 Budapest Phone: +36 (0)1 / 431-9726 Fax: +36 (0)1 / 431-9727 Beijer Electronics SIA Ritausmas iela 23 LV-1058 Riga Phone: +371 (0)784 / 2280	FINL/ GRE HUNG
Fax: +420 595 691 199 Beijer Electronics A/S Lykkegårdsvej 17 DW-4000 Roskilde Phone: +45 (0)46/75 76 66 Fax: +45 (0)46/75 76 66 Fax: +45 (0)46/75 56 26 Beijer Electronics Eesti OÜ Pärnu mnt. 1601 Beijer Electronics OV Farnu mnt. 1601 Fax: +372 (0)6/51 81 49 Beijer Electronics OV Peltoie 37 FHN-28400 Ulvila Phone: +358 (0)207 / 463 540 Fax: +358 (0)207 / 463 541 UTECO 5, Mavrogenous Str. GR-18542 Piraeus Phone: +36 211 / 1206 999 MELTRADE Kft. Fertő útta 14. HU-1107 Budapest Phone: +36 (0)1 / 431-9726 Fax: +36 (0)1 / 431-9727 Beijer Electronics SIA Ritausmas iela 23 LV-1058 Riga Phone: +371 (0)784 / 2280 Fax: +371 (0)784 / 2281 Beijer Electronics UAB	FINL/ GRE HUNG

EUROPEAN REPRESI	ENTATIVES
ALFATRADE Ltd. 99, Paola Hill Malta- Paola PLA 1702 Phone: +356 (0)21 / 697 816 Fax: +356 (0)21 / 697 817	MALTA
INTEHSIS srl bld. Traian 23/1 MD-2060 Kishinev Phone: +373 (0)22 / 66 4242 Fax: +373 (0)22 / 66 4280	MOLDOVA
HIFLEX AUTOM.TECHNIEK B.V. Wolweverstraat 22 NL-2984 CD Ridderkerk Phone: +31 (0)180 – 46 60 04 Fax: +31 (0)180 – 44 23 55	NETHERLANDS
Koning & Hartman b.v. Haarlerbergweg 21-23 NL-1101 CH Amsterdam Phone: +31 (0)20 / 587 76 00 Fax: +31 (0)20 / 587 76 05	NETHERLANDS
Beijer Electronics AS Postboks 487 NO-3002 Drammen Phone: +47 (0)32 / 24 30 00 Fax: +47 (0)32 / 84 85 77	NORWAY
Fonseca S.A. R. João Francisco do Casal 87/89 PT - 3801-997 Aveiro, Esgueir Phone: +351 (0)234 / 303 900 Fax: +351 (0)234 / 303 910	PORTUGAL a
Sirius Trading & Services srl Aleea Lacul Morii Nr. 3 RO-060841 Bucuresti, Sector Phone: +40 (0)21 / 430 40 06 Fax: +40 (0)21 / 430 40 02	ROMANIA 6
INEA RBT d.o.o. Izletnicka 10 SER-113000 Smederevo Phone: +381 (0)26 / 615 401 Fax: +381 (0)26 / 615 401	SERBIA
SIMAP s.r.o. Jána Derku 1671 SK-911 01 Trencín Phone: +421 (0)32 743 04 72 Fax: +421 (0)32 743 75 20	SLOVAKIA
PROCONT, spol. s r.o. Prešov Kúpelná 1/A SK-080 01 Prešov Phone: +421 (0)51 7580 611 Fax: +421 (0)51 7580 650	SLOVAKIA
INEA RBT d.o.o. Stegne 11 SI-1000 Ljubljana Phone: +386 (0)1 / 513 8116 Fax: +386 (0)1 / 513 8170	SLOVENIA
Beijer Electronics AB Box 426 SE-20124 Malmö Phone: +46 (0)40 / 35 86 00 Fax: +46 (0)40 / 93 23 01	SWEDEN
Omni Ray AG Im Schörli 5 CH-8600 Dübendorf Phone: +41 (0)44 / 802 28 80 Fax: +41 (0)44 / 802 28 28	SWITZERLAND
GTS Bayraktar Bulvari Nutuk Sok. No: TR-34775 Yukari Dudullu-Üm Phone: +90 (0)216 526 39 90 Fax: +90 (0)216 526 3995	
CSC Automation Ltd. 4-B, M. Raskovoyi St. UA-02660 Kiev Phone: +380 (0)44 / 494 33 55 Fax: +380 (0)44 / 494-33-66	UKRAINE

EURASIAN REPRESENTATIVES T00 Kazpromavtomatika UI. Zhambyla 28 KAZ-100017 Karaganda Phone: +7 7212 / 50 10 00 Fax: +7 7212 / 50 11 50

MIDDLE EAST REPRESENTATIVES	
I.C. SYSTEMS LTD. 23 Al-Saad-Al-Alee St. EG-Sarayat, Maadi, Cairo Phone: +20 (0) 2 / 235 98 548 Fax: +20 (0) 2 / 235 96 625	EGYPT
ILAN & GAVISH Ltd. 24 Shenkar St., Kiryat Arie IL-49001 Petah-Tiqva Phone: +972 (0)3 / 922 18 24 Fax: +972 (0)3 / 924 0761	ISRAEL
GIRIT CELADON LTD 12 H'aomanut Street IL-42505 Netamya Phone: +972 (0)9 / 863 39 80 Fax: +972 (0)9 / 885 24 30	ISRAEL
CEG INTERNATIONAL Cebaco Center/Block A Autostrade DORA Lebanon - Beirut Phone: +961 (0)1 / 240 430 Fax: +961 (0)1 / 240 438	LEBANON

AFRICAN REPRESENTATIVE	
BI Ltd. Private Bag 2016 ! A-1600 Isando	SOUTH AFRICA
Phone: + 27 (0)11 / 977 0770 Fax: + 27 (0)11 / 977 0761	

