

DK-16xx PN IO Porting Instructions

and Layer 2 Interface

SIMATIC NET

PC software
DK-16xx PN IO Porting Instructions
and Layer 2 Interface

Programming Manual

07/2015
C79000-G8976-C203-07

Quick Start
 1

Preparing RTAI and the
Linux kernel

 2

Description of driver porting
 3

Description of porting the
IO base library

 4

Description of porting the
Layer 2 library

 5

Description of the
"cp16xxtest" program

 6

L2 - Quick start with the
Layer -2 interface

 7

L2 - Overview of the
Layer 2 interface

 8

L2 - Description of the Layer
2 functions and data types

 9

L2 - Creating a
Linux Ethernet driver

 10

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

 DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

 CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

 NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

 WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

 Siemens AG
Division Process Industries and Drives
Postfach 48 48
90026 NÜRNBERG
GERMANY

Order number: C79000-G8976-C203
Ⓟ 06/2015 Subject to change

Copyright © Siemens AG 2015.
All rights reserved

Table of contents

1 Quick Start .. 7

1.1 Architecture of DK-16xx PN IO software .. 7

1.2 Installation on Linux .. 8

2 Preparing RTAI and the Linux kernel ... 11

2.1 Basic procedure for generating, installing and testing the teal-time extension RTAI 11
2.1.1 Stage 1: Downloading source files from the Internet .. 11
2.1.2 Stage 2: Extracting Source Files .. 12
2.1.3 Stage 3: Configuring and generating the Linux kernel ... 13
2.1.4 Stage 4: Installing the generated Linux kernel ... 14
2.1.5 Stage 5: Configuring and generating the RTAI real-time extension 15
2.1.6 Stage 6: Checking whether the real-time extension works... 16

2.2 Basic procedure for installing the DK-16xx PN IO on Linux ... 17

3 Description of driver porting... 21

3.1 Requirements for the target operating system ... 21

3.2 How the driver works .. 21

3.3 Basic communication between the library and the driver ... 23
3.3.1 Directory structure and files .. 24
3.3.2 Non operating system-specific functions .. 26
3.3.3 Functions dependent on the operating system ... 28

3.4 Porting the driver step-by-step .. 29
3.4.1 Stage 1: Porting the macros of the "os_linux.h" file .. 30
3.4.2 Stage 2: Initialization and deinitialization .. 32
3.4.3 Stage 3: Finding the CP and including the resources of the CP in the operating system 32
3.4.4 Stage 4: Defining the driver interface ... 33
3.4.5 Stage 5: Porting the connection establishment and termination from the IO Base

library to the driver .. 35
3.4.6 Stage 6: Porting send functionality from the IO Base library to the firmware 36
3.4.7 Stage 7: Porting the receive functionality from the firmware to the IO Base library 36
3.4.8 Stage 8: Porting memory mapping to the user address space... 37
3.4.9 Stage 9: Porting additional IO controls for the "cp16xxtest“ driver test application 38

3.5 Driver debug support .. 38

3.6 Testing the driver .. 39

4 Description of porting the IO base library ... 41

4.1 Requirements for the target operating system ... 41

4.2 How the IO Base library works ... 41
4.2.1 Directory structure and files .. 43
4.2.2 Functions dependent on the operating system ... 44

4.3 Porting the IO Base library step-by-step ... 45

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 3

Table of contents

4.3.1 Stage 1: Porting the trace module ... 45
4.3.2 Stage 2: Porting the IO Base library link for the driver .. 45

4.4 IO-Base library debug support ... 45

4.5 Testing the IO-Base library .. 47

5 Description of porting the Layer 2 library ... 49

5.1 Requirements for the target operating system ... 49

5.2 How the Layer 2 library works .. 49

5.3 Directory structure and files ... 50

5.4 Porting the Layer 2 library step-by-step ... 51

5.5 Testing the Layer 2 library ... 51

6 Description of the "cp16xxtest" program .. 53

6.1 Directory structure and files ... 53

6.2 Porting the "cp16xxtest" program .. 53

6.3 Testing the "cp16xxtest" Program .. 54

7 L2 - Quick start with the Layer -2 interface .. 55

8 L2 - Overview of the Layer 2 interface ... 57

8.1 How a typical Layer 2 user programming interface is used ... 57

8.2 Software architecture ... 57

8.3 How a typical Layer 2 user program runs .. 59
8.3.1 Initialization phase ... 59
8.3.2 Send data ... 60
8.3.3 Receive data .. 61
8.3.4 Completion phase .. 62

8.4 Callback mechanism .. 63

9 L2 - Description of the Layer 2 functions and data types .. 65

9.1 l2eth_open (register with Layer 2 interface) ... 65

9.2 l2eth_set_mode (set operating mode) ... 66

9.3 L2ETH_CBF_MODE_COMPL (signal operating mode) .. 67

9.4 L2ETH_CBF_STATUS_IND (signal status) ... 68

9.5 l2eth_get_information (query parameters) ... 69

9.6 l2eth_set_information (set parameters) ... 70

9.7 l2eth_allocate_packet (reserve send job) .. 71

9.8 l2eth_send (send data) .. 72

9.9 L2ETH_CBF_SEND_COMPL (signal send result) ... 73

9.10 l2eth_free_packet (release send job) ... 74

9.11 L2ETH_CBF_RECEIVE_IND (signal receipt of data) .. 75

9.12 l2eth_return_packet (return receive job) .. 76

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
4 Programming Manual, 07/2015, C79000-G8976-C203-07

 Table of contents

9.13 l2eth_close (deregister from Layer 2 interface) .. 77

9.14 Data types ... 78
9.14.1 Basic data types .. 78
9.14.2 Error codes ... 78
9.14.3 L2ETH_MAC_ADDR (type for MAC address) .. 79
9.14.4 L2ETH_MODE (type for operating mode)... 80
9.14.5 L2ETH_PACKET (job type for sending and receiving) ... 80
9.14.6 L2ETH_QUERY (job type for status query and parameter assignment) 81
9.14.7 L2ETH_PORT_STATUS (type for port status) ... 82
9.14.8 L2ETH_OID (type for object identifier) .. 83

10 L2 - Creating a Linux Ethernet driver ... 85

10.1 Basics of developing a Linux Ethernet driver based on the Layer 2 functions 85
10.1.1 Interfaces of the Linux Ethernet driver to Linux .. 86
10.1.2 Interfaces of the Linux Ethernet driver to the Layer 2 interface .. 88
10.1.3 Point to note when compiling .. 88

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 5

Table of contents

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
6 Programming Manual, 07/2015, C79000-G8976-C203-07

 Quick Start 1
1.1 Architecture of DK-16xx PN IO software

Description
The following graphic shows the software layers and communication paths of the
DK 16xx PN IO software, the following table explains the terminology used in the graphic.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 7

Quick Start
1.2 Installation on Linux

Picture element Description
IO Base library The IO Base library provides the IO Base user programming interface. The functions required for

driver communication and the trace must be ported from the IO Base library.
Serv library The Serv library makes the Serv user programming interface available. When porting the Serv library,

the driver communications, synchronization and file access functions defined in the "os_linux.h" file
must be adapted to the new operating system.

Layer 2 library The Layer 2 library makes the Layer 2 Ethernet user programming interface available. The functions
required for driver communication and the trace must be ported from the Layer 2 library.

Driver The driver is responsible for the communication between the following software components:
• IO Base library – Serv library – firmware
• Layer 2 interface – firmware
• Integration of the hardware resources in the operating system
All driver functions must be ported to the target operating system.

DPRLIB library The DPRLIB library is used by the driver and makes all non platform-dependent functions required for
communication available to the firmware via the dual-port RAM.

Dual-port RAM The dual-port RAM is the memory area of the CP 1616 that is used for handling communication be-
tween the firmware and host. This memory area is divided into independent communication channels.

Register Register is the memory area in which the registers of the CP 1616 are stored.
KRAM KRAM is the memory in which the process data is stored.
Arrows Arrows represent the independent communication channels.

1.2 Installation on Linux

Introduction
The development kit provides you with source files in Linux for the sample applications, the
driver, the IO Base library, Serv library and Layer 2 library. These source files can be ported
to other operating systems.

To install the driver, the IO Base library, Serv library and Layer 2 library, you require Linux
with kernel source files installed and a development environment, for example GNU-C-
Compiler.

To use isochronous real time (IRT), we recommend the installation of the real-time extension
RTAI, since without these extensions, Linux takes up to 1 ms to report an interrupt to the
application.

Administrator privileges
To install the driver of the PROFINET IO library and the Layer 2 library, you require
administrator privileges.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
8 Programming Manual, 07/2015, C79000-G8976-C203-07

 Quick Start
 1.2 Installation on Linux

Linux system requirements
The table below contains the recommended versions of the required software components.

System partner Version
Linux system Suse Linux 10.1, 10.2, 11.2
Kernel As of version 2.6.10; version 2.6.32.2 is used in the example
GNU C compiler (GCC) As of version 3.3.5
Kernel source files Appropriate for kernel
Real-Time Application Interface RTAI
available at RTAI (www.rtai.org)

To suit the kernel, version 3.8 is used in the example

 Note

You will find the latest information on Linux system requirements on the Internet at RTAI
(www.rtai.org).

Hardware requirements
The table below lists the system resources required by the driver and IO Base library.

System parameter Values
Hard disk space Approximately 1 MB for source files, maximum 3 MB for the firmware and

S7 configuration backup files when using the Serv library.
Processor Intel 386 or higher
RAM Min. 800 KB RAM for driver and library
DMA-compliant memory 64 Kbytes if IRT mode is required or when using the Layer 2 interface
Interrupts • In IRT mode:

one non-shared interrupt
• For operation without IRT:

one interrupt, either shared or non-shared

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 9

http://www.rtai.org/
http://www.rtai.org/

Quick Start
1.2 Installation on Linux

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
10 Programming Manual, 07/2015, C79000-G8976-C203-07

 Preparing RTAI and the Linux kernel 2

This chapter explains how to prepare the Linux kernel and install real-time capability with
RTAI.

2.1 Basic procedure for generating, installing and testing the teal-time
extension RTAI

Description
The following procedure simply outlines the principles underlying installation. The actual
installation could change at any time. You should therefore always read the installation
instructions supplied for the kernel and RTAI.

Follow the steps outlined below.

 Note

Adapt the version numbers in the paths and commands.

2.1.1 Stage 1: Downloading source files from the Internet

Description
If you do not already have the required files, download them from the Internet as described
below:

Step 1

Command: Program of your choice
Description: Download the current RTAI version from RTAI (http://www.rtai.org).

 Note

If the files are downloaded when using a Windows operating system, it is possible that the
file name changes.

You should therefore rename the files as they were before the download.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 11

http://www.rtai.org/

Preparing RTAI and the Linux kernel
2.1 Basic procedure for generating, installing and testing the teal-time extension RTAI

Step 2

Command: Program of your choice
Description: Change to the user "root" with the Switch User command.

Extract the downloaded RTAI files to the directory "/usr/src/RTAI-3.8". If
you use an RTAI version other than 3.8, change the version number or
RTAI accordingly in the path name.
Change to the folder "RTAI-3.8/base/arch/x86/patches". This folder con-
tains real-time patches for the supported Linux kernel versions.

Step 3

Command: Program of your choice
Description: Select one of the supported Linux kernels and download the kernel

sources from Kernel (http://www.kernel.org) to the directory /usr/src.

2.1.2 Stage 2: Extracting Source Files

Description
After you have downloaded the files from the Web, they are still compressed. Follow the
steps outlined below to extract the files.

Step 1

Command: su
Description: Change to the user "root" with the Switch User command.

Step 2

Command: cd /usr/src
Description: Change to the "/usr/src/" directory.

Step 3

Command: bunzip2 linux-2.6.32.2.tar.bz2

tar –xf linux-2.6.32.2.tar
Description: Extract the Linux kernel source code. Adapt the version number of the Linux

kernel accordingly, here 2.6.32.2.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
12 Programming Manual, 07/2015, C79000-G8976-C203-07

http://www.kernel.org/

 Preparing RTAI and the Linux kernel
 2.1 Basic procedure for generating, installing and testing the teal-time extension RTAI

2.1.3 Stage 3: Configuring and generating the Linux kernel

Description
The section below describes configuration and generation of a Linux kernel with real-time
capability.

Step 1

Command: su
Description: Change to the user "root" with the Switch User command.

Step 2

Command: cd /usr/src/linux-2.6.32.2
Description: Change to the "/usr/src/linux-2.6.32.2" directory.

Step 3

Command: patch –p1 –i ../rtai-3.8/base/arch/x86/patches/hal-linux-2.6.32.2-x86-2.5-

00.patch
Description: Add the patch to the Linux source code.

Step 4

Command: cat /proc/config.gz | gunzip > .config

make oldconfig
Description: Accept the kernel configuration from the running kernel and extend the con-

figuration if any options are undefined. Accept or the default is by repeatedly
pressing the "ENTER" key.

Step 5

Command: make menuconfig or make xconfig
Description: Reconfigure the kernel.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 13

Preparing RTAI and the Linux kernel
2.1 Basic procedure for generating, installing and testing the teal-time extension RTAI

Make sure that the following options are set correctly:

Options Value
Enable Loadable module support ->
Module versioning support

OFF

Processor type and features ->
Subarchitecture type

PC-compatible

Processor type and features ->
Processor family

Select the processor family closest to your pro-
cessor.
(Pentium Classic normally works with newer Intel
processors)
If you have a multicore processor, do not select a
processor family that does not support TSC!

Processor type and features ->
Generic x86 support

OFF

Processor type and features ->
Symmetric multi-processing support

For single core systems: Off
For multicore systems: On

Ipipe support ->
Ipipe support
or
Processor type and features ->
Interrupt pipeline

ON

Kernel hacking ->
Compile the kernel with frame pointers

OFF

Save the configuration before exiting by answering the prompt "Save the new kernel
configuration?" with "Yes".

Step 6

Command: make clean all
Description: Compile the kernel.

2.1.4 Stage 4: Installing the generated Linux kernel

Description
Once you have generated the kernel, this must be installed so that it can be loaded the next
time you restart the computer. Follow the steps outlined below:

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
14 Programming Manual, 07/2015, C79000-G8976-C203-07

 Preparing RTAI and the Linux kernel
 2.1 Basic procedure for generating, installing and testing the teal-time extension RTAI

Step 1

Command: su
Description: Change to the user "root" with the Switch User command.

Step 2

Command: cd /usr/src/linux-2.6.32.2
Description: Change to the "/usr/src/linux-2.6.32.2" directory.

Step 3

Command: make modules_install
Description: Install the kernel modules.

Step 4

Command: make install
Description: Install the kernel.

Step 5

Command: reboot
Description: Restart your PC and select the entry for the kernel you have just installed in

the Boot menu.

2.1.5 Stage 5: Configuring and generating the RTAI real-time extension

Description
After installing the kernel, the modules for the real-time extension for RTAI must be
configured and generated. Proceed as follows:

Step 1

Commands: su

cd /usr/src/RTAI-3.8
Description: Change to the user "root" with the Switch User command, and then change

to the "/usr/src/RTAI-3.8" directory.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 15

Preparing RTAI and the Linux kernel
2.1 Basic procedure for generating, installing and testing the teal-time extension RTAI

Step 2

Commands: make menuconfig
Description: Configure RTAI.

Match the RTAI options with those of your Linux kernel.
Note the following points:
• If your Linux kernel is set to SMP, RTAI must also be set to this.
• The path to the Linux source code must also be correctly set.
• For SMP, the number of processors in the kernel must match the setting

in RTAI.
• If you use a hyperthreading CPU and hyperthreading is enabled in the

BIOS, the SMP option must be selected for the kernel and for RTAI (a
processor with hyperthreading behaves like two processors).

• Set the number of CPUs you are using in "Machine(x86)->Number of
CPU’s". You will find the number in the /proc/cpuinfo file.

Step 3

Commands: make install
Description: Compile and install RTAI.

2.1.6 Stage 6: Checking whether the real-time extension works

Description
Checking whether the real-time extension integrated in the Linux kernel actually works is
based on latency measurements of the sample program supplied with RTAI.

Running the test

Command: su
Description: Change to the user "root" with the Switch User command.

Start the test programs that ship with RTAI:
• "/usr/realtime/testsuite/user/latency./run" or
• "/usr/realtime/testsuite/kern/latency/run"
The test programs measure the delay times (latency measurement) and
display them continuously on the screen.
These times must only change slightly when you increase system load.
This can, for example, occur when the mouse is moved quickly, when you
type quickly on the keyboard or when the hard disk or other peripheral
devices are accessed.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
16 Programming Manual, 07/2015, C79000-G8976-C203-07

 Preparing RTAI and the Linux kernel
 2.2 Basic procedure for installing the DK-16xx PN IO on Linux

 Note

The changes in latency have decisive effects on the functionality of your user program. The
latency should only be a fraction of the cycle time. If the latency is too long, an overrun can
occur. This should be avoided.

Procedure following an unsatisfactory test
If the latency changes considerably, your system configuration is only suitable for real-time
applications with certain restrictions or is not suitable at all. This also applies to isochronous
real time (IRT).

In this situation, you should try to change the options for the kernel and RTAI, for example:

● Disable support of ACPI.

● Disable support of APIC and APM.

● Disable support of SMP or hyperthreading.

● Disable "Legacy Support for USB" in the BIOS.

● Disable the 3D acceleration for your X windows (graphic user interface).

● Disable the graphics mode, for example with the command line command "init 3"; then
repeat the latency measurements.

To increase the load, you can, for example, switch over from one console to another with the
shortcuts Ctrl + Alt + F1 to Ctrl + Alt + F7 and start further programs.

If the latency measurement is successful, this means that you will need to change the
graphics card driver. Tip: The VESA frame buffer driver has often proved to be a suitable
alternative.

● Disable support of all unnecessary options (USB, sound card, modem etc.).

If these suggestions do not help, you can obtain further help on the Web site of the
manufacturer and:

● RTAI (http://www.rtai.org)

2.2 Basic procedure for installing the DK-16xx PN IO on Linux
The table below describes the actions to be carried out when installing the driver and the IO
Base library and Layer 2 library from a shell (command line). To do this, you may have to
make a number of platform-specific modifications.

Step 1

Command: su
Description: Open a "root shell".

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 17

http://www.rtai.org/

Preparing RTAI and the Linux kernel
2.2 Basic procedure for installing the DK-16xx PN IO on Linux

Step 2

Command: mount –t iso9660 /dev/cdrom /media/cdrom
Description: Mounting the CD

Step 3

Command: cp /media/cdrom/linux-sw/host-xxx.tar.gz
Description: Copy the files.

Step 4

Command: tar –xzf host-xxx.tar.gz

("xxx" is a placeholder)
Description: Extract the files.

Step 5

Command: cd host_linx
Description: Change to the installation directory.

Step 6

Command: export RTAI=y
Description: If the real-time extension is used.

Step 7

Command: make
Description: Generate the driver, the IO Base library, the Serv library and the Layer 2

library.
This is only possible if the real-time extensions were successfully installed,
see section "Basic procedure for generating, installing and testing the teal-
time extension RTAI (Page 11)".

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
18 Programming Manual, 07/2015, C79000-G8976-C203-07

 Preparing RTAI and the Linux kernel
 2.2 Basic procedure for installing the DK-16xx PN IO on Linux

Step 8

Command: make install
Description: Install the driver, IO Base library, Serv library, Layer 2 library and header

files.
The PROFINET IO, Serv and Layer 2 libraries are copied to the "/usr/lib"
directory and the driver to the "./lib/modules/[kernel version]/misc" directory.
The header files of the IO-Base library "pniobase.h", "pniousrd.h",
"pniousrt.h", "pniousrx.h", "pnioerrx.h" and the header files of the Serv library
"servusrx.h" are copied to the "/usr/include" library.
The header files of the Layer 2 library
"l2eth_user.h", "l2eth_errs.h" and "l2eth_rqb.h" are copied to the
"/usr/include" directory.

Step 9

Command: make load
Description: Load and start the driver.

 Note

Note that you must start the driver again manually each time the computer is restarted. You
can have the driver start automatically by configuring the file "/etc/rc.d" manually; for an
example, refer to makefile under the maketarget "autoload".

Installing a sample program
The table below describes which actions must be carried out to install the sample programs
in a shell (command line). To do this, you may have to make a number of platform-specific
modifications.

Command: make test
Description: Generate the test programs.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 19

Preparing RTAI and the Linux kernel
2.2 Basic procedure for installing the DK-16xx PN IO on Linux

Testing after installation
The table below shows you how to test the driver, the IO Base library and the Layer 2 library
following installation:

Action Description
Testing the driver. Call "make load". No error message should be displayed if the

CP 1616 has been installed correctly in the PC.
Testing the firmware on the CP
1616.

Take the configuration of the sample application "pnioeasy"
and use STEP 7 or NCM to download from a configuring sta-
tion to the CP 1616.

Testing the dual-port RAM. Call the application "pnioping". This must output "success".
This is only possible as with testing firmware when a configu-
ration has been successfully downloaded to the CP 1616.

Test the IO Base library. Install the sample application "pnioeasy". This test application
implements an IO controller. The required configuration is
enclosed with the example.

Test the Layer 2 library. Using the sample application program "l2eth_ping", try to
reach a computer in your test network.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
20 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of driver porting 3

This chapter explains the functionality of the Linux driver.

You will also learn step-by-step how to port the driver to your target operating system.

3.1 Requirements for the target operating system

Description
The driver requires the following operating system functionality:

● Threads

● Mutexes

● Semaphores

● Memory mapping from the kernel address space to the user address space if the address
areas differ.

● Guaranteed reaction times to interrupts in isochronous real-time mode.
If the reaction times to interrupts are extremely high, IRT can only be operated with long
cycle times.

3.2 How the driver works

Overview
The driver is used to activate the CP 1616 and to integrate the memory windows and IRQs
of the CP 1616 in the operating system. It:

● processes interrupts.

● maps the process image on the CP for the IO Base library.

● handles jobs between the IO Base library and the firmware on the CP.

The driver also contains a watchdog function that monitors the firmware on the CP to allow
the CP 1616 to be reset. In turn, the driver is monitored by the firmware and must report to
the firmware that it is operational at defined intervals.

The following schematic shows the basic structure of the driver and the CP 1616. The
arrows indicate the communications channels of the driver to the hardware and firmware.
Communication channels are memory areas on the CP 1616 that contain two ring buffers
(one ring buffer for jobs from the driver to the firmware and one ring buffer for jobs from the
firmware to the driver). The boxes above the driver represent the device files. On Linux,
device files are driver access points via which applications communicate with the driver.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 21

Description of driver porting
3.2 How the driver works

Description of the makefile
To load the driver, call the supplied makefile with "make load" in the "cp16xx" directory.
When it is activated, it creates the "cp16xx1" entry and the "cp16xx1/control" subentry in the
device tree ("/dev"). The script for the communication channels in the dual-port RAM also
creates the following device files:

Device files
/dev/cp16xx1/…

Supported
file operations

Communication channel for ...

sync open, read, write, ioctl ... synchronous jobs
alarm open, read, write, ioctl ... asynchronous alarm jobs
modind open, read, write, ioctl ... asynchronous changes in protocol state
datarec open, read, write, ioctl ... data set transfer
mgt open, read, write, ioctl ... management of application watchdog function
Control open, read, write, ioctl, mmap ... the instance management of the driver - This

communication channel has no equivalent in the
dual-port RAM.

l2eth_send open, read, write, ioctl … Ethernet send jobs
l2eth_receive open, read, write, ioctl … Ethernet receive jobs

These device files are used by the IO Base, Serv and Layer 2 libraries to communicate with
the module. For the precise sequence and the required script commands, refer to the
"/driver/cp16xxloader" script file.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
22 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of driver porting
 3.3 Basic communication between the library and the driver

Description of driver startup
The driver allocates all of the PCI resources required for the dual-port RAM, register, IRQ
and process image memory (KRAM). The driver then triggers an interrupt on the CP so that
the firmware initializes the communications channels. The firmware uses an interrupt and a
status value in the configuration structure to inform the driver that initialization was
successful and that it is ready for communication.

During initialization, the driver registers with the firmware for time monitoring.

Description of the driver in the productive phase
The driver stores jobs coming from the IO Base library in the communication channel
required by the IO Base library and triggers an interrupt in the firmware. Once the firmware
has processed these jobs, it places an acknowledgment for the jobs on the communication
channels and indicates this by sending an interrupt to the driver. The driver then transfers
the acknowledgment to the IO Base library.

Once the firmware has written jobs for the IO Base library in the communication channels, it
signals this with an interrupt to the driver. The driver then transfers these jobs to the IO Base
library. As soon as the IO Base library has processed these jobs, it in turn sends an
acknowledgment. An acknowledgment is sent in the same way as a job is sent to the
firmware.

Signaling IRT interrupts in the productive phase
IRT uses two interrupts: STARTOP and OPFAULT.

The STARTOP interrupt signals that the IRT data was transferred to the host memory and
that the application can start to process data. Completion of processing of IRT data must be
signaled to the IO Base library by the application. The IO-Base library then starts a DMA
transfer in which the new IRT data is transferred to the communications processor.

If this transfer is made too late, the communications processor cannot transfer the IRT data
over the network and triggers the OPFAULT interrupt to report this to the application.

3.3 Basic communication between the library and the driver

Interface between driver and library
The IO Base library communicates with the driver using file operations, IO controls and
memory mapping functions.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 23

Description of driver porting
3.3 Basic communication between the library and the driver

Registering an IO Base library instance with the driver
The IO Base library uses four communications channels in the dual-port RAM. The IO Base
library opens a device file for each channel. The IO Base library also requires the
"/dev/cp16xx1/control" device file for the IRT interrupt and DMA functionality as well as for
managing instances. To allow the driver to distribute the jobs and acknowledgments from the
firmware to several applications, when the applications register for the communications
channels, they inform the driver of the device file handles that they received when opening
the "/dev/cp16xx1/control" device file.

The IO Base library is registered with the driver in four steps:

1. The IO Base library opens the "/dev/cp16xx1/control" device file.

2. The IO Base library sends the IO control CP16XX_IOC_OAPP (register application) with
the file handle for the "/dev/cp16xx1/control" device file to obtain an application handle
from the driver.

3. Open a device file for each dual-port RAM communications channel.

4. The opened device files are linked to the application with the application handle.

Sending the job packets from the IO Base library to the firmware
The IO Base library can send job packets to the firmware via the driver. This takes place
using the file operations "read", "write" and "ioctl".

Receiving job packets from the firmware
The IO Base library can receive job packets from the firmware via the driver. This is
achieved with the "read" file operation.

Memory access functionality for reading process data
To allow the IO Base library to make the process data available for the IO Base user
program, the driver provides the IO Base library with a service with which the memory for the
process image can be mapped to the address space of the application. Mapping the process
image memory to the address space of the user has the following advantages:

● Fast, direct data access for the application

● No interrupts for data access

3.3.1 Directory structure and files

Description
The "driver" directory contains the files that are not specific to the operating system.

The "driver\linux" directory contains the files required by the driver for functions with the
Linux operating system. During porting, these files must be adapted to a different operating
system.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
24 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of driver porting
 3.3 Basic communication between the library and the driver

The files supplied with the development kit are listed in the tables below. The header files of
the Linux kernel are also required to allow

generation in Linux. If you want to port to an alternative operating system, you will need the
header files of the target operating system.

Function of the platform-specific files
The table below shows the files that are platform specific and have to be adapted for porting.

Driver files Purpose of the individual files
os.h
os_linux.h

Contain macro templates that must be filled with
operating system functions, e.g. mutexes, events,
semaphores, event signaling.

cp16xx_linux.c Contain the operating system adapter, the driver
registration and deregistration, device detection
and communication mechanisms between kernel
and operating system.

cp16xx_linux_irq.c Contains the operating system-specific functions
for handling interrupts.

cp16xx_linux_irq_rtai.c Contains the operating system-specific functions
for handling interrupts when using RTAI.

cp16xx_linux_net.c Contains the sample implementation of the L2
driver.

Function of the non platform-specific files
The table below shows the files that are platform independent and must not be modified.
These files can be modified at any time by means of an update or error correction. They form
the non platform-specific library "DPRLIB".

Driver files Purpose of the individual files
cp16xx.h IO control - Definitions of the driver
cp16xx_base.c
cp16xx_base.h

Non operating system-specific driver functions
containing user management, parameter passing,
watchdog functions and the access
to the registers of the module.

dprlibhost.c
dprlib.h
dpr_msg.h
wd_dpr_msg.h
mgt_dpr_msg.h

Contain driver-internal, non platform-dependent
functions which handle communication to the
firmware via the dual-port RAM.

dprintern.c
dpintern.h

Contain driver-internal and non platform-
dependent functions which handle communica-
tion to the firmware via the dual-port RAM. These
files are also used by the firmware.

driver_ver.h
fw_vers_bldnum.h
fw1616dk_vers.h

These files are used for versioning.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 25

Description of driver porting
3.3 Basic communication between the library and the driver

3.3.2 Non operating system-specific functions

Table with user management functions and structures

Function/structures Description
struct cp16xx_app_data Application management structure
cp16xx_app_free() Releases a management structure.
cp16xx_app_new() Sets up a management structure.
cp16xx_app_search() Searches for the management structure for a particular application.

Table with device management functions and structures

Function/structures Description
struct cp16xx_card_data Management structure for a CP - This is set up when the driver is load-

ed and is released again when the driver is unloaded.

Description of the DPRLIB functions
The non platform-dependent functions which are responsible for data transmission to the
firmware are grouped together in the "DPRLIB" library. These functions are used by the
driver. To make the driver source files clearer to understand, they are explained in the
following table. Communication takes place via channels in the dual-port RAM which are
configured as ring buffers.

 Note

These source files must not be modified since they can be changed at any time during
updates and bug fixes and because the DPRLIB must match the firmware of the CP.

Function/structure Description
CpData The function pointers listed below must be entered in this structure by

the driver. This structure contains all the dependencies between the
DPRLIB and the driver and must also be passed on to the DPRLIB with
each call.
trigger_irq
Function pointer to the function used to trigger an interrupt to the CP
1616.
wakeup_daemon
Function pointer to a function which is called as soon as the DPRLIB
disconnects the link to the firmware.
parent
Points to the structure "cp16xx_card_data" which is filled during the
hardware binding.

DPRLIB_start() Start connection to the firmware - This function initializes the dual-port
RAM.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
26 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of driver porting
 3.3 Basic communication between the library and the driver

Function/structure Description
DPRLIB_stop() Stop connection to the firmware - This function resets the dual-port

RAM.
DPRLIB_channel_
write_message()

Writes a job packet to a communication channel in the dual-port RAM.

DPRLIB_channel_
read_message()

Reads a job packet from a communication channel in the dual-port
RAM.

DPRLIB_channel_ regis-
ter_cbf()

Registers a callback which is called when a job packet is received from
the dual-port RAM. The CP communication channel and the job packet
size are transferred to this callback as parameters. This callback allo-
cates the required memory and calls DPRLIB_channel_read_message(
) to obtain the job packet.

Functions called by the operating system

The entry function is called by the operating system as soon as ...
cp16xx_base_ioctl() ... the IO Base library calls an "ioctl" for a device file.
cp16xx_base_ioctl_1() ... the IO Base library calls an "ioctl" for a "control" device file.
cp16xx_base_ioctl_2() ... the IO Base library calls an "ioctl" for a device file other than

"control".
cp16xx_os_driver_cleanup() ... the driver is unloaded.
cp16xx_base_ioctl() ... the IO Base library calls "ioctl" for a

device file.
cp16xx_base_read() ... the IO Base library calls "read" for a

device file.
cp16xx_base_release() ... the IO Base library calls "fclose" for a

device file.
cp16xx_base_write() ... the IO Base library calls "write" for a

device file.

Standardized functions

Entry functions Description
cp16xx_card_init Initializes the management structures of the driver.
cp16xx_card_uninit Deinitializes the management structures of the driver.
cp16xx_dma_init Allocates DMA memory in the operating system.
cp16xx_dma_uninit Releases allocated DMA memory.
cp16xx_pci_init() Enters IO areas of the module in the address area of the driver
cp16xx_pci_uninit() Removes IO areas of the module from the address area of the driver.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 27

Description of driver porting
3.3 Basic communication between the library and the driver

3.3.3 Functions dependent on the operating system

Description of the functions
The following functions described in the form of tables contain parts specific to the operating
system and need to be ported to use another system.

Channel management functions and structures

Function/macro/structures Description
struct cp16xx_channel Management structure for the communication

channels
DPR_CHANNEL_INIT_OS() Internal function for setting up a management

structure in the locked state.
DPR_CHANNEL_UNINIT_OS Function for deinitializing a management struc-

ture.
DPR_CHANNEL_LOCK() Locks a management structure.
DPR_CHANNEL_UNLOCK() Unlocks a management structure.
DPR_CHANNEL_WAKEUP() Sets up a synchronization object.
DPR_CHANNEL_WAIT_FOR_WAKEUP() Waits for signaling of a synchronization object.

Functions specific to the operating system that are called by standardized functions (see Section
3.3.2 Non operating system-specific functions)

Entry function Description
cp16xx_irq_shared_cbf Interrupt service routine
cp16xx_os_driver_cleanup() Is called by the operating system as soon as the

driver is unloaded.
cp16xx_os_driver_cleanup() Called by Linux as soon as the driver is unload-

ed.
cp16xx_os_driver_init() Called by Linux as soon as the driver is loaded.
cp16xx_os_init_irq() Internal function used to set up the interrupt ser-

vice routine.
cp16xx_os_ioctrl() Is called as soon as the IO Base library calls an

"ioctl" for a device file.
cp16xx_os_irq_init() Registers the interrupt service routine with the

operating system.
cp16xx_os_irq_uninit() Internal function used to remove the interrupt

service routine.
cp16xx_os_mmap() Is called as soon as the IO Base library calls a

"mmap" for a device file.
cp16xx_os_mmap_dma_remap() Used internally by "cp16xx_control_mmap()" for

DMA memory; maps the kernel address space to
the user address space.

cp16xx_os_open() Is called as soon as the IO Base library calls an
"fopen" for a device file.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
28 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of driver porting
 3.4 Porting the driver step-by-step

Entry function Description
cp16xx_os_pci_init_resources() Internal function used to set up the PCI resources

of the CP.
cp16xx_os_pci_probe() Called by Linux as soon as a CP is found. This

function generates a module instance and regis-
ters the found module with the operating system.

cp16xx_os_pci_remove() Called by the operating system as soon as the
driver is unloaded as long as a CP exists.

cp16xx_os_pci_uninit_resources() Internal function used to release the PCI re-
sources of the CP.

cp16xx_os_read() Is called as soon as the IO Base library calls a
"read" for a device file.

cp16xx_os_release() Is called as soon as the IO Base library calls a
"fclose" for a device file.

cp16xx_os_reset() Is called by the driver before the module reset
and allows additional functions to be performed
when necessary.

cp16xx_os_write() Is called as soon as the IO Base library calls a
"write" for a device file.

cp16xx_trigger_irq() Trigger interrupt to CP 1616.
down_timeout() Auxiliary function used implement a semaphore

with timeout.

3.4 Porting the driver step-by-step

General
Porting requires an empty skeleton driver. This skeleton is filled with functions during the
course of these porting instructions. If you wish, you can copy a number of structures and
functions from the Linux driver files supplied. The porting instructions are divided into 9
steps:

Step Description
1 Preparation: Porting the macros in the "os_linux.h" file
2 Initialization and deinitialization
3 Locating the CP and integrating the CP resources in the operating system.

Creating management structures for the CP resources.
4 Defining the driver interface
5 Ports the connection establishment and termination from the IO Base library to the driver.
6 Ports the send functionality from the IO Base library to the firmware via the driver.
7 Ports the receive functionality from the firmware to the IO Base library.
8 Ports the memory mapping in the user address space.
9 Porting the low-level test application and debug IO controls.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 29

Description of driver porting
3.4 Porting the driver step-by-step

 Note

For simple porting, temporarily disable the firmware time monitoring of the driver by setting
the "watchdog_cycle"variable in the "cp16xx_base.c" file to 0.

Syntax

watchdog_cycle = 0;

/* watchdog_cycle;
watchdog temporarily deactivated*/

Optimizing watchdog functions
An incorrect implementation of the watchdog functions can prevent connections being
established to the communications partners. Enable the firmware watchdog for the driver
again only when you have implemented and tested the relevant functions thoroughly:

● PNIO_CP_set_appl_watchdog()

● PNIO_CP_trigger_watchdog()

● PNIO_CBF_APPL_WATCHDOG()

3.4.1 Stage 1: Porting the macros of the "os_linux.h" file

Overview
This file contains all the macro templates that the driver needs. The driver encapsulates all
function calls to the operating system using basic macros. You must port this file so that you
can then simply copy parts of the Linux driver in the following steps.

Creating a new operating-system-specific header file
If you have an operating system that is not supported, your task is to create a new operating
system define, for example, "_MYOS" and to port all macros in the "os_linux.h" file. You then
save the file under a different name, for example, "os_myos.h".

Integrating the new header file
The last job is to make sure that the previously ported file is included when your driver
source files include the "os.h" file. You do this by defining the operating system define
mentioned above (for example "_MYOS") and in your make file and inserting the following
lines in "os.h":

#ifdef _MYOS

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
30 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of driver porting
 3.4 Porting the driver step-by-step

#include "os_myos.h"

#endif

Porting the macros
The following macros are defined for the driver:

Macro Functionality
DPR_THREAD_HANDLE Type which represents thread handles.
DPR_THREAD_CREATE
(tid, name, prio, c, d, func, arg)

Generates a thread and returns 1; returns 0 if an error occurs.
tid:Reference of a variable in which the thread handle is stored.
name :Name of the thread
prio:Priority of the thread
c:Thread option (not used)
d:Stack size
func:Pointer to the thread function
arg:Pointer to memory that the thread function receives as an
argument.

DPR_THREAD_DELETE
(hThread)

Releases a thread handle.
hThread: Handle to be released.

DPR_SEMAPHORE Type that represents semaphores (depending on the operating
system).

DPR_SEM_CREATE (semObj) Generates a counting semaphore.
semObj:Reference to the variable in which the semaphore is
stored.

DPR_SEM_WAIT (semObj) Waits for semaphores.
semObj:Reference to the variable in which the semaphore is
stored.

DPR_SEM_WAIT_TIME
(semObj, msecs)

As above, but with "timeout" in ms.

DPR_SEM_POST (semObj) Sets the semaphore.
semObj:Reference to the variable in which the semaphore is
stored.

DPR_SEM_DESTROY (semObj) Deletes the semaphore.
semObj:Reference to the variable in which the semaphore is
stored.

DPR_TASK_DELAY (msecs) Time delay
msecs:Time delay in milliseconds

DPR(_INTERPROCESS)_ MUTEX Type that represents a (cross-process) Mutex (specific to oper-
ating system).

DPR(_INTERPROCESS)_
MUTEX_CREATE_UNLOCKED

Generates a (cross-process) Mutex.

DPR_INTERPROCESS_MUTE_
LOCK

Occupies a (cross-process) Mutex.

DPR_INTERPROCESS_MUTE_
UNLOCK

Releases a (cross-process) Mutex.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 31

Description of driver porting
3.4 Porting the driver step-by-step

Macro Functionality
DPR_INTERPROCESS_MUTE_
DESTROY

Deletes a (cross-process) Mutex.

DPR_MEMCPY_TO_USER Copies data to the user. If you are using an operating system
without kernel address separation, a "memcpy" will always suf-
fice here.

DPR_MEMCPY_FROM_USER Copies data from the user. If you are using an operating system
without kernel address separation, a "memcpy" will always suf-
fice here.

DPRLIBERRMSG (fmt, args...) Output in the event of an error; arguments as with "printf".
DPRLIBLOGMSG (fmt, args...) Debug output if DEBUG is defined; arguments as for "printf".
DPR_ASSERT(x) Assert macro to define a defined stoppage if errors occur, for

example to implement a memory dump or emergency stop.

3.4.2 Stage 2: Initialization and deinitialization

Stage 2: Initialization and deinitialization
In this step, you can test porting of the file "os_linux.h".

Perform the following steps to test the debug macro templates:

Step Description
1 Add the following line to the initialization routine of your driver:

DPRLIBERRMSG("start %s\n",cp16xx_driver_version);
In your initialization routine, create a semaphore with the previously ported macros and
start a thread that immediately waits for the semaphore and sets a global variable
"gThreadStopped" to 1 before thread closes.

2 Copy the variable "cp16xx_driver_version" from the file "cp16xx_base.c" to your driver file.
3 In your deinitialization routine, set the semaphore so that the thread can finish.

Wait until the variable "gThreadStopped" changes to 1.
Add the following line to the end of your deinitialization routine of the driver:
DPRLIBERRMSG("stop %s\n",cp16xx_driver_version);

4 Compile the driver and test the initialization or deinitialization.

3.4.3 Stage 3: Finding the CP and including the resources of the CP in the operating
system

Description
When the resources are included, five PCI memory areas are mapped to the operating
system and an interrupt service routine is integrated. The "CpData" structure is then filled.
This structure is required by the non platform-dependent DPRLIB and contains all the
callbacks that the driver must make available to the DPRLIB library.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
32 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of driver porting
 3.4 Porting the driver step-by-step

To port the hardware detection and resource integration to the operating system, you must
port the operating system-specific functions listed in section "Stage 2: Initialization and
deinitialization (Page 32)".

The following functions also need to be ported:

Function Description
cp16xx_irq_reset_mask_xxx() This function disables RT/IRT interrupts

3.4.4 Stage 4: Defining the driver interface

Stage 4: Defining the driver interface
In this step, you define the interface between the application (in this case, the IO Base
library) and the driver. The firmware of the CP 1616 communicates with the IO Base library
over several communication channels in the dual-port RAM that are set up as ring buffers.

Linux driver
The Linux driver creates a device file for each communication channel to be able to pass on
these communication channels transparently as far as the IO Base library. This allows the
driver or IO Base library to implement a simple Read/Write interface and avoids the need for
additional packaging of the send or receive jobs. The driver also creates an additional
"dev/cp16xx1/control" device file with which additional services of the IO Base library can be
made available.

The approach incorporating several access points was selected so that the Linux driver does
not need a multiplexer or a request block interface. As a result, all communication channels
can be activated independently (i.e. without disabling each other). Another advantage is that
each "access point" has a small interface.

Services of the driver
The tables below list all of the required driver services. You must use these tables to create
a suitable equivalent interface to your driver. In the following steps, it is always assumed that
the interface implemented in Linux is used.

Services of the access point "/dev/cp16xx1/control" access point
The access point "control" supports the following interface:

Control Description
fopen Function for obtaining an operating system file

handle for "/dev/cp16xx1/control".
fclose Function for closing a "/dev/cp16xx1/control" de-

vice file.
mmap Service for mapping PCI resources of the CP 1616

to the user address space

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 33

Description of driver porting
3.4 Porting the driver step-by-step

Control Description
IO control: CP16XX_IOC_CAPP Service for deleting an application instance handle
IO control:
CP16XX_IOC_GET_L2_DMA_RANGE

Service for obtaining the DMA-compliant memory
reserved for the Layer 2 interface.

IO control: CP16XX_IOC_IRTCBF Service for registering the use of interrupt notifica-
tions

IO control: CP16XX_IOC_OAPP Service for creating an application instance handle
IO control: CP16XX_IOC_SET_DMA_RANGE Service for setting parameters for the DMA transfer
IO control: CP16XX_IOCRESET Service for hardware reset of the CP 1616
IO control: CP16XX_IOCSHUTDOWN Service used to shutdown a communication link in

an emergency, i.e. an application is deregistered
from the driver and all data packets in the dual-port
RAM are removed.

read Service for blocking the reading of certain inter-
rupts - The interrupt is selected using the trans-
ferred length parameter.

Services for the remaining access points
The accesses "sync", "alarm", "modind" "datarec", "l2eth_send", "l2eth_receive".

Control Description
fopen Function for obtaining an operating system file

handle for the device file that corresponds to a
communication channel in the dual-port RAM.

fclose Function used to close a device file that corre-
sponds to a communication channel in the dual-
port RAM.

Write Service used to send a job packet to the firm-
ware.

read Service for receiving a job package from the
firmware.

IO control: CP16XX_IOC_BIND Service to bind the device file handle to the appli-
cation instance handle.

IO control: CP16XX_IOC_UNBIND Service to unbind the device file handle from the
application instance handle.

Procedure with only single access to the driver
If your operating system allows "access" to a driver only once, you will have to implement a
type of request block interface and a multiplexer. The request block could have the following
structure:

struct driver_request
{
 unsigned long opcode,
 unsigned long channel,
 unsigned long dataSize,
 unsigned char* ptrToBuffer
}

// read,write,ioctl...
// which channel to use
// net length of message
// pointer to message

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
34 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of driver porting
 3.4 Porting the driver step-by-step

If you require a request block interface and your operating system also distinguishes
between the kernel and user address space, you must always map the data pointer to the
kernel address space first!

Request block interface without mapping
If you have an interface that does not provide mapping, you can select the following request
block interface:

struct driver_request
{
 unsigned long opcode,
 unsigned long channel,
 unsigned long dataSize,
 unsigned char Buffer[4096]
}

// read,write,ioctl...
// which channel to use
// net length of message
// Buffer for message

Constraints for drivers with only one access point
If you only need to implement one access point for the driver, make sure that the
communication channels to the firmware can be operated independent of each other. This
means that the IO Base library must always be capable of reading and writing from within
different threads from different communication channels.

You can achieve this if your driver supports reentry into the driver or if your driver works
without blocking jobs.

3.4.5 Stage 5: Porting the connection establishment and termination from the IO
Base library to the driver

Description
The Linux driver features a two-stage registration mechanism. It can be reduced to a single-
stage system if only one "access point" to the driver exists and only one multiplexer is
implemented.

In the first stage, the IO-Base library calls an "fopen“ for all access points to obtain a non
operating system-dependent file handle.

In the second stage, the IO Base library fetches an application handle by sending the
CP16XX_IOC_OAPP IO control to the "Control“ file handle.

The IO-Base library now calls the CP16XX_IOC_BIND IO control for the remaining file
handles specifying the application handle.

From this time onward, the driver knows which file handles together form a communication
unit to the firmware.

When the connection is released, the IO control call CP16XX_IOC_UNBIND is first called for
all file handles, with the exception of the control file handle. The IO control
CP16XX_IOC_CAPP is then sent to the control file handle.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 35

Description of driver porting
3.4 Porting the driver step-by-step

Finally, an "fclose" is issued to all file handles.

The following functions for connection establishment and termination must be ported from
the IO Base library to the driver:

Functions Description
DPR_CHANNEL_INIT_OS() Internal function for setting up a management struc-

ture in the locked state.
DPR_CHANNEL_LOCK() Locks a management structure.
DPR_CHANNEL_UNINIT_OS() Function for deinitializing a management structure.
DPR_CHANNEL_UNLOCK() Unlocks a management structure.
DPR_CHANNEL_WAIT_FOR_WAKEUP() Waits for signaling of a synchronization object.
DPR_CHANNEL_WAKEUP() Sets up a synchronization object.

3.4.6 Stage 6: Porting send functionality from the IO Base library to the firmware

Description
Data is sent by the IO Base library via the firmware to the driver using a "write" call. This call
transfers a pointer to the job packet for the firmware and the length of the job packet. The
driver takes the pointer and length from the parameters transferred with "write" and calls the
"DPRLIB_channel_write_message()" function. This function belongs to the non platform-
dependent dual-port library and writes the job packet to the dual-port RAM.

To port this functionality, you only need the following function:

Function Description
cp16xx_os__write() This function is called by Linux as soon as the

application issues a "write". This function deter-
mines the channel and calls the function
"DPRLIB_channel_write_message()".

3.4.7 Stage 7: Porting the receive functionality from the firmware to the IO Base
library

Description
Receiving job packets from the firmware involves five steps:

Step Description
1 The IO Base library calls the "read" function from within a thread.

If job packets from the firmware are already available, the "read" call is immediately can-
celed. Otherwise the thread blocks with this call until a job package is received from the
firmware.

2 Using an interrupt, the firmware signals that it has written a job packet to the dual-port RAM.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
36 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of driver porting
 3.4 Porting the driver step-by-step

Step Description
3 The interrupt service routine ISR "cp16xx_irq_shared_cbf()" registered in Section "Stage 3:

Finding the CP and including the resources of the CP in the operating system (Page 32)" is
called due to the interrupt in Step 2.
This ISR calls the DPRLIB library-internal "dprlib_int_callback()" stored in the "comming_irq"
field in the "CpData" structure in Section "Stage 3: Finding the CP and including the re-
sources of the CP in the operating system (Page 32)".
The ISR "cp16xx_irq_shared_cbf()" then acknowledges the interrupt and terminates.

4 The callback from Stage 3 sets a DPRLIB library-internal semaphore to wake up a DPRLIB
library-internal worker thread.

5 The DPRLIB library-internal worker thread determines the communication channel in which a
job packet is located, and calls the function "cp16xx_channel_cbf()" that was registered by
the driver.
This function occupies a block memory and calls the DPRLIB_channel_read_message()
function to copy the data to the block memory.
The block memory is then inserted in the chained block list of the corresponding channel.
Finally, the IO Base library thread in the blocked "read" is woken up so that it can return the
job packet to the IO Base library.

 Note

The mechanism described above ensures that the driver spends as little time as possible
within the interrupt context.

This is important so that the start of other interrupt service routines, for example of the
operating system or other hardware, is delayed as little as possible.

To port this functionality, you need the following function:

Function Description
cp16xx_os_read() This function is called as soon as the IO Base library calls a "read". This call

blocks until data can be read.

3.4.8 Stage 8: Porting memory mapping to the user address space

Description
The "/dev/cp16xx1/control" device file supports the IO control for mapping memory areas of
the CP 1616 to the user address space.

Linux provides only one "mmap" interface which contains only the parameters "Offset" and
"Length". For this reason, the information indicating the PCI bar from which the memory area
is to be mapped must be specified by means of an OR operation of a constant for the offset
of the area. The constants are listed in the file "cp16xx.h".

Example:

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 37

Description of driver porting
3.5 Driver debug support

To map 100 bytes starting at offset 200 from the PCI bar (specified with the
MMAP_OFFSET_IRTE), the length must be set to 100 and the offset to
MMAP_OFFSET_IRTE + 200 when mmap is called.

To port this functionality, you only need the following function:

Function Description
cp16xx_os_mmap() This function is called by Linux as soon as the IO Base library sends

"mmap“ for the "/dev/cp16xx1/control“ device file.

3.4.9 Stage 9: Porting additional IO controls for the "cp16xxtest“ driver test
application

Description
If you test the driver with the "cp16xxtest" low-level test application and want to use a
memory dump of the CP 1616 for a support query, you must adapt the application to your
driver interface and port the following additional IO controls for the "/dev/cp16xx1/control"
device file:

IO control Description
CP16XX_IOCREGW Service used to write to a register of the CP 1616.
CP16XX_IOCREGR Service used to read from a register of the CP 1616.
CP16XX_IOCDPRAMW Service used to write to an address of the dual-port RAM.
CP16XX_IOCDPRAMR Service used to read from an address of the dual-port RAM.
CP16XX_IOCWIRQ Service used to wait for an interrupt.

3.5 Driver debug support

Creating a memory dump of the CP 1616
If you have ported the IO controls for the low-level test applications, you can create two
important memory dumps using "cp16xxtest". These are helpful when requesting support.

You can use the call "cp16xxtest –s mr 0 0 x800000 > memdump" to create a memory dump
from the dual-port RAM.

You can use the call "cp16xxtest –s fr 0 0 x200000 > regdump" to create a memory dump
from the registers.

Saving diagnostic information
If you encounter problems, save the diagnostic information of the firmware with the
"cp16xxtest trace –f filename" call.
This diagnostics information is helpful when requesting support.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
38 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of driver porting
 3.6 Testing the driver

Listing parameters
You can use the call "cp16xxtest" to obtain a complete list of parameters.

Resetting firmware
The "cp16xxtest reset" call resets the firmware and restarts it.

3.6 Testing the driver

Description
When porting has been completed, the new driver must be tested on the target operating
system.

Procedure
The following table contains a suggestion for the test order when testing the driver on your
target platform:

Step Description
1 Starting and stopping the driver, finding the hardware

Call "make load" and "make unload".
2 Triggering and receiving an interrupt

1. Call "testapps/cp16xxtest ir" in the first shell.
2. Call "testapps/cp16xxtest fw 17450 1" in a second shell. This register write access to

offset 17450 causes the CP 1616 to trigger an interrupt.
3. If your interrupt binding is functioning correctly, the program will terminate in the first

shell.

3 Data exchange
1. Call "testapps/pnioping" in a shell.
2. The user test program sends a special job packet to the firmware and expects the

firmware to return this packet with a return value.
If "pnioping" reports "success", you have successfully implemented the dual-port RAM
and interrupt binding in your driver.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 39

Description of driver porting
3.6 Testing the driver

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
40 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of porting the IO base library 4

This chapter explains the functionality of the IO-Base interface and how to port it to your
target operating system.

4.1 Requirements for the target operating system

Required operating system functionality
The IO Base library requires the following operating system functionality:

● Threads

● Mutexes

● Semaphores

● Standard C/C++ libraries

4.2 How the IO Base library works

Overview
The IO Base library provides the application with PROFINET IO functionality in the form of
the IO Base interface. Your main task is to port the functions responsible for communication
with the driver.

The following schematic shows an overview of the functional relationship between the IO
Base interface and the firmware.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 41

Description of porting the IO base library
4.2 How the IO Base library works

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
42 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of porting the IO base library
 4.2 How the IO Base library works

4.2.1 Directory structure and files

Description
The source files and headers for the IO Base library can be found in the "pniolib" directory.

The table below lists the modules of the "pniolib" directory and explains their function.

Module name Function
iodataupdate Responsible for process image access.
iobase Locates the data within the process image.
kramiotlb Contains the PROFINET IO logic.
tracelib Contains the trace functionality.
version Contains the version header files

Description of the module directory content
The following table described the directories of the modules and their content.

 Note

The number of modules may differ depending on the supplied software version.

Directory Contents
csd Make files
src Source files
inc Header files

Files to be ported
The table below shows the files that are platform specific and have to be adapted for porting.
The IO-Base library was implemented in C++ and uses the standard C/C++ libraries.

Files Purpose of the individual files
os.h
os_linux.h

Contain macro templates that must be filled with operating system functions,
e.g. creation of mutexes, events, semaphores, signaling of events.

trace_os.c
traceout.cpp

Contain functions for the trace mechanism.
The functions only have to be ported if you use a target platform without a file
system or file mapping.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 43

Description of porting the IO base library
4.2 How the IO Base library works

4.2.2 Functions dependent on the operating system

Functions for binding the IO-Base library to the driver

Function Description
ICommon::InitCp() Initializes the communication channels to the

driver.
ICommon::UninitCp() Deinitializes the communication channels to the

driver.
ICommon::SendReceiveSynch() Sends a synchronous job packet to the firmware

via the driver and reads the acknowledgment
from the firmware.

ProcChannelRead() Thread function for reading out job packets and
acknowledgments from the firmware.

ICommon::OpenDprChannel() Opens a communication channel to the driver.
ICommon::CloseDprChannel() This function closes a communication channel to

the driver.
ICommon::Send() Sends a job packet to the firmware via the driver.

Trace functions

Function Description
TRC_GetCurrentThreadId() Supplies the thread ID.
TRC_GetCurrentProcessId() Supplies the process ID.
TRC_GetFormattedLocalTime() Supplies the date and time as a string.
TRC_OutputDebugString() Writes a trace entry to the console.
TRC_ExtractBegin() Opens the trace configuration file for the trace

and maps it to the memory to provide faster direct
access for the function "TRC_ExtractKey()".
If your target platform does not support file map-
ping, you simply have to read in the complete file.
If your target platform does not have a file sys-
tem, you can leave this function empty.

TRC_ExtractKey() Reads an entry from the trace configuration file. If
your target system does not have a file system,
you must permanently encode the values for the
entries.

TRC_ExtractEnd() Removes the trace configuration file for the trace
from the memory.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
44 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of porting the IO base library
 4.3 Porting the IO Base library step-by-step

4.3 Porting the IO Base library step-by-step

General
Porting requires a C/C++ development environment with the standard C/C++ libraries. You
perform porting in two steps:

Step Description
1 Port the trace module.
2 Port the IO-Base library link for the driver.

4.3.1 Stage 1: Porting the trace module

Description
The file "traceout.cpp" only has to be ported if your target system does not contain a file
system. In this case, you must convert the file accesses to, for example, memory accesses.

The file "trace_os.c" contains the logic required to read and evaluate the trace configuration
file. The individual functions that must be ported are listed in the table in the section on trace
functions in Section "Functions dependent on the operating system (Page 44)".

4.3.2 Stage 2: Porting the IO Base library link for the driver

Description
The file "fct_common.cpp" contains the code for communication with the driver. This is the
only file of the IO-Base library that needs to be ported. Only the calls "fopen", "fclose",
"write", "read" and "ioctl" have to be adapted to the target system. The individual functions to
be ported are listed in the table in Section "Functions dependent on the operating system
(Page 44)".

4.4 IO-Base library debug support

Description
Debug support is available in the form of a trace file mechanism. The trace quality is
configured in the file "pniotrace.conf".

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 45

Description of porting the IO base library
4.4 IO-Base library debug support

Description of the trace configuration file
The trace configuration file "pniotrace.conf" has the following entries:

Entry Description
TRACE_TIME 0:No trace

1:Trace ON
TRACE_DEST 0:No trace

1:Create a new file for the trace
2:Append the trace to an existing trace
3:Trace to console

TRACE_DEPTH Trace depth - Value of 3 means: Enable traces for value 1-3.
0:None
1:Trace with error
2:Trace with warnings
3:Trace with information
4-9:Trace depth level 1 to 6
0x0FFFFFFF:All traces

TRACE_FILE_ENTRIES Maximum number of trace entries
TRACE_FILE_FAST Trace file access type

0:Slow, in other words, the trace file is opened for every entry
and closed again after the trace entry has been output.
1:Fast, in other words, the trace file is opened once and
closed only after the application is exited.

TRACE_FILE_NAME Trace file name
TRACE_GROUP Submodule to be traced - See "tracesub.h" for the permitted

values. The values can be ORed so that several submodules
can be traced at the same time.

TRACE_MAX_BACK_FILES Maximum number of created trace files - If this value is 2, this
means the following:
• the current trace file has reached the maximum number of

entries
• the trace file is renamed
• a new trace file is created
If the new current trace file reaches the maximum number of
entries, the first file is deleted and the second file becomes
the first file.

TRACE_LEVEL_MODE Not evaluated at present.
TRACE_SHOW_LINES Not evaluated at present.
TRACE_APPLICATION Not evaluated at present.
TRACE_DestHelp_NOTRACE Not evaluated at present.
TRACE_DestHelp_NEWFILE Not evaluated at present.
TRACE_DestHelp_SAMEFILE Not evaluated at present.
TRACE_DestHelp_DEBUGOUT Not evaluated at present.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
46 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of porting the IO base library
 4.5 Testing the IO-Base library

 Note

If you use IRT mode, deactivate the trace otherwise your real-time capability will be
impaired.

If, however, you also require the trace functionality in IRT mode, you may need to improve
the performance of the trace module; for example: by replacing output operations (file or
console) with memory operations.

4.5 Testing the IO-Base library

Description
When porting has been completed, the IO-Base library must be tested on the target
operating system.

Procedure
Test the individual blocks of functions of the IO-Base library in the specified order:

Step Description
1 Test the controller functionality

For this purpose, install the "pnioeasy" demo application and the associated configuration.
To do this, you will need the structure specified in the configuration.

2 Test the device functionality
For this purpose, install the "pniodevice" demo application. To do this, you will need an
additional IO controller.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 47

Description of porting the IO base library
4.5 Testing the IO-Base library

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
48 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of porting the Layer 2 library 5

This chapter explains the functionality of the Layer 2 interface and how to port it to your
target operating system.

5.1 Requirements for the target operating system

Required operating system functionality
The Layer 2 library requires the following operating system functionality:

● Threads

● Mutexes

● Semaphores

● Standard C/C++ libraries

5.2 How the Layer 2 library works

Overview
The Layer 2 library provides the application with send and receive functionality for Ethernet
packets.

To port the Layer 2 library, the functions responsible for communication between the Layer 2
interface and the driver must be adapted.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 49

Description of porting the Layer 2 library
5.3 Directory structure and files

5.3 Directory structure and files

Description
The source files and header for the Layer 2 library are in the "l2lib" directory and have the
following structure:

Description of the module directory content
The table below lists the directories and explains their content.

Directory Contents
csd Make files
src Source files
inc Header files

Files to be ported
The table below shows the files that are platform specific and have to be adapted for porting.
The Layer 2 library was implemented in C++ and uses the standard C/C++ libraries.

Library files Purpose of the individual files
os.h
os_linux.h

These files contain macro templates that must be filled with operating system
functions, for example creation of mutexes, events and semaphores, signaling of
events.

l2eth_base.cpp Communication with the driver

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
50 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of porting the Layer 2 library
 5.4 Porting the Layer 2 library step-by-step

5.4 Porting the Layer 2 library step-by-step

General
Porting requires a C/C++ development environment with the standard C/C++ libraries. You
perform porting in two steps:

Step Description
1 Port the trace module if porting of the IO Base library was skipped.

This module was ported during porting of the IO-Base library. If you have not yet ported
the IO-Base library, refer to Section "Stage 1: Porting the trace module (Page 45)".

2 Port the Layer 2 library link to the driver.
The file "l2eth_base.cpp" contains the code for communication with the driver. This is
the only file of the Layer 2 library that needs to be ported. Only the calls "fopen",
"fclose", "write", "read" and "ioctl" need to be ported to the target system.

5.5 Testing the Layer 2 library

Description
When porting has been completed, the Layer 2 library must be tested on the target operating
system.

Procedure
Test the Layer 2 library with the "l2eth_ping" sample user program:

Step Description
1 Connect the communications processor to a test network.
2 Activate the Ping service.
3 Attempt to reach a network partner with the "l2eth_ping" call.

"l2eth_ping" requires both the IP number as well as the MAC address of a network part-
ner. The call for the test program is as follows:
l2eth_ping -i <IP number> -m <MAC address>
<IP number>:IP address of the network partner in the format xxx.xxx.xxx.xxx
<MAC address>:MAC address of the network partner in the format yy:yy:yy:yy:yy:yy
x stands for a decimal digit (example: 192.168.10.1)
y stands for a hexadecimal digit (example: 00:0A:CF:01:02:D2)

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 51

Description of porting the Layer 2 library
5.5 Testing the Layer 2 library

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
52 Programming Manual, 07/2015, C79000-G8976-C203-07

 Description of the "cp16xxtest" program 6

Overview
This chapter describes the functionality of the "cp16xxtest" program and explains how to port
it to a target operating system.

The program allows the firmware to be reset and restarted and diagnostic information to be
saved.

When porting, the functions for communication between the program and the driver need to
be adapted.

 Note

The "cp16xxtest" program supports commissioning and troubleshooting of the module and
must therefore always be ported to the target system.

6.1 Directory structure and files

Description
The source files and headers for the "cp16xxtest" program can be found in
the "Examples\testapps" directory.

Files to be exported
The table below shows the files that are platform-specific and have to be adapted for porting.

Library files Purpose of the individual files
• driver\inc\os.h
• driver\inc\cp16xx.h
• traceinfo.h

These files contain macro templates that must be filled with operating
system functions, for example: creation of mutexes, events and sem-
aphores, signaling of events.

cp16xxtest.c Communication with the driver

6.2 Porting the "cp16xxtest" program
Porting the "cp16xxtest" program requires a C/C++ development environment with the
standard C/C++ libraries.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 53

Description of the "cp16xxtest" program
6.3 Testing the "cp16xxtest" Program

The program consists of the file "cp16xxtest.c".

The file executes the calls of the "cp16xx" driver and the standard IO calls with:

● fopen

● fclose

● read

● write

● ioctl

 Note

If the standard IO calls do not exist in the operating system, they will need to be
implemented.

6.3 Testing the "cp16xxtest" Program

Description
After porting the "cp16xxtest" program, test it with the target operating system.

Procedure
Follow the steps outlined below:

Step Description
1 Check that the CP 1616 has the current firmware.
2 Call the "cp16xxtest" program without specifying arguments.

Reaction
:The program displays all available arguments.

3 Make sure that no user applications is active. Call the "cp16xxtest" program with the "re-
set" argument.
All LEDs on the Ethernet ports of the module light up permanently for several seconds.
The LEDs then display the link or activation status (normal mode) again.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
54 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Quick start with the Layer -2 interface 7

Introduction
This chapter presents a recommended step-by-step procedure for creating a user program in
the C/C++ programming language based on the Layer 2 Base user programming interface.

Procedure
By following the steps below, you can create a Layer 2 user program quickly and effectively.

Step Description
1 Familiarize yourself with the following files. You then know what support has been sup-

plied and how you can use it.
The subfolder contains the following:
• Readme files with additional information and the latest modifications
• C header files of the Layer 2 user programming interface as described in Section

"Software architecture (Page 57)".
• Sample program

2 Familiarize yourself with the basic characteristics of the Layer 2 interface.
You can do this by reading Section "How a typical Layer 2 user program runs (Page 59)"
in this manual.

3 Work through the source text of the sample program and check the meanings of the func-
tions and data structures in Section "L2 - Description of the Layer 2 functions and data
types (Page 65)".

4 Change the supplied sample program to suit your purposes. In this way, you will get to
know important techniques and no longer need to develop them yourself. Compile and
bind the modified sample program and then test it.

5 Now create your layer 2 user program covering the entire functionality.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 55

L2 - Quick start with the Layer -2 interface

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
56 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Overview of the Layer 2 interface 8

This chapter explains the basic characteristics of the Layer 2 user programming interface to
prepare you for creating your own Layer 2 user program.

Function calls and data access are described in detail in the Section "L2 - Description of the
Layer 2 functions and data types (Page 65)".

The Layer 2 interface allows a user program direct access to the Data Link Layer of the CP
1616 or CP 1604 module. This makes it possible to configure the Layer 2 interface, to query
its status and to send and receive Ethernet frames.

8.1 How a typical Layer 2 user programming interface is used

Description
A typical use of the Layer 2 interface is the binding of network protocols (for example
TCP/IP)
of the host system to the CP 1616 or CP 1604 module.

If your operating system has its own standard Layer 2 interface, it is possible to link the layer
2 interface described here to it. This allows the existing network protocols to be used without
any further adaptation. For the NDIS interface in Windows, there is already a link in the
Windows-specific part of the driver.

The implementation of your own network protocols is also a typical application.

The Layer 2 interface is suitable neither for RT nor IRT communication (PROFINET) nor for
LLDP.

The Layer 2 interface is designed for optimum performance and guaranteed reaction time.
When being operated at the same time as PROFINET IO, the reaction time of layer 2
functions can be impaired briefly when IO devices drop out and restart again.

8.2 Software architecture

Layer 2 architecture along with CP 1616/CP 1604
With the functions of the Layer 2 interface, it is possible to configure the interface, to query
its
status and to send and receive Ethernet frames.

The CP 1616 or CP 1604 module has a separate MAC address for communication
over the Layer 2 interface. This is different from the MAC address used by the PROFINET
functions of the module. This ensures the logical separation of the Layer 2 interface from the
PROFINET functions.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 57

L2 - Overview of the Layer 2 interface
8.2 Software architecture

The Layer 2 interface uses the MAC address printed on the module, the PROFINET
functions on the module use the next higher MAC address.

Header files and C modules
The Layer 2 user programming interface is a C programming interface consisting of several
files (C module and header).

To use the Layer 2 user programming interface, you require the following files:

File type File name Purpose
Header file l2eth_user.h Declaration of the Layer 2 inter-

face functions
Header file l2eth_errs.h Definition of the error codes
C module l2eth_user.c Implementation of the Layer 2

interface functions

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
58 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Overview of the Layer 2 interface
 8.3 How a typical Layer 2 user program runs

8.3 How a typical Layer 2 user program runs

Overview
The typical sequence of a Layer 2 user program can be divided into 3 phases.

● Initialization phase

● Send and receive operation

● Completion phase

Some functions of the Layer -2 interface are implemented using callback functions that are
registered during initialization (see Section "Callback mechanism" (Page 63)).

These are explained in detail below.

8.3.1 Initialization phase

Description
The initialization phase is divided into the following steps:

Step 1

Action: l2eth_open()
Purpose: • Select CP.

• Initialize interface.
• Register callback functions for:

– Receiving frames
– Acknowledgment for completed sending of frames.
– Status change
– Change of operating mode

Step 2

Action: If necessary:

l2eth_get_information()
Purpose: • Checks whether the interface has a link to the next station.

• Gets maximum frame length.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 59

L2 - Overview of the Layer 2 interface
8.3 How a typical Layer 2 user program runs

Step 3

Action: If necessary:

l2eth_set_information()
Purpose: Makes settings for multicast addresses.

Step 4

Action: l2eth_set_mode()
Purpose: Sets ONLINE mode: "Mode=L2ETH_ONLINE"

Step 5

Action: Wait for:

L2ETH_CBF_MODE_COMPL()
Purpose: Waits until the L2ETH_ONLINE mode is set - From this point on, all other

callback functions can be called; sending and receiving is possible.

8.3.2 Send data

Overview
The following steps are necessary for sending a frame:

Step 1

Action: l2eth_allocate_packet()
Purpose: Reserve send job buffer (L2ETH_PACKET structure) and send buffer in

memory of the host system.

Step 2

Action: Set L2ETH_PACKET structure
Purpose: Set up send job buffer

Step 3

Action: Set send data
Purpose: Set up send frame

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
60 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Overview of the Layer 2 interface
 8.3 How a typical Layer 2 user program runs

Step 4

Action: l2eth_send()
Purpose: Send packet.

Step 5

Action: Wait forL2ETH_CBF_SEND_COMPL()
Purpose: Check whether the frame was sent.

Step 6

Action: l2eth_free_packet()
Purpose: Release the send job buffer

... etc.

8.3.3 Receive data

Overview
The following steps are necessary for receiving a frame:

Step 1

Action: Wait for L2ETH_CBF_RECEIVE_IND()
Purpose: Detects that a frame was received.

Step 2

Action: Evaluate L2ETH_PACKET structure
Purpose: Evaluate receive job buffer.

Step 3

Action: Evaluate received data
Purpose: Copy or process received data.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 61

L2 - Overview of the Layer 2 interface
8.3 How a typical Layer 2 user program runs

Step 4

Action: If necessary: l2eth_return_packet()
Purpose: Depending on the return value of L2ETH_CBF_RECEIVE_IND(),

return the receive job buffer to the interface.

8.3.4 Completion phase

Description
The completion phase consists of the following steps:

Step 1

Action: l2eth_set_mode()
Purpose: Sets OFFLINE mode: "Mode=L2ETH_OFFLINE"

Step 2

Action: Waiting for:

L2ETH_CBF_MODE_COMPL()
Purpose: Waits until the L2ETH_OFFLINE mode is set. From this point on, no further

callback functions will be called, sending and receiving is deactivated.

Step 3

Action: If necessary l2eth_return_packet()
Purpose: Return any receive job buffers not yet returned.

Step 4

Action: If necessary l2eth_free_packet()
Purpose: Return send job buffers that are still reserved.

Step 5

Action: l2eth_close()
Purpose: Release internal resources, deregister user programs.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
62 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Overview of the Layer 2 interface
 8.4 Callback mechanism

8.4 Callback mechanism

How it works
Callback functions are specified by the Layer 2 user program. A callback function can be
given any name.

A callback function is called by the Layer 2 interface due to an asynchronous event. The
sequence of the user program is interrupted and the callback function is started in a separate
thread. This means that synchronization techniques are necessary.

Coordinating the sequence of callbacks
A callback function can interrupt the Layer 2 user program at any time. Callback functions
can also interrupt each other. A callback function must therefore be designed for
simultaneous, multiple execution (reentrant) since it can be called from different threads. In
practical terms, this means that writing and reading of shared variables must be protected by
synchronization mechanisms.

Avoid waiting in callback functions, particularly when entering critical sections. A renewed
call for this callback function would be blocked. Instead, you should, where possible, use a
separate database.

 Note

Include multithreading standard libraries when you compile your user program

 Note

All functions except the callback function itself can be called within a callback function. This
means, for example, that the functions of the Layer 2 user programming interface described
here can be called!

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 63

L2 - Overview of the Layer 2 interface
8.4 Callback mechanism

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
64 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Description of the Layer 2 functions and data
types 9

This section describes the individual functions of the Layer 2 user programming interface in
detail and the data types used.

The chapter is primarily intended as a source of reference when you are writing your Layer -
2 user program.

9.1 l2eth_open (register with Layer 2 interface)

Description
This function registers the user program and its callback functions with the Layer 2 interface
and initializes the interface. This function selects the CP via which communication will take
place.

All callback functions must be specified; in other words none of the function pointers may be
NULL.

If successful, a valid handle is returned. The supplied handle is required for all further
function calls to identify the user programs.

On completion of this function, the Layer 2 interface is in the L2ETH_OFFLINE mode.

Syntax

L2ETH_UINT32 l2eth_open(
L2ETH_UINT32 CpIndex, /* in */
L2ETH_CBF_RECEIVE_IND CbfReceiveInd, /* in */
L2ETH_CBF_SEND_COMPL CbfSendCompl, /* in */
L2ETH_CBF_STATUS_IND CbfStatusInd, /* in */
L2ETH_CBF_MODE_COMPL CbfModeCompl, /* in */
L2ETH_UINT32 /* out */

);

Parameters

Name Description
CpIndex Number of the module via which communication

will take place. Currently only the value 1
is accepted.

CbfReceiveInd Pointer to a callback function that is called by the
Layer 2 interface when a receive the job is re-
ported to the application.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 65

L2 - Description of the Layer 2 functions and data types
9.2 l2eth_set_mode (set operating mode)

Name Description
CbfSendCompl Pointer to a callback function that is called by the

Layer 2 interface when a send job has been pro-
cessed.

CbfStatusInd Pointer to a callback function that is called by the
Layer 2 interface when a status change is report-
ed to the application.

CbfModeCompl Pointer to a callback function called by the Layer
2 interface when the job for changing the mode
has been processed.

pHandle Pointer to a handle - The handle that is assigned
to the registered communication channel is re-
turned to the user program if the action was suc-
cessful.
This must be included in all further function calls.

Return values
Return values as in Section "Error codes (Page 78)"; the following are possible:

● L2ETH_OK

● L2ETH_ERR_INTERNAL

● L2ETH_ERR_MAX_REACHED

● L2ETH_ERR_NO_FW_COMMUNICATION

● L2ETH_ERR_NO_RESOURCE

● L2ETH_ERR_PRM_CP_ID

● L2ETH_ERR_PRM_PCBF

9.2 l2eth_set_mode (set operating mode)

Description
This function activates (L2ETH_ONLINE) or deactivates (L2ETH_OFFLINE) receiving and
sending over the Layer 2 interface. It must be called after the l2eth_open() call to activate
the interface and before the l2eth_close() call to deactivate the interface.

If this function is completed successfully with the return value L2ETH_OK, the change to the
new mode or any possible error when changing the mode are signaled by calling the
L2ETH_CBF_MODE_COMPL() callback function.

If the function is not completed with the return value L2ETH_OK, the
L2ETH_CBF_MODE_COMPL() callback function is not called.

This function may only be called again when a previous l2eth_set_mode() call was
acknowledged by calling the L2ETH_CBF_MODE_COMPL() callback function.

If a mode is set that is already active, this is not an error and this mode is signaled by calling
the L2ETH_CBF_MODE_COMPL() callback function.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
66 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Description of the Layer 2 functions and data types
 9.3 L2ETH_CBF_MODE_COMPL (signal operating mode)

Syntax

L2ETH_UINT32 l2eth_set_mode(
 L2ETH_UINT32 Handle,
 L2ETH_MODE Mode /* in */
);

/* in */
/* in */

Parameters

Name Description
Handle Handle from l2eth_open()
Mode Operating mode L2ETH_ONLINE or

L2ETH_OFFLINE

Return values
Return values as in Section "Error codes (Page 78)"; the following are possible:

● L2ETH_OK

● L2ETH_ERR_PRM_HND

● L2ETH_ERR_PRM_MODE

● L2ETH_ERR_NO_FW_COMMUNICATION

● L2ETH_ERR_INTERNAL

9.3 L2ETH_CBF_MODE_COMPL (signal operating mode)

Description
This function, that must be provided by the Layer 2 user program, is called by the Layer 2
interface when a job to change the mode of the Layer 2 interface has been processed. Such
jobs result from calling the l2eth_set_mode() function.

If the new mode has then set successfully, the value L2ETH_OK is returned in the "Error"
error code. The "Mode" parameter specifies the new mode.

If an error occurred when setting the new mode, an error code other than L2ETH_OK is
returned in the "Error" error code. In this case, the "Mode" parameter contains the originally
required mode that could not be set.

It is guaranteed that all other callback functions are called only after the L2ETH_ONLINE
mode has been reached.

It is also guaranteed that no further callback functions will be called after reaching the
L2ETH_OFFLINE mode.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 67

L2 - Description of the Layer 2 functions and data types
9.4 L2ETH_CBF_STATUS_IND (signal status)

Syntax

typedef void (* L2ETH_CBF_MODE_COMPL)(
 L2ETH_UINT32 Handle
 L L2ETH_MODE Mode,
L2ETH_UINT32 Error
);

/* in */
/* in */
/* in */

Parameters

Name Description
Handle Handle from l2eth_open()
Mode Required mode when calling l2eth_set_mode()
Error Return values as in Section "Error codes (Page 78)"; the following are possible:

• L2ETH_OK
• L2ETH_ERR_NO_RESOURCE
• L2ETH_ERR_NO_FW_COMMUNICATION
• L2ETH_ERR_INTERNAL

Return values
None

9.4 L2ETH_CBF_STATUS_IND (signal status)

Description
This function, that must be provided by the Layer 2 user program, is called by the Layer 2
interface when the status of the Layer 2 interface has changed (indicated by "Oid").
Currently, this callback function is called only when the link of a port has changed
(Oid=L2ETH_OID_MEDIA_CONNECT_STATUS).

The current value of this status can be queried with l2eth_get_information().

This callback function is called only when the Layer 2 interface is in the L2ETH_ONLINE
mode.

Syntax

typedef void (* L2ETH_CBF_STATUS_IND)(
L2ETH_UINT32 Handle,
L2ETH_OID Oid
);

/* in */
/* in */

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
68 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Description of the Layer 2 functions and data types
 9.5 l2eth_get_information (query parameters)

Parameters

Name Description
Handle Handle from l2eth_open()
Oid Object ID to indicate the changed status

Return values
None

9.5 l2eth_get_information (query parameters)

Description
This function can be used to query settings and statuses of the Layer 2 interface. All settings
and statuses can be read that are described in the Section "L2ETH_OID (type for object
identifier) (Page 83)" with the "Read" type of access.

In particular, this function can be used to query a changed status that was signaled with the
L2ETH_CBF_STATUS_IND() callback function.

The returned buffer in the job structure only contains value data when the return value of the
function is "L2ETH_OK".

If the buffer in the job structure is too small to store the requested object data, the return
value L2ETH_ERR_NO_RESOURCE is returned. In this case, the "BytesNeeded" value in
the structure contains the required buffer length. The job can be repeated with a suitably
large buffer.

This function can be called in every operating mode of the Layer 2 interface
(L2ETH_ONLINE or L2ETH_OFFLINE).

Syntax

L2ETH_UINT32 l2eth_get_information(
L2ETH_UINT32 Handle,
L2ETH_QUERY *pQuery
);

/* in */
/* out */

Parameters

Name Description
Handle Handle from l2eth_open()
pQuery Pointer to the job structure

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 69

L2 - Description of the Layer 2 functions and data types
9.6 l2eth_set_information (set parameters)

Return values
Return values as in Section "Error codes (Page 78)"; the following are possible:

● L2ETH_OK

● L2ETH_ERR_INTERNAL

● L2ETH_ERR_NO_FW_COMMUNICATION

● L2ETH_ERR_NO_RESOURCE

● L2ETH_ERR_PRM_BUF

● L2ETH_ERR_PRM_HND

● L2ETH_ERR_PRM_LEN

● L2ETH_ERR_PRM_OID

● L2ETH_ERR_PRM_QUERY

● L2ETH_ERR_SEQUENCE

9.6 l2eth_set_information (set parameters)

Description
This function can be used to set parameters of the Layer 2 interface. All the parameters
described in Section "L2ETH_OID (type for object identifier) (Page 83)" with the "Write" type
of access can be written.

This function can be called in every operating mode of the Layer 2 interface
(L2ETH_ONLINE or L2ETH_OFFLINE).

Syntax

L2ETH_UINT32 l2eth_set_information(
L2ETH_UINT32 Handle,
L2ETH_QUERY *pQuery
);

/* in */
/* in */

Parameters

Name Description
Handle Handle from l2eth_open()
pQuery Pointer to the job structure

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
70 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Description of the Layer 2 functions and data types
 9.7 l2eth_allocate_packet (reserve send job)

Return values
Return values as in Section "Error codes (Page 78)"; the following are possible:

● L2ETH_OK

● L2ETH_ERR_INTERNAL

● L2ETH_ERR_NO_FW_COMMUNICATION

● L2ETH_ERR_NO_RESOURCE

● L2ETH_ERR_OID_READONLY

● L2ETH_ERR_PRM_BUF

● L2ETH_ERR_PRM_HND

● L2ETH_ERR_PRM_LEN

● L2ETH_ERR_PRM_OID

● L2ETH_ERR_PRM_QUERY

● L2ETH_ERR_SEQUENCE

9.7 l2eth_allocate_packet (reserve send job)

Description
This function reserves a send job buffer. The user fills this buffer and transfers it to the
l2eth_send() function.

This function can be called in every operating mode of the Layer 2 interface
(L2ETH_ONLINE or L2ETH_OFFLINE).

In concrete terms, this means that the "L2ETH_PACKET" structure and the buffer for the
Ethernet frame is reserved with the maximum frame length. The "pBuffer" pointer in the
L2ETH_PACKET structure that points to the Ethernet frame is set accordingly.

The user sets the "Context" value, the length of the Ethernet frame "Data Length" (without
FCS) and the Ethernet frame itself and transfers the send job buffer to the "l2eth_send()"
function.

Syntax

L2ETH_UINT32 l2eth_allocate_packet(
L2ETH_UINT32 Handle,
L2ETH_PACKET * *ppPacket
);

/* in */
/* out */

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 71

L2 - Description of the Layer 2 functions and data types
9.8 l2eth_send (send data)

Parameters

Name Description
Handle Handle from l2eth_open()
ppPacket Pointer to the pointer of the reserved send job buffer; see structure in

Section "L2ETH_PACKET (job type for sending and receiving)
(Page 80)".

Return values
Return values as in Section "Error codes (Page 78)"; the following are possible:

● L2ETH_OK

● L2ETH_ERR_INTERNAL

● L2ETH_ERR_NO_RESOURCE

● L2ETH_ERR_PRM_HND

● L2ETH_ERR_PRM_PKT

9.8 l2eth_send (send data)

Description
This function sends frames.

When this function is completed successfully with the return value L2ETH_OK, the result of
the send job is signaled by calling the L2ETH_CBF_SEND_COMPL() callback function.

The send job buffer remains occupied until it is returned again with the
L2ETH_CBF_SEND_COMPL() callback function. Until then, the user program must not
modify the buffer.

If the function is not completed with the return value L2ETH_OK, the
L2ETH_CBF_SEND_COMPL() callback function is not called.

In this case, the send job buffer is not occupied.

The "Context" value in the "pPacket" send job buffer can be set to any value.

It is returned unchanged in L2ETH_CBF_SEND_COMPL(). This allows a reference to the
send job to be established.

This function can be called several times in sequence without waiting for the
L2ETH_CBF_SEND_COMPL() callback function to be called.

This function l2eth_send() can be called several times consecutively. Make sure, however,
that at least one packet reserved with "l2eth_allocate_packet()" is always available. A
maximum of 39 packets can be reserved at the same time.

This function can be called only when the Layer 2 interface is in the L2ETH_ONLINE mode.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
72 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Description of the Layer 2 functions and data types
 9.9 L2ETH_CBF_SEND_COMPL (signal send result)

Syntax

L2ETH_UINT32 l2eth_send(
L2ETH_UINT32 Handle,
L2ETH_PACKET *pPacket
);

/* in */
/* in */

Name Description
Handle Handle from l2eth_open()
pPacket Pointer to the send job buffer; see structure in

Section "L2ETH_PACKET (job type for sending
and receiving) (Page 80)".

Return values
Return values as in Section "Error codes (Page 78)"; the following are possible:

● L2ETH_OK

● L2ETH_ERR_INTERNAL

● L2ETH_ERR_LLDP_FRAME

● L2ETH_ERR_NO_FW_COMMUNICATION

● L2ETH_ERR_NO_RESOURCE

● L2ETH_ERR_PRM_BUF

● L2ETH_ERR_PRM_HND

● L2ETH_ERR_PRM_LEN

● L2ETH_ERR_PRM_PKT

● L2ETH_ERR_SEQUENCE

9.9 L2ETH_CBF_SEND_COMPL (signal send result)

Description
This function, that must be provided by the Layer 2 user program, is called by the Layer 2
interface when the sending of a frame is completed.

The reference to the "pPacket" send job can be established by the "Context" value in the
send job buffer. The "Context" value is returned unchanged; see structure in Section
"L2ETH_PACKET (job type for sending and receiving) (Page 80)".

The result of the send job is signaled using the "Error" error code.

This callback function is called only when the Layer 2 interface is in the L2ETH_ONLINE
mode.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 73

L2 - Description of the Layer 2 functions and data types
9.10 l2eth_free_packet (release send job)

Syntax

typedef void (*L2ETH_CBF_SEND_COMPL)(
 L2ETH_UINT32 Handle,
 L2ETH_PACKET *pPacket,
 L2ETH_UINT32 Error
);

/* in */
/* in */
/* in */

Parameters

Name Description
Handle Handle from l2eth_open()
pPacket Pointer to the send job buffer; see structure in

Section "L2ETH_PACKET (job type for sending and receiving) (Page 80)".
Error Error code of the send job as listed in Section "Error codes (Page 78)"; the following are

possible:
• L2ETH_OK
• L2ETH_ERR_NO_RESOURCE
• L2ETH_ERR_NO_FW_COMMUNICATION
• L2ETH_ERR_INTERNAL
• L2ETH_ERR_LLDP_FRAME

Return values
None.

9.10 l2eth_free_packet (release send job)

Description
This function releases a send job buffer again that was reserved with l2eth_allocate_packet(
).

It can be called in every operating mode of the Layer 2 interface (L2ETH_ONLINE or
L2ETH_OFFLINE).

Syntax

L2ETH_UINT32l2eth_free_packet(
L2ETH_UINT32Handle,
L2ETH_PACKET*pPacket
);

/* in */
/* in */

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
74 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Description of the Layer 2 functions and data types
 9.11 L2ETH_CBF_RECEIVE_IND (signal receipt of data)

Parameters

Name Description
Handle Handle from l2eth_open()
pPacket Pointer to the send job buffer; see structure

in Section "L2ETH_PACKET (job type for sending and receiving) (Page 80)".

Return values
Return values as in Section "Error codes (Page 78)"; the following are possible:

● L2ETH_OK

● L2ETH_ERR_PRM_HND

● L2ETH_ERR_PRM_PKT

● L2ETH_ERR_PRM_BUF

● L2ETH_ERR_INTERNAL

9.11 L2ETH_CBF_RECEIVE_IND (signal receipt of data)

Description
This function, that must be provided by the Layer 2 user program, is called by the Layer 2
interface when a frame was received.

The Layer 2 user program now has two options with which to react to receipt of the frame:

● The received packet is processed immediately and returned to the Layer 2 interface when
the callback function is exited.

● The received packet is retained by the callback function of the Layer 2 user program for
later processing.

As soon as the processing of this packet is completed by the Layer 2 user program, the
package must be returned explicitly to the Layer 2 interface with the l2eth_return_packet()
function.

The Layer 2 interface is informed which of these two options is selected by the Layer 2 user
program in the return value of the callback function; refer to the description of the return
value below.

The "Context" value in the "pPacket" receive job buffer is reserved and must not be modified
by the user program; see structure
in Section "L2ETH_PACKET (job type for sending and receiving) (Page 80)".

The L2ETH_CBF_RECEIVE_IND callback function is called only when the Layer 2 interface
is in the L2ETH_ONLINE mode.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 75

L2 - Description of the Layer 2 functions and data types
9.12 l2eth_return_packet (return receive job)

Syntax

typedef L2ETH_UINT32 (*
L2ETH_CBF_RECEIVE_IND)(
L2ETH_UINT32Handle,
L2ETH_PACKET*pPacket
);

/* in */
/* in */

Parameters

Name Description
Handle Handle from l2eth_open()
pPacket Pointer to the send job buffer; see structure

in Section "L2ETH_PACKET (job type for sending and receiving) (Page 80)".

Return values
The Layer 2 user program must set the return value when it exits this function.

The return value specifies the number of following l2eth_return_packet() calls by the Layer 2
user program. Currently only the following return values are supported:

Return
Value

Description

0 The receive job buffer "pPacket" is no longer required by the Layer 2 user program and
there is therefore no "l2eth_return_packet()" call. The receive job buffer is therefore no
longer available for the Layer 2 user program.

1 The receive job buffer "pPacket" is processed by the Layer 2 user program and is re-
turned later with the l2eth_return_packet() call. Until then, the receive job buffer is re-
served for the Layer 2 user program.

9.12 l2eth_return_packet (return receive job)

Description
This function returns a receive job buffer when the data of the received frame has been
processed or copied. The call must be made dependent on the return value of the
L2ETH_CBF_RECEIVE_IND() callback function.

This function can be called only when the Layer 2 interface is in the L2ETH_ONLINE mode.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
76 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Description of the Layer 2 functions and data types
 9.13 l2eth_close (deregister from Layer 2 interface)

Syntax

L2ETH_UINT32l2eth_return_packet(
L2ETH_UINT32Handle,
L2ETH_PACKET*pPacket
);

/* in */
/* in */

Parameters

Name Description
Handle Handle from l2eth_open()
pPacket Pointer to the send job buffer; see structure

in Section "L2ETH_PACKET (job type for sending and receiving) (Page 80)".

Return values
Return values as in Section "Error codes (Page 78)"; the following are possible:

● L2ETH_OK

● L2ETH_ERR_PRM_HND

● L2ETH_ERR_PRM_PKT

● L2ETH_ERR_PRM_BUF

● L2ETH_ERR_SEQUENCE

● L2ETH_ERR_INTERNAL

9.13 l2eth_close (deregister from Layer 2 interface)

Description
This function deregisters the user program from the Layer 2 interface. All internal resources
are released.

All callback functions are deregistered.

After processing this function, the handle is invalid and must not be used any longer.

This function can be called only when the Layer 2 interface is in the L2ETH_OFFLINE mode.

Syntax

L2ETH_UINT32l2eth_close(
L2ETH_UINT32Handle
);

//in

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 77

L2 - Description of the Layer 2 functions and data types
9.14 Data types

Parameters

Name Description
Handle Handle from l2eth_open()

Return values
Return values as in Section "Error codes (Page 78)"; the following are possible:

● L2ETH_OK

● L2ETH_ERR_INTERNAL

● L2ETH_ERR_NO_FW_COMMUNICATION

● L2ETH_ERR_PRM_HND

9.14 Data types

Description
The following data types are used in the Layer 2 interface.

9.14.1 Basic data types

Description
The following table describes the basic data types used by the Layer 2 interface.

Action Description
L2ETH_UINT8 unsigned char (8 bits)
L2ETH_UINT32 unsigned long (32 bits)

9.14.2 Error codes

Description
The following table describes all the possible error codes of the layer 2 interface functions.
The values are defined in the "l2eth_errs.h" include file.

The error codes are of the basic data type L2ETH_UINT32.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
78 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Description of the Layer 2 functions and data types
 9.14 Data types

Error codes

Name Description
L2ETH_ERR_INTERNAL Internal error
L2ETH_ERR_LLDP_FRAME The Ethernet frame is an LLDP frame. LLDP

frames are not supported.
L2ETH_ERR_MAX_REACHED Maximum number of Layer 2 channels opened.
L2ETH_ERR_NO_FW_ COMMUNICATION No connection to the firmware of

the CP.
L2ETH_ERR_NO_RESOURCE No more resources available.
L2ETH_ERR_OID_READONLY Only reading allowed for this "Oid".
L2ETH_ERR_PRM_BUF The "pBuffer" parameter in "pPacket" or "pQuery"

is invalid.
L2ETH_ERR_PRM_CP_ID "CpIndex" parameter is invalid.
L2ETH_ERR_PRM_HND "Handle" parameter is invalid.
L2ETH_ERR_PRM_LEN The length parameter in "pPacket" is invalid.
L2ETH_ERR_PRM_MODE "Mode" parameter is invalid.
L2ETH_ERR_PRM_OID "Oid" parameter in "pQuery" is invalid.
L2ETH_ERR_PRM_PCBF The pointer to a callback function is missing.
L2ETH_ERR_PRM_PKT "pPacket" parameter is invalid.
L2ETH_ERR_PRM_QUERY "pQuery" parameter is invalid.
L2ETH_ERR_SEQUENCE Calling this function is not permitted in the current

mode.
L2ETH_OK Function executed successfully.

9.14.3 L2ETH_MAC_ADDR (type for MAC address)

Description
The L2ETH_MAC_ADDR data type describes a MAC address.

Syntax

typedef L2ETH_UINT8 L2ETH_MAC_ADDR[6];

Elements

Name Description
L2ETH_MAC_ADDR MAC address in network format (big endian)

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 79

L2 - Description of the Layer 2 functions and data types
9.14 Data types

9.14.4 L2ETH_MODE (type for operating mode)

Description
The L2ETH_MODE data type contains the IDs for the supported modes.

Syntax

typedef enum
{
 L2ETH_OFFLINE,
 L2ETH_ONLINE
} L2ETH MODE;

Elements

Name Description
L2ETH_OFFLINE "Offline" mode - sending and receiving are deactivated. No callback

functions are called.
L2ETH_ONLINE "Online" mode - Sending and receiving are activated. Callback func-

tions can be called.

9.14.5 L2ETH_PACKET (job type for sending and receiving)

Description
The L2ETH_PACKET data structure is required for send and receive jobs.

Syntax

typedef struct
{
 L2ETH_UINT32 DataLength;
 L2ETH_UINT8 * pBuffer;
 L2ETH_UINT32 Context;
} L2ETH_PACKET;

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
80 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Description of the Layer 2 functions and data types
 9.14 Data types

Elements

Name Description
DataLength Length of the Ethernet frame (without FCS) - The value must be

between 60 and 1518.
pBuffer Pointer to an Ethernet frame complying with IEEE 802.3 - Starting

with the target MAC address up to the user data.
Context User-specific value for identifying the job - Is not modified by the

Layer 2 interface.

9.14.6 L2ETH_QUERY (job type for status query and parameter assignment)

Description
The L2ETH_QUERY data structure is required for setting and querying statuses and
parameters.

Syntax

typedef struct
{
 L2ETH_OID Oid;
 L2ETH_UINT8 * pBuffer;
 L2ETH_UINT32 BufferLength;
 L2ETH_UINT32 BytesTransferred;
 L2ETH_UINT32 BytesNeeded;
} L2ETH_QUERY;

Elements

Name Description
Oid Object identifier - see Section "L2ETH_OID (type

for object identifier) (Page 83)"
pBuffer Points to the buffer containing the input or output

data.
BufferLength Number of bytes in "pBuffer"

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 81

L2 - Description of the Layer 2 functions and data types
9.14 Data types

Name Description
BytesTransferred When setting parameters

Number of bytes in "pBuffer" that were used by
the Layer 2 interface to set the parameters.
When querying parameters or statuses
Number of bytes in "pBuffer" returned by the
Layer 2 interface to the Layer 2 user program.

BytesNeeded This value is returned only when "BufferLength"
is less than required by the transferred "Oid". In
this error situation, the number of bytes required
in "pBuffer" to be able to handle the request suc-
cessfully is specified.

9.14.7 L2ETH_PORT_STATUS (type for port status)

Description
The L2ETH_PORT_STATUS data structure is required to query the status of a port.

Syntax

typedef struct
{
 L2ETH_UINT32 Link;
 L2ETH_UINT32 Bitrate;
 L2ETH_UINT32 Duplex;
} L2ETH_PORT_STATUS;

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
82 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Description of the Layer 2 functions and data types
 9.14 Data types

Elements

Name Description
Link Status of the port:

• L2ETH_LINK_UP
• L2ETH_LINK_DOWN

Connection to partner station
exists.
No connection to partner station.

Bitrate Data transmission rate of the port(only known when
Link Up):
• L2ETH_LINK_SPEED_10
• L2ETH_LINK_SPEED_100
• L2ETH_LINK_UNKNOWN

10 Mbps
100 Mbps
Unknown (link down)

Duplex Duplex mode of the port
(only known when Link Up):
• L2ETH_LINK_SPEED
• L2ETH_LINK_SPEED_100
• L2ETH_LINK_UNKNOWN

Half duplex
Full duplex
Unknown (link down)

9.14.8 L2ETH_OID (type for object identifier)

Description
The L2ETH_OID contains the IDs for the supported objects.

Syntax

typedef enum
{
 L2ETH_OID_PERMANENT_ADDRESS,
 L2ETH_OID_MAXIMUM_LIST_SIZE,
 L2ETH_OID_MULTICAST_LIST,
 L2ETH_OID_MAXIMUM_FRAME_SIZE,
 L2ETH_OID_MEDIA_CONNECT_STATUS
} L2ETH_OID;

L2ETH_OID_PERMANENT_ADDRES

Description: Reads the local MAC address
Access: Read only
BufferLength: 6 bytes
pBuffer: L2ETH_MAC_ADDR

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 83

L2 - Description of the Layer 2 functions and data types
9.14 Data types

L2ETH_OID_MAXIMUM_LIST_SIZE

Description: Reads the maximum number of multicast addresses
Access: Read only
BufferLength: 4 bytes
pBuffer: L2ETH_ UINT32

L2ETH_OID_MULTICAST_LIST

Description: Reads and writes the multicast addresses
Access: Read and write
BufferLength: n x 6 bytes
pBuffer: Field from L2ETH_MAC_ADDR

L2ETH_OID_MAXIMUM_FRAME_SIZE

Description: Reads and sets the maximum length of the Ethernet frames (without

FCS)
Access: Read and write
BufferLength: 4 bytes
pBuffer: L2ETH_ UINT32

L2ETH_OID_MEDIA_CONNECT_STATUS

Description: Reads the link status of all ports
Access: Read only
BufferLength: 12 bytes for each port
pBuffer: Field from L2ETH_PORT_STATUS

(field index + 1 corresponds to the port number on the module)

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
84 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Creating a Linux Ethernet driver 10

This chapter explains the basics of developing a Linux network driver when using the Layer
2 interface.

10.1 Basics of developing a Linux Ethernet driver based on the Layer 2
functions

Basic task
To create a Linux Ethernet driver as a dynamically loadable kernel module.

It must register in the Ethernet interface of Linux.

Properties of the Linux Ethernet driver
The Linux Ethernet driver must have an interface defined by Linux.

If you use the Layer 2 functions, development only involves the development of the
functions:

● Map the Linux interface to the Layer 2 interface

● Call kernel functions when status changes are received and receive Ethernet packets
with callbacks of the layer 2 interface

Interfaces of the Linux Ethernet driver to Linux
The Linux Ethernet driver must provide the following interfaces:

● Module interface

● Ethernet port

Interfaces of the Linux Ethernet driver to the Layer 2 interface
Interfaces of the Linux Ethernet driver to the Layer 2 interface are the callback functions that
must be specified when the l2eth_open() function is called:

L2ETH_CBF_MODE_COMPL()

L2ETH_CBF_STATUS_IND()

L2ETH_CBF_SEND_COMPL()

L2ETH_CBF_RECEIVE_IND()

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 85

L2 - Creating a Linux Ethernet driver
10.1 Basics of developing a Linux Ethernet driver based on the Layer 2 functions

10.1.1 Interfaces of the Linux Ethernet driver to Linux

Module interface
The module interface is used to initialize and are registered the Linux Ethernet driver.
Implement the following functions in your Linux Ethernet driver; they are called by the Linux
kernel: The module interface is used to initialize and are registered the Linux Ethernet driver.
Implement the following functions in your Linux Ethernet driver; they are called by the Linux
kernel:

Module Function Description
int module_init(void) The "module_init()" is called when the Linux Ethernet driver is loaded.

Implement the following functionality in it:
• Register with Linux as an Ethernet module with the "alloc_netdev()"

and "register_netdev()" functions.
• Register with the Layer 2 interface with the "l2eth_open()" function.
• Query the MAC address and the maximum number of supported mul-

ticast addresses on the Layer 2 interface with the
"l2eth_get_information()" function.

int module_exit(void) The "module_exit()" function is called when the Linux Ethernet driver is
removed.
Implement the following functionality in it:
• Terminate or connections with the "l2eth_close()" function.
• Deregister from the kernel in Linux with the "unregister_netdev()" and

"free_netdev()" functions.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
86 Programming Manual, 07/2015, C79000-G8976-C203-07

 L2 - Creating a Linux Ethernet driver
 10.1 Basics of developing a Linux Ethernet driver based on the Layer 2 functions

Ethernet port
The Ethernet interface for sending and receiving Ethernet frames. Implement the following
functions in your Linux Ethernet driver; they are called by the Linux kernel:

Ethernet functions Description
int (*open)(
struct net_device *dev
)

This function is called when the Ethernet interface is activated.
Implement the following functionality in it:
• Activate receive mode on the Layer 2 interface with the

l2eth_set_mode(L2ETH_ONLINE) function.
• If successful, use the "netif_start_queue()" function to indi-

cate that packets can be sent.
• Read out the link status of the ports on the Layer 2 interface

with the "l2eth_get_information()" function and register it
with Linux with "netif_carrier_on()" or "netif_carrier_off()".

int (*stop)(
struct net_device *dev
)

This function is called when the Ethernet interface is deactivat-
ed.
Implement the following functionality in it:
• Deactivate receive mode on the Layer 2 interface with the

l2eth_set_mode(L2ETH_OFFLINE) function.
• Signal the deactivated status to the kernel with the

"netif_stop_queue()" function.

int (*hard_start_xmit)(
struct sk_buff * skb,
struct net_device *dev
)

This function is called when an Ethernet packet needs to be
sent.
Implement the following functionality in it:
• For the Layer 2 interface, reserve a send buffer with the

"l2eth_allocate_packet()" function and copy the send data
from "skb".

• Send the send buffer with "l2eth_send()".
• Release the send buffer in "skb" with "dev_kfree_skb()".

int (change_mtu)(
struct net_device *dev,
int new_mut
)

This function is called when the MTU size needs to be
changed.
Use the "l2eth_set_information()" function for this purpose.

void (*set_multicast_list)(
struct net_device *dev
)

This function is called when the multicast list needs to be
changed.
Use the "l2eth_set_information()" function for this purpose.

DK-16xx PN IO Porting Instructions and Layer 2 Interface
Programming Manual, 07/2015, C79000-G8976-C203-07 87

L2 - Creating a Linux Ethernet driver
10.1 Basics of developing a Linux Ethernet driver based on the Layer 2 functions

10.1.2 Interfaces of the Linux Ethernet driver to the Layer 2 interface

Description
To allow the Layer 2 interface to signal status changes, transfer received Ethernet frames
and return the send buffer, the Ethernet driver must provide the following callback functions:

Callback functions Description
L2ETH_CBF_MODE_COMPL() Returns the result for the previously called "l2eth_set_mode(

)" function.
L2ETH_CBF_STATUS_IND() This function is called when the status of the Layer 2 interface

changes.
Implement the following functionality in it:
• When the link status is "L2ETH_LINK_UP", call the "netif-

carrier_on()" function.
• When the link status is "L2ETH_LINK_DOWN", call the

"netif-carrier_off()" function.

L2ETH_CBF_SEND_COMPL() This function is called when the Layer 2 interface returns a
send buffer.
Implement the following functionality in it:
• Update the send statistics
• Release the send buffer with the "l2eth_free_packet()"

function.

L2ETH_CBF_RECEIVE_IND() This function is called when the Layer 2 interface transfers a
received Ethernet packet.
Implement the following functionality in it:
1. Reserve a channel receive buffer in the kernel with the

"dev_alloc_skb()" function.
2. Copy the received data to the kernel buffer.
3. Transfer the Linux kernel to the receive buffer with the

"netif_rx()" function.
4. Return the Layer 2 receive buffer to the Layer 2 interface

with the "l2eth_return_paket()" function.

10.1.3 Point to note when compiling

Description
Compile the Layer 2 library with the "__KERNEL__" compiler flag and bind it statically to your
Ethernet driver.

 DK-16xx PN IO Porting Instructions and Layer 2 Interface
88 Programming Manual, 07/2015, C79000-G8976-C203-07

	DK-16xx PN IO Porting Instructions and Layer 2 Interface
	Table of contents
	1 Quick Start
	1.1 Architecture of DK-16xx PN IO software
	1.2 Installation on Linux

	2 Preparing RTAI and the Linux kernel
	2.1 Basic procedure for generating, installing and testing the teal-time extension RTAI
	2.1.1 Stage 1: Downloading source files from the Internet
	2.1.2 Stage 2: Extracting Source Files
	2.1.3 Stage 3: Configuring and generating the Linux kernel
	2.1.4 Stage 4: Installing the generated Linux kernel
	2.1.5 Stage 5: Configuring and generating the RTAI real-time extension
	2.1.6 Stage 6: Checking whether the real-time extension works

	2.2 Basic procedure for installing the DK-16xx PN IO on Linux

	3 Description of driver porting
	3.1 Requirements for the target operating system
	3.2 How the driver works
	3.3 Basic communication between the library and the driver
	3.3.1 Directory structure and files
	3.3.2 Non operating system-specific functions
	3.3.3 Functions dependent on the operating system

	3.4 Porting the driver step-by-step
	3.4.1 Stage 1: Porting the macros of the "os_linux.h" file
	3.4.2 Stage 2: Initialization and deinitialization
	3.4.3 Stage 3: Finding the CP and including the resources of the CP in the operating system
	3.4.4 Stage 4: Defining the driver interface
	3.4.5 Stage 5: Porting the connection establishment and termination from the IO Base library to the driver
	3.4.6 Stage 6: Porting send functionality from the IO Base library to the firmware
	3.4.7 Stage 7: Porting the receive functionality from the firmware to the IO Base library
	3.4.8 Stage 8: Porting memory mapping to the user address space
	3.4.9 Stage 9: Porting additional IO controls for the "cp16xxtest“ driver test application

	3.5 Driver debug support
	3.6 Testing the driver

	4 Description of porting the IO base library
	4.1 Requirements for the target operating system
	4.2 How the IO Base library works
	4.2.1 Directory structure and files
	4.2.2 Functions dependent on the operating system

	4.3 Porting the IO Base library step-by-step
	4.3.1 Stage 1: Porting the trace module
	4.3.2 Stage 2: Porting the IO Base library link for the driver

	4.4 IO-Base library debug support
	4.5 Testing the IO-Base library

	5 Description of porting the Layer 2 library
	5.1 Requirements for the target operating system
	5.2 How the Layer 2 library works
	5.3 Directory structure and files
	5.4 Porting the Layer 2 library step-by-step
	5.5 Testing the Layer 2 library

	6 Description of the "cp16xxtest" program
	6.1 Directory structure and files
	6.2 Porting the "cp16xxtest" program
	6.3 Testing the "cp16xxtest" Program

	7 L2 - Quick start with the Layer -2 interface
	8 L2 - Overview of the Layer 2 interface
	8.1 How a typical Layer 2 user programming interface is used
	8.2 Software architecture
	8.3 How a typical Layer 2 user program runs
	8.3.1 Initialization phase
	8.3.2 Send data
	8.3.3 Receive data
	8.3.4 Completion phase

	8.4 Callback mechanism

	9 L2 - Description of the Layer 2 functions and data types
	9.1 l2eth_open (register with Layer 2 interface)
	9.2 l2eth_set_mode (set operating mode)
	9.3 L2ETH_CBF_MODE_COMPL (signal operating mode)
	9.4 L2ETH_CBF_STATUS_IND (signal status)
	9.5 l2eth_get_information (query parameters)
	9.6 l2eth_set_information (set parameters)
	9.7 l2eth_allocate_packet (reserve send job)
	9.8 l2eth_send (send data)
	9.9 L2ETH_CBF_SEND_COMPL (signal send result)
	9.10 l2eth_free_packet (release send job)
	9.11 L2ETH_CBF_RECEIVE_IND (signal receipt of data)
	9.12 l2eth_return_packet (return receive job)
	9.13 l2eth_close (deregister from Layer 2 interface)
	9.14 Data types
	9.14.1 Basic data types
	9.14.2 Error codes
	9.14.3 L2ETH_MAC_ADDR (type for MAC address)
	9.14.4 L2ETH_MODE (type for operating mode)
	9.14.5 L2ETH_PACKET (job type for sending and receiving)
	9.14.6 L2ETH_QUERY (job type for status query and parameter assignment)
	9.14.7 L2ETH_PORT_STATUS (type for port status)
	9.14.8 L2ETH_OID (type for object identifier)

	10 L2 - Creating a Linux Ethernet driver
	10.1 Basics of developing a Linux Ethernet driver based on the Layer 2 functions
	10.1.1 Interfaces of the Linux Ethernet driver to Linux
	10.1.2 Interfaces of the Linux Ethernet driver to the Layer 2 interface
	10.1.3 Point to note when compiling

