

Introduction 1

VPLC Access 2

VPLC I/O
Synchronization &
Simulation

3

SINUMERIK 840D sl

Interface Specification VPLC I/O

Function Manual

Valid for

Control
SINUMERIK 840D sl

Software Version
VPLC 04.04.00

05/2013

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

 DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

 CAUTION
with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

 CAUTION
without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

 NOTICE
indicates that an unintended result or situation can occur if the relevant information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

 WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

 Siemens AG
Industry Sector
Postfach 48 48
90026 NÜRNBERG
GERMANY

Ⓟ 05/2013 Technical data subject to change

Copyright © Siemens AG 2006 - 2013
Technical data subject to change

Interface Specification VPLC I/O
Function Manual, 05/2013 3

Preface

SINUMERIK documentation
The SINUMERIK documentation is organized in the following categories:

• General documentation

• User documentation

• Manufacturer/service documentation

Additional information
You can find information on the following topics under the link
www.siemens.com/motioncontrol/docu:
• Ordering documentation/overview of documentation

• Additional links to download documents

• Using documentation online (find and search in manuals/information)
If you have any questions regarding the technical documentation (e.g. suggestions,
corrections) then please send an e-mail to the following address:
mailto:docu.motioncontrol@siemens.com

My Documentation Manager (MDM)
Under the following link you will find information to individually compile OEM-
specific machine documentation based on the Siemens content:
MDM www.siemens.com/mdm

Training
For information about the range of training courses, refer under:
• SITRAIN www.siemens.com/sitrain - training courses from Siemens for

products, systems and solutions in automation technology

• SinuTrain www.siemens.com/sinutrain - training software for SINUMERIK

FAQs
You can find Frequently Asked Questions in the Service&Support pages
Product Support www.siemens.com/automation/service&support

SINUMERIK
You can find information on SINUMERIK under the following link:
www.siemens.com/sinumerik

http://www.siemens.com/motioncontrol/docu:
mailto:docu.motioncontrol@siemens.com
http://www.siemens.com/mdm
http://www.siemens.com/sitrain
http://www.siemens.com/sinutrain
http://www.siemens.com/automation/service&support
http://www.siemens.com/sinumerik

 Preface

4 Interface Specification VPLC I/O
 Function Manual, 05/2013

Target group
This publication is intended for project engineers, programmers, technologists (of
machine manufacturers), and system startup engineers (of systems/machines).

Benefits
The Function Manual describes the functions so that the target group is familiar
with and can select them. It provides the target group with the information required
to implement the functions.

Utilization phase: Planning and configuration phase, implementation phase, setup
and commissioning phase

Standard version
Extensions or changes made by the machine manufacturer are documented by the
machine manufacturer.

Other functions not described in this documentation might be executable in the
control. This does not, however, represent an obligation to supply such functions
with a new control or when servicing.

Further, for the sake of simplicity, this documentation does not contain all detailed
information about all types of the product and cannot cover every conceivable case
of installation, operation or maintenance.

Technical Support
You can find telephone numbers for other countries for technical support in the
Internet under "Contact" www.siemens.com/automation/service&support.

SINUMERIK Internet address
http://www.siemens.com/sinumerik

http://www.siemens.com/automation/service&support.SINUMERIKInternetaddress
http://www.siemens.com/automation/service&support.SINUMERIKInternetaddress
http://www.siemens.com/automation/service&support.SINUMERIKInternetaddress

Interface Specification VPLC I/O
Function Manual, 05/2013 5

Contents

1 Introduction ... 7

2 VPLC Access - LEDS & Switches .. 9

2.1 LEDS (status indications) ... 9
2.1.1 vplc_get_leds()... 9
2.1.2 vplc_watch_leds() .. 10

2.2 Hardware Switches ... 11
2.2.1 vplc_set_switch() ... 11
2.2.2 vplc_get_switch() ... 12
2.2.3 vplc_watch_switch() ... 13

3 VPLC I/O Synchronization & Simulation 15

3.1 Synchronization .. 16
3.1.1 vplc_reg_io_xchg_done() .. 16
3.1.2 vplc_sync_mode_on() .. 17
3.1.3 vplc_sync_wait() .. 18
3.1.4 vplc_sync_resume() ... 19
3.1.5 vplc_sync_mode_off() .. 20

3.2 DP I/O Configuration Interface .. 21
3.2.1 vplc_get_hw_config() ... 21
3.2.2 vplc_test_io_state() .. 22
3.2.3 vplc_write_io_bit() .. 23
3.2.4 vplc_write_io_bit_() .. 24
3.2.5 vplc_write_io_byte() ... 26
3.2.6 vplc_write_io_byte_() ... 27
3.2.7 vplc_write_io_word() .. 28
3.2.8 vplc_write_io_word_() .. 30
3.2.9 vplc_write_io_dword() .. 31
3.2.10 vplc_write_io_dword_() .. 32
3.2.11 vplc_read_io_bit() .. 34
3.2.12 vplc_read_io_bit_() .. 35
3.2.13 vplc_read_io_byte() ... 37
3.2.14 vplc_read_io_byte_() ... 38
3.2.15 vplc_read_io_word() .. 39
3.2.16 vplc_read_io_word_() .. 40
3.2.17 vplc_read_io_dword() .. 42
3.2.18 vplc_read_io_dword_() .. 43
3.2.19 vplc_io_terminate() .. 44
3.2.20 vplc_io_desc_type ... 45
3.2.21 vplc_dp_subsystem_type .. 46
3.2.22 vplc_module_info_type .. 47

Contents

 Interface Specification VPLC I/O
6 Function Manual, 05/2013

Interface Specification VPLC I/O
Function Manual, 05/2013 7

1 Introduction

This document describes the interface to the VPLC (Virtual Programmable Logic
Controller). Specifically, this document describes how clients may access VPLC
I/O, monitor the VPLC status, and affect the VPLC mode (RUN/STOP).
A VPLC client is a software package that uses the VPLC interface. Clients may
manage and/or use one or multiple VPLCs. Clients may consist of one or more
processes, each interfacing to one or more VPLC instances.

The VPLC interface is delivered as a DLL (iVPLC.dll) that runs as part of the
client’s process, and a library (iVPLC.lib) for linking with standard Microsoft client
projects. Other tool chains typically should dynamically load iVPLC.dll
(LoadLibrary), and then individually address each public function (GetProcAddress)
in the interface.

1

1 Introduction

 Interface Specification VPLC I/O
8 Function Manual, 05/2013

Interface Specification VPLC I/O
Function Manual, 05/2013 9

2 VPLC Access - LEDS & Switches

VPLC provides a functional interface that facilitates client access to VPLC
operation. These interface functions are described in the following subsections.

VPLC provides an interface that facilitates simulation of PLC hardware switches
and LED status indications. Using this interface, simulated switch states may be
conveyed to the VPLC, and LED status indications may be queried by the client.
Associated interface functions are described in the following subsections.

2.1 LEDS (status indications)
VPLC supports feedback of LED/status indications uniquely for each named VPLC
and supported VPLC type. LED status indications are obtained according to the
functions described in the following subsections.

2.1.1 vplc_get_leds()

<err> = vplc get leds(<name>,&<leds>,&<winerr>);

Returns the current states of the LED status indicators of the associated VPLC.
where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string specifying the name of the designated
VPLC.

 <leds> (output) Data type: vplc_leds
Indicates the state of each VPLC type specific status LED. Type vplc_leds
contains the following fields:

 leds_3172DP Data type: VPLC_3172DP_LEDS
Contains the status LED set for the VPLC 317 DP. Specifically …

 run Data type: int
stop Data type: int
sf Data type: int
sf_dp Data type: int
Contains the states of the designated VPLC 317 DP status LED
indicators. The possible states are the same for all LEDS. Possible
states are:

 LED_STATE_ON
LED_STATE_OFF
LED_FLASH_SLOW – 2Hz
LED_FLASH_FAST – 5Hz

 <winerr> (output) Data type: int
Returns the Windows error that occurred during the VPLC shutdown, as
indicated by <err>.

2

2 VPLC Access - LEDS & Switches
2.1 LEDS (status indications)

 Interface Specification VPLC I/O
10 Function Manual, 05/2013

 <err> (return) Data type: int

Returns the status of the operation. Possible return values are:
 VPLC_OK Indicates that the operation completed

successfully.
 VPLC_WINERR Indicates that a Windows error was

encountered. The Windows error value is
returned in <winerr>.

 VPLC_NOT_STARTED Indicates that the designated VPLC is not
started.

 VPLC_INV_NAME Indicates that the named VPLC does not exist.

2.1.2 vplc_watch_leds()
<err> = vplc_watch_leds(<name>,&<leds>,&<winerr>);

Registers a callback function with VPLC that VPLC calls each time that any LED
status indicaton changes state. Note that with the registration of a watch LEDs
callback function that the callback is called immediately upon its registration with
the current status of the LEDs.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string specifying the name of the designated
VPLC.

 <func> (input) Data type: void (*(func)(<leds>)
A pointer to the LED status watch callback function. Note that a NULL value
for <func> clears the most recently registered callback function. Callback
parameters are:

 <leds> (output) Data type: vplc_leds
Indicates the state of each VPLC type specific status LED. Type
vplc_leds contains the following fields:

 leds_3172DP Data type: VPLC_3172DP_LEDS
Contains the status LED set for the VPLC 317 DP. Specifically:

 run Data type: int
stop Data type: int
sf Data type: int
sf_dp Data type: int
Contains the states of the designated VPLC 317 DP status LED
indicators. The possible states are the same for all LEDS. Possible
states are:

 LED_STATE_ON
LED_STATE_OFF
LED_FLASH_SLOW – 2Hz
LED_FLASH_FAST – 5Hz

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered. The Windows error value is
returned in <winerr>.

 VPLC_INV_NAME Indicates that the named VPLC does not exist.

 2 VPLC Access - LEDS & Switches
 2.2 Hardware Switches

Interface Specification VPLC I/O
Function Manual, 05/2013 11

2.2 Hardware Switches
VPLC supports emulation of PLC hardware switches uniquely for each named
VPLC and supported VPLC type. Simulated hardware switch states are conveyed
to, and read from, VPLC by invoking the associated functions described in the
following sections.

2.2.1 vplc_set_switch()

<err> = vplc_set_switch(<name>,&< v_switch >,&<winerr>);

Notifies the VPLC of the state of the designated switch.
See section 2.1 above.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string specifying the name of the designated
VPLC.

 <v_switch> (input) Data type: const vplc_switches
Identifies the VPLC type specific switches. Type vplc_switches contains the
following fields:

 switches_3172DP Data type: enum VPLC_3172DP_SWITCHES
Contains an enumeration of the simulated hardware switch configuration for
the VPLC 317 DP. The following switch states are supported for VPLC type
3172DP:

 run Function returns immediately after switch state is set.
 runp Function returns immediately after switch state is set.
 stop Function returns immediately after switch state is set.
 mres Function does not return until after mres operation is

complete.
 urloeschen Function does not return until after urloeschen operation is

complete.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered. The Windows error value is
returned in <winerr>.

 VPLC_NOT_STARTED Indicates that the designated VPLC is not
started.

 VPLC_INV_NAME Indicates that the named VPLC does not exist.

Note that the return of vplc_set_switch() may or may not be synchronous with any
subsequent VPLC response to a switch state change, e.g., the VPLC has not
necessarily switched to the run state, after setting the run switch ON, upon the
return of vplc_set_switch(). The run LED status indicator should be monitored to
determine the timing of the actual state change. However, in the case of an mres,
the mres operation is complete upon the return of vplc_set_switch().

2 VPLC Access - LEDS & Switches
2.2 Hardware Switches

 Interface Specification VPLC I/O
12 Function Manual, 05/2013

2.2.2 vplc_get_switch()

<err> = vplc_get_switch(<name>,&< v_switch >,&<winerr>);

Returns to VPLC the currently ON switch. Note that all switch states are mutually
exclusive, i.e., only one can be ON at a given time, but also, that at least one
switch state is always ON.
See section 2.1 above.
 <name> (input) Data type: const char*

A pointer to a NULL terminated string specifying the name of the designated
VPLC.

 <v_switch> (input) Data type: vplc_switches
Returns the VPLC type specific switch that is currently set. Type
vplc_switches contains the following fields:

 switches_3172DP Data type: enum VPLC_3172DP_SWITCHES
Contains an enumeration of the simulated hardware switch configuration for
the VPLC 317 DP. The following switch states are supported for VPLC type
3172DP:

 run Indicates that the run switch state is currently set.
 runp Indicates that the runp switch state is currently set.
 stop Indicates that the stop switch state is currently set.
 mres Indicates that the mres switch state is currently set.
 urloeschen Indicates that the urloeschen switch state is currently set.

 <err> (return) Data type: int

Returns the status of the operation. Possible return values are:
 VPLC_OK Indicates that the operation completed successfully.
 VPLC_WINERR Indicates that a Windows error was encountered. The

Windows error value is returned in <winerr>.
 VPLC_INV_NAME Indicates that the named VPLC does not exist.

 2 VPLC Access - LEDS & Switches
 2.2 Hardware Switches

Interface Specification VPLC I/O
Function Manual, 05/2013 13

2.2.3 vplc_watch_switch()
<err> = vplc_watch_switch(<name>,<func>,&<winerr>);
Registers a callback function with VPLC that VPLC calls each time that the
run/stop/reset switch state is changed.
Note that the switch states are mutually exclusive, i.e., only one can be active at
a given time, but also, that at least one switch state is always active.
See section 2.1 above.
Note also that with the registration of a watch switch callback function that the
callback is called immediately upon its registration with the current state of the
switch.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string specifying the name of the designated
VPLC.

 <func> (input) Data type: void *(func)(<switch_>)
A pointer to the switch changed callback function. Note that a NULL value for
<func> clears the most recently registered callback function. Callback
parameters are:

 <switch_> (output) Data type: union vplc_switchess
Indicates the state of the VPLC run/stop/reset switch. Type vplc_switches
contains the following fields:

 switches_3172DP Data type: enum

Contains an enumeration of the simulated hardware switch configuration
for the VPLC 317 DP. The following switches states are supported for
VPLC type 3172DP:

 run Indicates that the run switch state is currently set.
 runp Indicates that the runp switch state is currently set.
 stop Indicates that the stop switch state is currently set.
 mres Indicates that the mres switch state is currently set.
 urloeschen Indicates that the urloeschen switch state is currently

set.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed successfully.
 VPLC_WINERR Indicates that a Windows error was encountered.

The Windows error value is returned in <winerr>.
 VPLC_INV_NAME Indicates that the named VPLC does not exist.

2 VPLC Access - LEDS & Switches
2.2 Hardware Switches

 Interface Specification VPLC I/O
14 Function Manual, 05/2013

Interface Specification VPLC I/O
Function Manual, 05/2013 15

3 VPLC I/O Synchronization & Simulation

VPLC provides an interface that allows client application software to emulate real
I/O. This requires the client simulation process to be able to synchronize with the
VPLC scan. In this mode, VPLC suspends each scan at its start and notifies the
client application of the scan suspended state. This allows the client application to
perform any necessary I/O manipulation, as described in section 3.2 below.
After completion of the I/O manipulation, the client application may then command
the VPLC to resume its scan, thus processing the affected I/O synchronously with
the simulation. See figure 3-1 below to see the sequence of operations performed
to accomplish the I/O simulation.

sd Class Model

:iVPLC«thread»
I/oSimWorker

«thread»
I/oSimManager

loop Scan

[((state==run) || (state==runp))]

Write/Read i/o, Perform i/o simulation

Write all necessary input bits, bytes, words dwords

Read all needed output bits, bytes, words, dwords

vplc_sync_mode_on(char*, int*) :int

vplc_sync_wait(char*, int*) :int

[Scan is
suspended]:

vplc_sync_resume(char*, int*) :int

[Scan is resumed]:

vplc_read_io_bit_(char,
int, int, int, int, bool, int)
:int

io_sim_start()

io_sim_done()

vplc_write_io_bit_(char,
int, int, int, int, bool, int)
:int

vplc_sync_mode_off(char*, int*) :int

Figure 3-1: - I/O Simulation in Sync Mode Sequence of Functions

VPLC provides functions to manage I/O simulation activity. They are described as
follows.

3

3 VPLC I/O Synchronization & Simulation
3.1 Synchronization

 Interface Specification VPLC I/O
16 Function Manual, 05/2013

3.1 Synchronization
VPLC provides functions that allow client simulation application processes to
synchronize with the VPLC scan. These functions are described in the following
subsections.

3.1.1 vplc_reg_io_xchg_done()
Function vplc_reg_io_xchg_done() registers a client application function for
callback at the completion of I/O exchange for each scan.
vplc_reg_io_xchg_done() invocation is:

<err> = vplc_reg_io_xchg_done(<name>,<func>,&<winerr>)

Registers the client application’s I/O exchange done callback function for the
specified VPLC instance.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string specifying the name of the designated
VPLC.

 <func> (input) Data type: void ((*(func))(<name>))
A pointer to the async mode’s I/O exchange done callback function. A NULL
pointer deletes the registration of any previously registered callback function.
Callback function parameters are:

 <name> (input) Data type: char*
A pointer to a NULL terminated string specifying the name of the
designated VPLC.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered. The Windows error value is
returned in <winerr>.

 VPLC_INV_NAME Indicates that the named VPLC does not exist.

Note that the I/O exchange done callback function remains registered until the
VPLC instance is terminated, or until its registration is deleted as described above.

 3 VPLC I/O Synchronization & Simulation
 3.1 Synchronization

Interface Specification VPLC I/O
Function Manual, 05/2013 17

3.1.2 vplc_sync_mode_on()
Function vplc_sync_mode_on() commands the VPLC to sync with the client’s I/O
simulation process. vplc_sync_mode_on() invocation is:

<err> = vplc_sync_mode_on(<name>,&<winerr>);

Commands the VPLC into sync mode.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string specifying the name of the associated
VPLC.

 <winerr> (output) Data type: int
Returns the Windows error that occurred during the operation as indicated by
<err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed successfully.
 VPLC_WINERR Indicates that a Windows error was encountered.
 VPLC_INV_NAME Indicates that the named VPLC does not exist.

3 VPLC I/O Synchronization & Simulation
3.1 Synchronization

 Interface Specification VPLC I/O
18 Function Manual, 05/2013

3.1.3 vplc_sync_wait()
Function vplc_sync_wait() suspends the calling process until the VPLC scan is
reported by VPLC as being suspended at its start. Client software may, upon the
return of vplc_sync_wait() perform I/O simulation and other VPLC scan
synchronous activities. vplc_sync_wait() invocation is:

<err> = vplc_sync_wait(<name>,&<winerr>);

Commands the VPLC into sync mode.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC.

 <winerr> (output) Data type: int
Returns the Windows error that occurred during the operation as indicated by
<err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered. The Windows error value is
returned in <winerr>.

 VPLC _SCAN_STOPPED Indicates that the VPLC transitioned to STOP
mode. Client software should either call
vplc_sync_mode_off() if they want to
terminate synchronization, or
vplc_sync_wait() if they want to continue
synchronization with the next VPLC scan, if the
VPLC transitions back to RUN mode. Note that
the client can cancel vplc_sync_wait() by
calling vplc_sync_mode_off().

 VPLC_SHUTDOWN Indicates that the VPLC process terminated or
that the VPLC was shutdown. If the client
simulation software intends to continue
simulation at the next start up of VPLC, then it
should call vplc_sync_mode_off(),
vplc_sync_mode_on(), followed by
vplc_sync_wait(). This will allow
synchronization with the first VPLC scan upon
VPLC start up.

 VPLC_INV_NAME Indicates that the named VPLC does not exist.

 3 VPLC I/O Synchronization & Simulation
 3.1 Synchronization

Interface Specification VPLC I/O
Function Manual, 05/2013 19

3.1.4 vplc_sync_resume()

Function vplc_sync_resume() resumes the VPLC scan when suspended. Client
software should resume the VPLC scan after performing I/O simulation and other
VPLC scan synchronous activities. vplc_sync_resume() invocation is:

<err> = vplc_sync_resume(<name>,&<winerr>);
Commands the VPLC into sync mode.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC.

 <winerr> (output) Data type: int
Returns the Windows error that occurred during the operation as indicated by
<err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_NOT_STARTED Indicates that the designated VPLC is not
started.

 VPLC_SCAN_STOPPED Indicates that the designated VPLC is not in
RUN mode, and its scan cannot be resumed.
To synchronize with the VPLC scan upon its
transition to RUN mode, call
vplc_sync_wait().

 VPLC_INV_NAME Indicates that the named VPLC does not exist.

3 VPLC I/O Synchronization & Simulation
3.1 Synchronization

 Interface Specification VPLC I/O
20 Function Manual, 05/2013

3.1.5 vplc_sync_mode_off()
Function vplc_sync_mode_off() commands the VPLC to discontinue syncing with
the clients I/O simulation process. vplc_sync_mode_off() invocation is:

<err> = vplc_sync_resume(<name>,&<winerr>);

Commands the specified VPLC to discontinue scan synchronization and resumes
its scan if it is suspended. vplc_sync_mode_off() also cancels any pending
vplc_sync_wait() associated with the named VPLC and client.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC.

 <winerr> (output) Data type: int
Returns the Windows error that occurred during the operation as indicated by
<err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed successfully.
 VPLC_WINERR Indicates that a Windows error was encountered.
 VPLC_INV_NAME Indicates that the named VPLC does not exist.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 21

3.2 DP I/O Configuration Interface
VPLC provides the client application a means of obtaining notification of the
presence of a DP I/O hardware configuration. VPLC provides a function that allows
the client application to obtain a definition of the existing I/O configuration, and
register a callback function that is called in the event of a change in the I/O
configuration. VPLC also provides functions that facilitate reading and writing of
VPLC I/O. These functions are specified in the following sections.

3.2.1 vplc_get_hw_config()
VPLC function vplc_get_hw_config() returns to the client application the current
I/O hardware configuration, if one currently exists, and provides VPLC a means of
notifying the client of any I/O configuration change. vplc_get_hw_config()
invocation is:

<err> =
vplc_get_hw_config(<name>,&<config>,<func>,&<winerr>);
Returns the current DP I/O hardware configuration, and registers the associated
callback function.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <config> (output) Data type: vplc_io_desc_type*
A pointer to a vplc_io_desc_type structure that returns to the caller the DP
I/O description as described in section 3.2.20 below.

 <func> (input) Data type: void
((*(func))(<name>,<*io_desc>))
A pointer to a function that enables the VPLC to notify the client
application>,<*io of a change in the DP I/O configuration. Callback function
parameters are:

 <name> (input) Data type: char*
A pointer to a NULL terminated string specifying the name of the designated
VPLC.

 <io_desc> (input) Data type: vplc_io_desc_type*
A pointer to a vplc_io_desc_type structure that returns to the caller the DP
I/O description as described in section 3.2.20 below.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_INV_NAME Indicates that the name VPLC does not
exist.

Function vplc_get_hw_config() may be called anytime after the VPLC is started.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
22 Function Manual, 05/2013

3.2.2 vplc_test_io_state()
Function vplc_test_io_state() tests to see if the VPLC I/O region is currently valid,
or not. The I/O region is considered invalid if the VPLC is not in RUN mode, or if a
hardware configuration has not been loaded by the VPLC.
vplc_test_io_state() invocation is:

<err> = vplc_test_io_state(<name>,<func>,&<winerr>);

Determines the validity of the VPLC’s I/O region and returns the appropriate
status.
where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string specifying the name of the designated
VPLC.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

This function is only necessary if attempting to access I/O directly through
information contained in vplc_io_desc_type.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 23

3.2.3 vplc_write_io_bit()
VPLC function vplc_write_io_bit() writes the specified state to the designated I/O
location. vplc_write_io_bit() invocation is:

<err> =
vplc_write_io_bit(<name>,<area>,<adr>,<pos>,<state>,&<winerr
>);
Writes the specified I/O bit to the designated state.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_I Specifies process image inputs.
 VPLC_Q Specifies process image outputs
 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs

 <adr> (input) Data type: int

Designates the target I/O address as a byte offset from the start (byte 0) of the
area. For <area>s VPLC_I and VPLC_Q (process image), valid addresses
are: (0<=adr<=255). For <area>s VPLC_PI and VPLC_PQ (peripheral), valid
addresses are: (0<=adr<=8191), but are dependent upon the number of I/O
modules available. An out of range address specification generates a return
error code.

 <pos> (input) Data type: int
Contains the target bit position within the specified I/O <adr>: 0<=<pos><=7.

 <state> (input) Data type: bool
Specifies the new bit state, either on (1) or off (0).

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_ADR Indicates that the specified I/O <adr>
exceeds the maximum range supported
by the PLC, or exceeds the address
range of available I/O modules.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
24 Function Manual, 05/2013

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_INV_POS Indicates that the specified bit position is
out of range.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

When a PQ (peripheral) value is forced to a particular state, if applicable, the
associated Q (process image) value is also forced to that same state.

Function vplc_write_io_bit() should only be called while the system I/O is valid as
indicated by the callback function registered by vplc_test_io_state(), or indicated
by the plc_in_run_mode member of vplc_io_desc_type as described in section
3.2.20 below.

3.2.4 vplc_write_io_bit_()
VPLC function vplc_write_io_bit() writes the specified state to the designated I/O
location.
vplc_write_io_bit_() is the same as vplc_write_io_bit() except that it specifies
that I/O be addressed by slave/slot instead of by a logical address, and that the
VPLC process image cannot be directly accessed.
vplc_write_io_bit_() invocation is:

<err> =
vplc_write_io_bit_(<name>,<area>,<slave>,<slot>,<offset>,<po
s>,<state>,&<winerr>);
Writes the specified I/O bit to the designated state.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <slave> (input) Data type: int

Designates I/O slave number: 1<=<slave><=126. An out of range address
specification generates a return error code.

 <slot> (input) Data type: int
Designates I/O slot number: 0<=<slot><=247. An out of range address
specification generates a return error code.

 <offset> (input) Data type: int
Designates the byte offset from the module base address. This value is
dependent upon the module’s I/O length. Possible values are:

 0 module I/O length of 1.
 0,1 module I/O length of 2.
 0,1,2,3 module I/O length of 4.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 25

 <pos> (input) Data type: int
Contains the target bit position within the specified I/O address:
0<=<pos><=7.

 <state> (input) Data type: bool
Specifies the new bit state, either on (1) or off (0).

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_SLAVE Indicates that the specified I/O <slave>
number exceeds the maximum range
supported by the PLC.

 VPLC_INV_SLOT Indicates that the specified I/O <slot>
number exceeds the maximum range
supported by the PLC.

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_INV_POS Indicates that the specified bit position is
out of range.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

When a PQ (peripheral) value is forced to a particular state, if applicable, the
associated Q (process image) value is also forced to that same state.

Function vplc_write_io_bit_() should only be called while the system I/O is valid
as indicated by the callback function registered by vplc_test_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
26 Function Manual, 05/2013

3.2.5 vplc_write_io_byte()
VPLC function vplc_write_io_byte() writes the specified byte value to the
designated I/O location. vplc_write_io_byte() invocation is:

<err> =
vplc_write_io_byte(<name>,<area>,<adr>,<value>,&<winerr>);

Writes the specified byte value to the designated I/O location.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_I Specifies process image inputs.
 VPLC_Q Specifies process image outputs.
 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <adr> (input) Data type: int

Designates the target I/O address as a byte offset from the start (byte 0) of the
area. For <area>s VPLC_I and VPLC_Q (process image), valid addresses
are: (0<=adr<=255). For <area>s VPLC_PI and VPLC_PQ (peripheral), valid
addresses are: (0<=adr<=8191), but are dependant upon the number of I/O
modules available. An out of range address specification generates a return
error code.

 <value> (input) Data type: unsigned char
Contains the I/O byte value to be written.

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_ADR Indicates that the specified I/O <adr>
exceeds the maximum range supported
by the PLC, or exceeds the address
range of available I/O modules

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 27

When a PQ (peripheral) value is forced to a particular state, if applicable, the
associated Q (process image) value is also forced to that same state.

Function vplc_write_io_byte() should only be called while the system I/O is valid
as indicated by the callback function registered by vplc_test_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3.2.6 vplc_write_io_byte_()
VPLC function vplc_write_io_byte_() writes the specified byte value to the
designated I/O location. vplc_write_io_byte_() is the same as
vplc_write_io_byte() except that it specifies that I/O be addressed by slave/slot
instead of by a logical address, and that the VPLC process image cannot be
directly accessed. vplc_write_io_byte_() invocation is:

<err> =
vplc_write_io_byte_(<name>,<area>,<slave>,<slot>,<offset>,<v
alue>,&<winerr>);
Writes the specified byte value to the designated I/O location.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <slave> (input) Data type: int

Designates I/O slave number: 1<=<slave><=126. An out of range address
specification generates a return error code.

 <slot> (input) Data type: int
Designates I/O slot number: 0<=<slot><=247. An out of range address
specification generates a return error code.

 <offset> (input) Data type: int
Designates the byte offset from the module base address. This value is
dependent upon the module’s I/O length. Possible values are:

 0 module I/O length of 1
 0,1 module I/O length of 2.
 0,1,2,3 module I/O length of 4.

 <value> (input) Data type: unsigned char

Contains the I/O byte value to be written.

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
28 Function Manual, 05/2013

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_SLAVE Indicates that the specified I/O <slave>
number exceeds the maximum range
supported by the PLC.

 VPLC_INV_SLOT Indicates that the specified I/O <slot>
number exceeds the maximum range
supported by the PLC.

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

When a PQ (peripheral) value is forced to a particular state, if applicable, the
associated Q (process image) value is also forced to that same state.

Function vplc_write_io_byte_() should only be called while the system I/O is valid
as indicated by the callback function registered by vplc_test_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3.2.7 vplc_write_io_word()
VPLC function vplc_write_io_word() writes the specified word value to the
designated I/O location. vplc_write_io_word() invocation is:

<err> =
vplc_write_io_word(<name>,<area>,<adr>,<value>,&<winerr>);
Writes the specified word value to the designated I/O location.
where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_I Specifies process image inputs.
 VPLC_Q Specifies process image outputs.
 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <adr> (input) Data type: int

Designates the target I/O address as a byte offset from the start (byte 0) of the
area. For <area>s VPLC_I and VPLC_Q (process image), valid addresses
are: (0<=adr<=255). For <area>s VPLC_PI and VPLC_PQ (peripheral), valid

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 29

addresses are: (0<=adr<=8191), but is dependant upon the number of I/O
modules available. An out of range address specification generates a return
error code.

 <value> (input) Data type: unsigned short
Contains the I/O word value to be written.

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_ADR Indicates that the specified I/O <adr>
exceeds the maximum range supported
by the PLC, or exceeds the address
range of available I/O modules.

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

When a PQ (peripheral) value is forced to a particular state, if applicable, the
associated Q (process image) value is also forced to that same state.

Function vplc_write_io_word() should only be called while the system I/O is valid
as indicated by the callback function registered by vplc_reg_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
30 Function Manual, 05/2013

3.2.8 vplc_write_io_word_()
VPLC function vplc_write_io_word_() writes the specified word value to the
designated I/O location. vplc_write_io_word_() is the same as
vplc_write_io_word() except that it specifies that I/O be addressed by slave/slot
instead of by a logical address, and that the VPLC process image cannot be
directly accessed. vplc_write_io_word_() invocation is:

<err> =
vplc_write_io_word_(<name>,<area>,<slave>,<slot>,<offset>,<v
alue>,&<winerr>);
Writes the specified word value to the designated I/O location.
Where:

 <name> (input) Data type: const char*
A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <slave> (input) Data type: int

Designates I/O slave number: 1<=<slave><=126. An out of range address
specification generates a return error code.

 <slot> (input) Data type: int
Designates I/O slot number: 0<=<slot><=247. An out of range address
specification generates a return error code.

 <offset> (input) Data type: int
Designates the byte offset from the module base address. This value is
dependent upon the module’s I/O length. Possible values are:

 0 module I/O length of 1.
 0,1 module I/O length of 2.
 0,1,2,3 module I/O length of 4.

 <value> (input) Data type: unsigned short

Contains the I/O word value to be written.
 <winerr> (output) Data type: int

Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_SLAVE Indicates that the specified I/O <slave>
number exceeds the maximum range
supported by the PLC.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 31

 VPLC_INV_SLOT Indicates that the specified I/O <slot>
number exceeds the maximum range
supported by the PLC.

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

When a PQ (peripheral) value is forced to a particular state, if applicable, the
associated Q (process image) value is also forced to that same state.

Function vplc_write_io_word_() should only be called while the system I/O is valid
as indicated by the callback function registered by vplc_reg_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3.2.9 vplc_write_io_dword()
VPLC function vplc_write_io_dword() writes the specified dword value to the
designated I/O location. vplc_write_io_dword() invocation is:

<err> =
vplc_write_io_dword(<name>,<area>,<adr>,<value>,&<winerr>);
Writes the specified dword value to the designated I/O location.

Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_I Specifies process image inputs.
 VPLC_Q Specifies process image outputs.
 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <adr> (input) Data type: int

Designates the target I/O address as a byte offset from the start (byte 0) of the
area. For <area>s VPLC_I and VPLC_Q (process image), valid addresses
are: (0<=adr<=255). For <area>s VPLC_PI and VPLC_PQ (peripheral), valid
addresses are: (0<=adr<=8191), but is dependant upon the number of I/O
modules available. An out of range address specification generates a return
error code.

 <value> (input) Data type: unsigned int
Contains the I/O dword value to be written.

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
32 Function Manual, 05/2013

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does
not exist.

 VPLC_INV_AREA Indicates that the specified I/O <area>
is not valid.

 VPLC_INV_ADR Indicates that the specified I/O <adr>
exceeds the maximum range
supported by the PLC, or exceeds the
address range of available I/O
modules.

 VPLC_NO_SHARED_MEMORY Indicates that no hardware
configuration is present, but note that
the callback function is still registered if
specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

When a PQ (peripheral) value is forced to a particular state, if applicable, the
associated Q (process image) value is also forced to that same state.

Function vplc_write_io_dword() should only be called while the system I/O is
valid as indicated by the callback function registered by vplc_reg_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3.2.10 vplc_write_io_dword_()
VPLC function vplc_write_io_dword_() writes the specified dword value to the
designated I/O location. vplc_write_io_dword_() is the same as
vplc_write_io_dword() except that it specifies that I/O be addressed by slave/slot
instead of by a logical address, and that the VPLC process image cannot be
directly accessed. vplc_write_io_dword_() invocation is:

<err> =
vplc_write_io_dword_(<name>,<area>,<slave>,<slot>,<value>,&<
winerr>);
Writes the specified dword value to the designated I/O location.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 33

 <slave> (input) Data type: int
Designates I/O slave number: 1<=<slave><=126. An out of range address
specification generates a return error code.

 <slot> (input) Data type: int
Designates I/O slot number: 0<=<slot><=247. An out of range address
specification generates a return error code.

 <value> (input) Data type: unsigned int
Contains the I/O dword value to be written.

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_SLAVE Indicates that the specified I/O <slave>
number exceeds the maximum range
supported by the PLC

 VPLC_INV_SLOT Indicates that the specified I/O <slot>
number exceeds the maximum range
supported by the PLC.

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

When a PQ (peripheral) value is forced to a particular state, if applicable, the
associated Q (process image) value is also forced to that same state.

Function vplc_write_io_dword_() should only be called while the system I/O is
valid as indicated by the callback function registered by vplc_reg_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
34 Function Manual, 05/2013

3.2.11 vplc_read_io_bit()
VPLC function vplc_read_io_bit() reads the current bit state from the designated
I/O location. vplc_read_io_bit() invocation is:

<err> =
vplc_read_io_bit(<name>,<area>,<adr>,<pos>,&<state>,&<winerr
>);
Writes the specified I/O bit to the designated state.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_I Specifies process image inputs.
 VPLC_Q Specifies process image outputs.
 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <adr> (input) Data type: int

Designates the target I/O address as a byte offset from the start (byte 0) of the
area. For <area>s VPLC_I and VPLC_Q (process image), valid addresses
are: (0<=adr<=255). For <area>s VPLC_PI and VPLC_PQ (peripheral), valid
addresses are: (0<=adr<=8191), but are dependant upon the number of I/O
modules available. An out of range address specification generates a return
error code.

 <pos> (input) Data type: int
Contains the target bit position within the specified I/O <adr>: 0<=<pos><=7.

 <state> (input) Data type: bool
Returns the state of the designated bit address, either on (1) or off (0).

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_ADR Indicates that the specified I/O <adr>
exceeds the maximum range supported
by the PLC, or exceeds the address
range of available I/O modules.

 VPLC_INV_POS Indicates that the specified bit position is
out of range.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 35

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

Function vplc_read_io_bit() should only be called while the system I/O is valid as
indicated by the callback function registered by vplc_reg_io_state(), or indicated
by the plc_in_run_mode member of vplc_io_desc_type as described in section
3.2.20 below.

3.2.12 vplc_read_io_bit_()
VPLC function vplc_read_io_bit_() reads the current bit state from the designated
I/O location. vplc_ read_io_bit _() is the same as vplc_ read_io_bit_() except that
it specifies that I/O be addressed by slave/slot instead of by a logical address, and
that the VPLC process image cannot be directly accessed. vplc_read_io_bit_()
invocation is:

<err> =
vplc_read_io_bit_(<name>,<area>,<slave>,<slot>,<offset>,<po
s>,&<state>,&<winerr>);
Writes the specified I/O bit to the designated state.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <slave> (input) Data type: int

Designates I/O slave number: 1<=<slave><=126. An out of range address
specification generates a return error code.

 <slot> (input) Data type: int
Designates I/O slot number: 0<=<slot><=247. An out of range address
specification generates a return error code.

 <offset> (input) Data type: int
Designates the byte offset from the module base address. This value is
dependent upon the module’s I/O length. Possible values are:

 0 module I/O length of 1.
 0,1 module I/O length of 2.
 0,1,2,3 module I/O length of 4.

 <pos> (input) Data type: int

Contains the target bit position within the specified I/O address:
0<=<pos><=7.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
36 Function Manual, 05/2013

 <state> (input) Data type: bool
Returns the state of the designated bit address, either on (1) or off (0).

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_SLAVE Indicates that the specified I/O <slave>
number exceeds the maximum range
supported by the PLC.

 VPLC_INV_SLOT Indicates that the specified I/O <slot>
number exceeds the maximum range
supported by the PLC.

 VPLC_INV_POS Indicates that the specified bit position is
out of range

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

Function vplc_read_io_bit_() should only be called while the system I/O is valid as
indicated by the callback function registered by vplc_reg_io_state(), or indicated
by the plc_in_run_mode member of vplc_io_desc_type as described in section
3.2.20 below.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 37

3.2.13 vplc_read_io_byte()
VPLC function vplc_read_io_byte() reads the designated byte value from I/O.
vplc_read_io_byte() invocation is:

<err> =
vplc_read_io_byte(<name>,<area>,<adr>,&<value>,&<winerr>);
Reads the designated byte value from I/O.
Where:

 <name> (input) Data type: const char*
A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_I Specifies process image inputs.
 VPLC_Q Specifies process image outputs.
 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <adr> (input) Data type: int

Designates the target I/O address as a byte offset from the start (byte 0) of the
area. For <area>s VPLC_I and VPLC_Q (process image), valid addresses
are: (0<=adr<=255). For <area>s VPLC_PI and VPLC_PQ (peripheral), valid
addresses are: (0<=adr<=8191), but is dependant upon the number of I/O
modules available. An out of range address specification generates a return
error code.

 <value> (output) Data type: unsigned char
Returns the I/O byte value.

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_ADR Indicates that the specified I/O <adr>
exceeds the maximum range supported
by the PLC, or exceeds the address
range of available I/O modules.

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
38 Function Manual, 05/2013

Function vplc_read_io_byte() should only be called while the system I/O is valid
as indicated by the callback function registered by vplc_reg_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3.2.14 vplc_read_io_byte_()
VPLC function vplc_read_io_byte_() reads the designated byte value from I/O.
vplc_read_io_byte _() is the same as vplc_ read_io_byte_() except that it
specifies that I/O be addressed by slave/slot instead of by a logical address, and
that the VPLC process image cannot be directly accessed. vplc_read_io_byte_()
invocation is:
<err> =
vplc_read_io_byte_(<name>,<area>,<slave>,<slot>,<offset>,&<
value>,&<winerr>);
Reads the designated byte value from I/O.
Where:

 <name> (input) Data type: const char*
A pointer to a NULL terminated string representing the name of the
associated VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <slave> (input) Data type: int

Designates I/O slave number: 1<=<slave><=126. An out of range address
specification generates a return error code.

 <slot> (input) Data type: int
Designates I/O slot number: 0<=<slot><=247. An out of range address
specification generates a return error code.

 <offset> (input) Data type: int
Designates the byte offset from the module base address. This value is
dependent upon the module’s I/O length. Possible values are:

 0 module I/O length of 1.
 0,1 module I/O length of 2.
 0,1,2,3 module I/O length of 4.

 <value> (output) Data type: unsigned char

Returns the I/O byte value.

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully

 VPLC_WINERR Indicates that a Windows error was
encountered.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 39

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_SLAVE Indicates that the specified I/O <slave>
number exceeds the maximum range
supported by the PLC.

 VPLC_INV_SLOT Indicates that the specified I/O <slot>
number exceeds the maximum range
supported by the PLC

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration is
present, but note that the callback function
is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN mode.

Function vplc_read_io_byte_() should only be called while the system I/O is valid
as indicated by the callback function registered by vplc_reg_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3.2.15 vplc_read_io_word()
VPLC function vplc_read_io_word() reads the designated word value from I/O.
vplc_read_io_word() invocation is:

<err> =
vplc_read_io_word(<name>,<area>,<adr>,&<value>,&<winerr>);
Reads the designated word value from I/O.
Where:

 <name> (input) Data type: const char*
A pointer to a NULL terminated string representing the name of the associated
VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_I Specifies process image inputs.
 VPLC_Q Specifies process image outputs.
 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <adr> (input) Data type: int

Designates the target I/O address as a byte offset from the start (byte 0) of the
area. For <area>s VPLC_I and VPLC_Q (process image), valid addresses
are: (0<=adr<=255). For <area>s VPLC_PI and VPLC_PQ (peripheral), valid
addresses are: (0<=adr<=8191), but is dependant upon the number of I/O
modules available. An out of range address specification generates a return
error code.

 <value> (output) Data type: unsigned short
Returns the I/O word value.

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
40 Function Manual, 05/2013

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_ADR Indicates that the specified I/O <adr>
exceeds the maximum range supported
by the PLC, or exceeds the address
range of available I/O modules.

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

Function vplc_read_io_word() should only be called while the system I/O is valid
as indicated by the callback function registered by vplc_reg_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3.2.16 vplc_read_io_word_()
VPLC function vplc_read_io_word_() reads the designated word value from I/O.
vplc_read_io_word _() is the same as vplc_ read_io_word_() except that it
specifies that I/O be addressed by slave/slot instead of by a logical address, and
that the VPLC process image cannot be directly accessed. vplc_read_io_word_()
invocation is:

<err> =
vplc_read_io_word_(<name>,<area>,<slave>,<slot>,<offset>,&<
value>,&<winerr>);
Reads the designated word value from I/O.
Where:

 <name> (input) Data type: const char*
A pointer to a NULL terminated string representing the name of the
associated VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <slave> (input) Data type: int

Designates I/O slave number: 1<=<slave><=126. An out of range address
specification generates a return error code.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 41

 <slot> (input) Data type: int
Designates I/O slot number: 0<=<slot><=247. An out of range address
specification generates a return error code.

 <offset> (input) Data type: int
Designates the byte offset from the module base address. This value is
dependent upon the module’s I/O length. Possible values are:

 0 module I/O length of 1.
 0,1 module I/O length of 2.
 0,1,2,3 module I/O length of 4.

 <value> (output) Data type: unsigned short

Returns the I/O word value.

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_SLAVE Indicates that the specified I/O <slave>
number exceeds the maximum range
supported by the PLC.

 VPLC_INV_SLOT Indicates that the specified I/O <slot>
number exceeds the maximum range
supported by the PLC.

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

Function vplc_read_io_word_() should only be called while the system I/O is valid
as indicated by the callback function registered by vplc_reg_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
42 Function Manual, 05/2013

3.2.17 vplc_read_io_dword()
VPLC function vplc_read_io_dword() reads the designated dword value from I/O.
vplc_read_io_dword() invocation is:

<err> =
vplc_read_io_dword(<name>,<area>,<adr>,&<value>,&<winerr>);
Reads the designated dword value from I/O.
Where:

 <name> (input) Data type: const char*
A pointer to a NULL terminated string representing the name of the
associated VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_I Specifies process image inputs.
 VPLC_Q Specifies process image outputs.
 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <adr> (input) Data type: int

Designates the target I/O address as a byte offset from the start (byte 0) of the
area. For <area>s VPLC_I and VPLC_Q (process image), valid addresses
are: (0<=adr<=255). For <area>s VPLC_PI and VPLC_PQ (peripheral), valid
addresses are: (0<=adr<=8191), but is dependant upon the number of I/O
modules available. An out of range address specification generates a return
error code.

 <value> (output) Data type: unsigned int
Returns the I/O dword value.

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_ADR Indicates that the specified I/O <adr>
exceeds the maximum range supported
by the PLC, or exceeds the address
range of available I/O modules.

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 43

Function vplc_read_io_dword() should only be called while the system I/O is valid
as indicated by the callback function registered by vplc_reg_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3.2.18 vplc_read_io_dword_()
VPLC function vplc_read_io_dword_() reads the designated dword value from
I/O. vplc_read_io_dword _() is the same as vplc_ read_io_dword_() except that
it specifies that I/O be addressed by slave/slot instead of by a logical address, and
that the VPLC process image cannot be directly accessed.
vplc_read_io_dword_() invocation is:

<err> =
vplc_read_io_dword_(<name>,<area>,<slave>,<slot>,&<value>,&
<winerr>);
Reads the designated dword value from I/O.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string representing the name of the
associated VPLC instance.

 <area> (input) Data type: int
Designates the target I/O area. Valid specifications are:

 VPLC_PI Specifies peripheral inputs.
 VPLC_PQ Specifies peripheral outputs.

 <slave> (input) Data type: int

Designates I/O slave number: 1<=<slave><=126. An out of range address
specification generates a return error code.

 <slot> (input) Data type: int
Designates I/O slot number: 0<=<slot><=247. An out of range address
specification generates a return error code.

 <value> (output) Data type: unsigned int
Returns the I/O dword value.

 <winerr> (output) Data type: int
Returns the OS error that occurred during the operation as indicated by <err>.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully

 VPLC_WINERR Indicates that a Windows error was
encountered.

 VPLC_INV_NAME Indicates that the named VPLC does not
exist.

 VPLC_INV_AREA Indicates that the specified I/O <area> is
not valid.

 VPLC_INV_SLAVE Indicates that the specified I/O <slave>
number exceeds the maximum range
supported by the PLC.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
44 Function Manual, 05/2013

 VPLC_INV_SLOT Indicates that the specified I/O <slot>
number exceeds the maximum range
supported by the PLC.

 VPLC_NO_SHARED_MEMORY Indicates that no hardware configuration
is present, but note that the callback
function is still registered if specified.

 VPLC_IO_NOT_RDY Indicates that the I/O is not valid at this
time because the PLC is not in RUN
mode.

Function vplc_read_io_dword_() should only be called while the system I/O is
valid as indicated by the callback function registered by vplc_reg_io_state(), or
indicated by the plc_in_run_mode member of vplc_io_desc_type as described in
section 3.2.20 below.

3.2.19 vplc_io_terminate()
Function vplc_io_terminate() shuts down the VPLC I/O simulation server.
vplc_io_terminate() invocation is:

<err> = vplc_io_terminate(<name>,&<winerr>);
Terminates the VPLC I/O simulation server.
Where:
 <name> (input) Data type: const char*

A pointer to a NULL terminated string specifying the name of the designated
VPLC.

 <err> (return) Data type: int
Returns the status of the operation. Possible return values are:

 VPLC_OK Indicates that the operation completed
successfully.

 VPLC_WINERR Indicates that a Windows error was encountered.
The Windows error value is returned in <winerr>.

 VPLC_INV_NAME Indicates that the named VPLC does not exist.

Note that this function is not actually required to terminate the I/O simulation facility
because the I/O simulation server is shut down automatically when the associated
VPLC client process terminates.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 45

3.2.20 vplc_io_desc_type
Interface structure vplc_io_desc_type consists of the following elements:
io_desc_ver Data type: unsigned char
Indicates the version of vplc_io_desc_type. Valid version specifications are:
 VPLC_IO_DESC_VERSION_1

reserved1 Data type: unsigned char
The user may not use this field.

dp_subsystem_count Data type: unsigned char
Indicates the number of DP masters present in the VPLC system, as specified by
the downloaded Step-7 project. Specifically:

 0<= dp_subsystem_count <= VPLC_MAX_DP_SUBSYSTEMS

Reserved2 Data type: unsigned char
The user may not use this field.

plc_in_run_mode Data type: unsigned char
Indicates whether I/O is valid or not.
When TRUE, I/O is valid and may be accessed.
When FALSE, I/O is invalid and direct accessing is undefined.

input_process_image_ptr Data type: void *
Pointer to the start of the inputs process image table.

output_process_image_ptr Data type: void *
Pointer to the start of the outputs process image table.

dp_subsystem [VPLC_MAX_DP_SUBSYSTEMS] Data type:
vplc_dp_subsystem_type.
Describes the associated DP subsystem as defined by
vplc_dp_subsystem_type as described in the section 3.2.21 below.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
46 Function Manual, 05/2013

3.2.21 vplc_dp_subsystem_type
Interface structure vplc_dp_subsystem_type describes the associated DP master
subsystem and consists of the following elements:

device_id Data type: unsigned char
Indicates the Profibus device id associated with the corresponding DP I/O subsystem.
Specifically:
 1<=dp subsystem id<=VPLC MAX DP SUBSYSTEM

dp_subsystem_id Data type: unsigned char
Indicates the master id of the associated DP I/O subsystem. Specifically:

 1<=dp_subsystem_id<=VPLC_MAX_DP_SUBSYSTEM

module_count Data type: unsigned short
Indicates the number of I/O modules that exist in the associated DP subsystem.
Specifically:
 0<=module_count<=VPLC_MAX_MODULES_PER_DEVICE

input_start_ptr Data type: void *
Pointer to the start of physical I/O inputs.

inputs_len Data type: int
Byte number of physical I/O inputs.

output_start_ptr Data type: void *
Pointer to the start of physical I/O outputs.

outputs_len Data type: int
Byte number of physical I/O outputs.

module_info[VPLC_MAX_MODULES_PER_DEVICE] Data type:
vplc_module_info_type.
Describes the associated DP I/O module as defined by vplc_module_info_type
as described in the next section.

 3 VPLC I/O Synchronization & Simulation
 3.2 DP I/O Configuration Interface

Interface Specification VPLC I/O
Function Manual, 05/2013 47

3.2.22 vplc_module_info_type
Interface structure vplc_module_info_type describes the associated DP I/O
module and consists of the following elements:

io Data type: unsigned char
Indicates whether the associated I/O module is an input or an output module. Specifically:

 0 indicates an input module.

 1 indicates an outputs module.

mod_io_len Data type: unsigned char
Indicates the size of the I/O module. Specifically:

 0 indicates no I/O.
 1 indicates 1 byte (8 bits) of I/O.
 2 indicates 2 bytes (16 bits) of I/O.
 4 indicates 4 bytes (32 bits) of I/O.

station_adr Data type: unsigned char
Indicates the DP station address of the slave containing this I/O module. This
value is limited by the associated DP I/O hardware.

slot Data type: unsigned char
Indicates the I/O module’s slot number in its associated DP slave. This value is
limited by the associated DP I/O hardware.

mod_type Data type: unsigned short
Indicates the Siemens DP I/O module type.

log_adr Data type: unsigned short
Indicates the logical address of the start of this modules I/O, i. e, the address of
the module’s I/O as seen by the PLC program. Specifically:

 0<=log_adr<256 – log_adr is an index into the process image table.
 256>=log_adr<8192 – The I/O module is not addressable via the process

image table.

phy_adr_ptr Data type: void *
Pointer to the start of this module’s DP I/O.

3 VPLC I/O Synchronization & Simulation
3.2 DP I/O Configuration Interface

 Interface Specification VPLC I/O
48 Function Manual, 05/2013

	SINUMERIK 840D sl, Interface Specification VPLC I/O
	Legal information
	Preface
	Contents
	1 Introduction
	2 VPLC Access - LEDS & Switches
	2.1 LEDS (status indications)
	2.1.1 vplc_get_leds()
	2.1.2 vplc_watch_leds()

	2.2 Hardware Switches
	2.2.1 vplc_set_switch()
	2.2.2 vplc_get_switch()
	2.2.3 vplc_watch_switch()

	3 VPLC I/O Synchronization & Simulation
	3.1 Synchronization
	3.1.1 vplc_reg_io_xchg_done()
	3.1.2 vplc_sync_mode_on()
	3.1.3 vplc_sync_wait()
	3.1.4 vplc_sync_resume()
	3.1.5 vplc_sync_mode_off()

	3.2 DP I/O Configuration Interface
	3.2.1 vplc_get_hw_config()
	3.2.2 vplc_test_io_state()
	3.2.3 vplc_write_io_bit()
	3.2.4 vplc_write_io_bit_()
	3.2.5 vplc_write_io_byte()
	3.2.6 vplc_write_io_byte_()
	3.2.7 vplc_write_io_word()
	3.2.8 vplc_write_io_word_()
	3.2.9 vplc_write_io_dword()
	3.2.10 vplc_write_io_dword_()
	3.2.11 vplc_read_io_bit()
	3.2.12 vplc_read_io_bit_()
	3.2.13 vplc_read_io_byte()
	3.2.14 vplc_read_io_byte_()
	3.2.15 vplc_read_io_word()
	3.2.16 vplc_read_io_word_()
	3.2.17 vplc_read_io_dword()
	3.2.18 vplc_read_io_dword_()
	3.2.19 vplc_io_terminate()
	3.2.20 vplc_io_desc_type
	3.2.21 vplc_dp_subsystem_type
	3.2.22 vplc_module_info_type

