SIEMENS

APOGEE

Wiring Guidelines for Field Panels and Equipment Controllers

Smart Infrastructure

Copyright Notice

Notice

Document information is subject to change without notice by Siemens Industry, Inc. Companies, names, and various data used in examples are fictitious unless otherwise noted. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Siemens Industry, Inc.

Warning

This equipment generates, uses, and can radiate radio frequency energy. If equipment is not installed and used in accordance with the instructions manual, it may cause interference to radio communications. Equipment has been tested and found to comply within the limits for a Class B digital device pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference. Residential area equipment users are required to take whatever measures necessary to correct the interference at their own expense.

Service Statement

Control devices are combined to make a system. Each control device is mechanical in nature and all mechanical components must be regularly serviced to optimize their operation. Siemens Industry, Inc. branch offices and authorized distributors offer Technical Support Programs that will ensure continuous, trouble-free system performance.

For further information, contact your nearest Siemens Industry representative. Copyright 2021 Siemens Industry, Inc.

FCC Regulations

The manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible could void the user's authority to operate the equipment.

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

To the Reader

Your feedback is important to us. If you have comments about this manual, please submit them to: <u>SBT technical.editor.us.sbt@siemens.com</u>

Credits

APOGEE, APOGEE GO, InfoCenter Administrator, InfoCenter Report Manager, InfoCenter Server, InfoCenter Suite, and Insight are registered trademarks of Siemens Industry, Inc.

Desigo® and Desigo® CC[™] are registered trademarks of Siemens Schweiz AG.

Other product or company names mentioned herein may be the trademarks of their respective owners.

Printed in the USA.

Table of Contents

Chapter 1 – Wiring Regulations and Specifications 13 Regulatory Subjects 13 Circuit Classes 14 Radio Frequency Transmitter Limitations 14 Conduit Sharing—Class 1/Class 2 Separations 14 Network Wiring Location Restrictions 15 Parallel Wire Runs 15 Grounding 16 National Electrical Code Grounding Guidelines Compliance 16 Earth Ground Current Loops 16 Single Earth Ground for Al, DI, and AO Circuits 17 NEC Article 250 Specifications 17 NEC Article 250 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – Siemens Industry Recommendation 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 27 Dual Port Ethernet Controller Topology Basics 27 <t< th=""><th>How to Use This Manual</th><th>11</th></t<>	How to Use This Manual	11
Regulatory Subjects 13 Circuit Classes 14 Radio Frequency Transmitter Limitations 14 Conduit Sharing—Class 1/Class 2 Separations 14 Network Wiring Location Restrictions 15 Parallel Wire Runs 15 Grounding 16 National Electrical Code Grounding Guidelines Compliance 16 Earth Ground Current Loops 16 Single Earth Ground for AI, DI, and AO Circuits 17 Equipment Grounding System Requirements 17 National Electric 200 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – Siemens Industry Recommendation 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Dual Port Ethernet Controller Topology Basics 27 Ethern	Chapter 1 – Wiring Regulations and Specifications	13
Circuit Classes 14 Radio Frequency Transmitter Limitations 14 Conduit Sharing—Class 1/Class 2 Separations 14 Network Wiring Location Restrictions 15 Parallel Wire Runs 15 Grounding 16 National Electrical Code Grounding Guidelines Compliance 16 Earth Ground Current Loops 16 Single Earth Ground for AI, DI, and AO Circuits 17 Equipment Grounding System Requirements 17 NEC Article 250 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 <th>Regulatory Subjects</th> <th>13</th>	Regulatory Subjects	13
Radio Frequency Transmitter Limitations 14 Conduit Sharing—Class 1/Class 2 Separations 14 Network Wiring Location Restrictions 15 Parallel Wire Runs 15 Grounding 16 National Electrical Code Grounding Guidelines Compliance 16 Earth Ground Current Loops 16 Single Earth Ground for AI, DI, and AO Circuits 17 Equipment Grounding System Requirements 17 NEC Article 250 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet/IP ALN 31 ALN—Workstation to Field Panel Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet ALN 32 <td>Circuit Classes</td> <td>14</td>	Circuit Classes	14
Conduit Sharing—Class 1/Class 2 Separations 14 Network Wiring Location Restrictions 15 Parallel Wire Runs 15 Grounding 16 National Electrical Code Grounding Guidelines Compliance 16 Earth Ground Current Loops 16 Single Earth Ground for AI, DI, and AO Circuits 17 Equipment Grounding System Requirements 17 NEC Article 250 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 23 Network Terminators 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communication to Field Panel Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 BACnet/IP ALN 31 BACnet/IP ALN 31 BACnet/IP ALN	Radio Frequency Transmitter Limitations	14
Network Wiring Location Restrictions 15 Parallel Wire Runs 15 Grounding 16 National Electrical Code Grounding Guidelines Compliance 16 Earth Ground Current Loops 16 Single Earth Ground for AI, DI, and AO Circuits 17 Equipment Grounding System Requirements 17 NEC Article 250 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communication to Ethernet Wiring 31 ALN—Workstation to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 BACnet/IP ALN 31 BACnet/IP ALN 32 Using Existing Wiring 32 </td <td>Conduit Sharing—Class 1/Class 2 Separations</td> <td>14</td>	Conduit Sharing—Class 1/Class 2 Separations	14
Parallel Wire Runs 15 Grounding 16 National Electrical Code Grounding Guidelines Compliance 16 Earth Ground Current Loops 16 Single Earth Ground for AI, DI, and AO Circuits 17 Equipment Grounding System Requirements 17 NEC Article 250 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 20 General Wiring Guidelines 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communication to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 BACnet/IP ALN 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32 <td>Network Wiring Location Restrictions</td> <td>15</td>	Network Wiring Location Restrictions	15
Grounding 16 National Electrical Code Grounding Guidelines Compliance 16 Earth Ground Current Loops 16 Single Earth Ground for AI, DI, and AO Circuits 17 Equipment Grounding System Requirements 17 NEC Article 250 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Common Grounding for Communication Circuits 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 20 General Wiring Guidelines 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communication to Ethernet Wiring 31 ALN—Workstation to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 BACnet/IP ALN 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver	Parallel Wire Runs	15
National Electrical Code Grounding Guidelines Compliance 16 Earth Ground Current Loops. 16 Single Earth Ground for AI, DI, and AO Circuits. 17 Equipment Grounding System Requirements 17 NEC Article 250 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 20 General Wiring Guidelines 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communication to Ethernet Wiring 31 ALN—Workstation to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 BACnet/IP ALN 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	Grounding	16
Earth Ground Current Loops. 16 Single Earth Ground for Al, DI, and AO Circuits. 17 Equipment Grounding System Requirements 17 NEC Article 250 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Common Grounding for Communication Circuits 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 20 General Wiring Guidelines 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communications Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	National Electrical Code Grounding Guidelines Compliance	16
Single Earth Ground for Al, DI, and AO Circuits. 17 Equipment Grounding System Requirements 17 NEC Article 250 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Common Grounding for Communication Circuits 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 20 General Wiring Guidelines 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communication to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 ACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	Earth Ground Current Loops	16
Equipment Grounding System Requirements 17 NEC Article 250 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Common Grounding for Communication Circuits 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 20 General Wiring Guidelines 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communications Wiring 31 ALN—Workstation to Ethernet Wiring 31 BACnet/IP ALN 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	Single Earth Ground for AI, DI, and AO Circuits	17
NEC Article 250 Specifications 17 National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Common Grounding for Communication Circuits 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 20 General Wiring Guidelines 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communications Wiring 31 ALN—Workstation to Ethernet Wiring 31 BACnet/IP ALN 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	Equipment Grounding System Requirements	17
National Electric Code (NEC) Communications Requirements 18 Smoke and Flame Characteristics 18 Common Grounding for Communication Circuits 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 20 General Wiring Guidelines 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communication to Ethernet Wiring 31 ALN—Workstation to Ethernet Wiring 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	NEC Article 250 Specifications	17
Smoke and Flame Characteristics 18 Common Grounding for Communication Circuits 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size – NEC Requirements 20 General Wiring Guidelines 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communications Wiring 30 MLN—Workstation to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	National Electric Code (NEC) Communications Requirements	18
Common Grounding for Communication Circuits 18 Conduit Fill 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size—NEC Requirements 20 General Wiring Guidelines 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communications Wiring 30 MLN—Workstation to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	Smoke and Flame Characteristics	18
Conduit Fill. 20 Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size—NEC Requirements 20 General Wiring Guidelines 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communications Wiring 30 MLN—Workstation to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	Common Grounding for Communication Circuits	18
Cables per Conduit Size – Siemens Industry Recommendation 20 Cables per Conduit Size—NEC Requirements 20 General Wiring Guidelines 22 Controlling Transients 23 Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communications Wiring 30 MLN—Workstation to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	Conduit Fill	20
Cables per Conduit Size—NEC Requirements20General Wiring Guidelines22Controlling Transients23Network Terminators23Wire Specification Tables24Chapter 2 – Network Electrical Systems27Dual Port Ethernet Controller Topology Basics27Ethernet Communications Wiring30MLN—Workstation to Ethernet Wiring31ALN—Workstation to Field Panel Ethernet Wiring31BACnet/IP ALN31APOGEE Ethernet Microserver (AEM)—Remote ALN32Using Existing Wiring32	Cables per Conduit Size – Siemens Industry Recommendation	20
General Wiring Guidelines22Controlling Transients23Network Terminators23Wire Specification Tables24Chapter 2 – Network Electrical Systems27Dual Port Ethernet Controller Topology Basics27Ethernet Communications Wiring30MLN—Workstation to Ethernet Wiring31ALN—Workstation to Field Panel Ethernet Wiring31BACnet/IP ALN31APOGEE Ethernet Microserver (AEM)—Remote ALN32Using Existing Wiring32	Cables per Conduit Size—NEC Requirements	20
Controlling Transients23Network Terminators23Wire Specification Tables24Chapter 2 – Network Electrical Systems27Dual Port Ethernet Controller Topology Basics27Ethernet Communications Wiring30MLN—Workstation to Ethernet Wiring31ALN—Workstation to Field Panel Ethernet Wiring31BACnet/IP ALN31BACnet/IP ALN31APOGEE Ethernet Microserver (AEM)—Remote ALN32Using Existing Wiring32	General Wiring Guidelines	22
Network Terminators 23 Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communications Wiring 30 MLN—Workstation to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	Controlling Transients	23
Wire Specification Tables 24 Chapter 2 – Network Electrical Systems 27 Dual Port Ethernet Controller Topology Basics 27 Ethernet Communications Wiring 30 MLN—Workstation to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 Ethernet/IP ALN 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	Network Terminators	23
Chapter 2 – Network Electrical Systems27Dual Port Ethernet Controller Topology Basics27Ethernet Communications Wiring30MLN—Workstation to Ethernet Wiring31ALN—Workstation to Field Panel Ethernet Wiring31Ethernet/IP ALN31BACnet/IP ALN31APOGEE Ethernet Microserver (AEM)—Remote ALN32Using Existing Wiring32	Wire Specification Tables	24
Dual Port Ethernet Controller Topology Basics 27 Ethernet Communications Wiring 30 MLN—Workstation to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 Ethernet/IP ALN 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	Chapter 2 – Network Electrical Systems	27
Ethernet Communications Wiring 30 MLN—Workstation to Ethernet Wiring 31 ALN—Workstation to Field Panel Ethernet Wiring 31 Ethernet/IP ALN 31 BACnet/IP ALN 31 APOGEE Ethernet Microserver (AEM)—Remote ALN 32 Using Existing Wiring 32	Dual Port Ethernet Controller Topology Basics	27
MLN—Workstation to Ethernet Wiring	Ethernet Communications Wiring	30
ALN—Workstation to Field Panel Ethernet Wiring	MLN—Workstation to Ethernet Wiring	31
Ethernet/IP ALN	ALN—Workstation to Field Panel Ethernet Wiring	31
BACnet/IP ALN	Ethernet/IP ALN	31
APOGEE Ethernet Microserver (AEM)—Remote ALN	BACnet/IP ALN	31
Using Existing Wiring32	APOGEE Ethernet Microserver (AEM)—Remote ALN	32
	Using Existing Wiring	32
RS-485 MS/TP Communications	RS-485 MS/TP Communications	33
Using Cimetrics Routers on an APOGEE BACnet MS/TP Network34	Using Cimetrics Routers on an APOGEE BACnet MS/TP Network	34
Network Wiring Requirements Decision Tree	Network Wiring Requirements Decision Tree	35
3-Wire Interface Nodes	3-Wire Interface Nodes	36
1.5-Pair Network Cable36	1.5-Pair Network Cable	36
1.5-pair Cable Specifications37	1.5-pair Cable Specifications	37

Network Loading	38
3-Wire Devices on a 2-Wire or 3-Wire Network Master Controller/H Level Controller	ligher 39
Network Repeater for 3-Wire Networks	41
3-Wire Network Terminator (550-975P100, Pkg. of 100)	43
3-Wire Network RS-485 Reference Terminator (550-974P10 Pkg.	of 10) 43
BACnet Nodes on Siemens Controllers or Third-Party Equipment (1.5 pr cable)	Using 44
RS-485 ALN (P2/P3) and FLN (P1) Trunk Communications Wiring	45
BACnet RS-485 FLN	45
Multi-Drop Trunk Cabling Limits	46
RS-485 ALN Trunk Shield Connection Using 2-Wire Cabling	47
RS-485 FLN (P1) Trunk Shield Connection	48
Communications Ground	49
Multi-Drop Trunk Terminator	49
RS-485 2-Wire Network Devices	51
High Speed Trunk Interface (HSTIE)	51
RS-485 ALN and FLN (P1) Communications Wiring on Structured Cabling	52
Installation	52
Use of Shielded and Unshielded Twisted Pair Cable	53
Sheath Sharing and Cable Routing	53
Riser Segment Length	54
Converting SCS Star Segments to RS-485 ALN and FLN Chain Segments	55
Punch Down Jumper Wires	56
Patch Cables	57
Converting Chain Segments to SCS Star Segments	58
LONWORKS FLN Communications Wiring	59
Network Requirements	59
Communication Wiring Requirements	60
Nodes per Subnet/Network	61
Electrical Loads	61
Segment	61
Wiring Between Buildings	61
Repeater Depth	61
Network Speeds	61
Conduit Sharing	61
Wire Lengths	61
Network Wiring	62
LonWorks FLN Network Terminations	63
Recommended Terminator Installation	63
Power Trunk Guidelines	64
Class 2 Power Sources	64

Inherently Limited Class 2 Power Source	64
Not Inherently Limited Class 2 Power Source	64
Class 2 Power Trunks	65
Grounding	65
Restrictions	65
Power Trunk Layout	67
Step 1 - Determine the VA Rating for Each Controller	68
Step 2 - Determine the Number of Power Trunks Required	69
Step 3 - Determine the Wiring Runs and Calculate the Voltage Available at the Last Controllers of Each Trunk Type	70
Step 4 - Select and Locate the Transformers	74
Chapter 3 – Field Panels	75
Control Circuit Point Wiring	75
LFSSL (Logical FAST/SLOW/STOP Latched)	75
LFSSP (Logical FAST/SLOW/STOP Pulsed)	76
LOOAL (Logical ON/OFF/AUTO Latched)	77
LOOAP (Logical ON/OFF/AUTO Pulsed)	78
L2SL (Logical Two State Latched)	79
L2SP (Logical Two State Pulsed)	80
PX Series Service Boxes	81
PX Series 115V Service Boxes (192 VA or 384 VA)	81
PX Series 230V Service Boxes (192 VA or 384 VA)	82
PX Series Service Box Grounding	83
Multiple PX Series Service Boxes on One Power Source	85
PXC Service Box Dimensions	86
TX-I/O Product Range	88
Wire Type Requirements	88
Power Source Requirements	89
Powering Options	90
Metal Oxide Varistors (MOVs)	90
TX-I/O Island Bus Guidelines	91
TX-I/O Island Bus Power and Communication Options	91
TX-I/O Module Support	92
TX-I/O Island Bus Wiring Diagrams	93
TX-I/O Island Bus Extension Cable Options	96
TX-IO Module Wiring Diagrams	97
Symbols	98
Digital Input Modules (TXM1.8D and TXM1.16D)	98
Digital Output Modules (TXM1.6R and TXM1.6R-M)	99
Universal and Super Universal Modules (TXM1.8U and TXM1.8 ML; TXM1.8X and TXM1.8X-ML)	U- 101
PXC Compact Series Controller	104
Wire Type Requirements	105

Power Source Requirements	.106
Powering Options	.106
Metal Oxide Varistors (MOVs)	.107
PXC Compact Series Universal I/O	.107
Compact Series Sensor Wiring	.109
PXC Compact Series Wiring Diagrams	.110
Analog Input, Internally Powered; Supervised	.111
Analog Input, Externally Powered; Supervised	.111
Analog Input, RTDs or Thermistors; Supervised	.112
Analog Output, 0-10 Vdc; Not Supervised	.113
Analog Output, 0-20 mA	.114
Digital Input, Dry Contacts; Not Supervised	.116
Digital Input, Pulse Accumulating; Not Supervised	.117
Digital Output, Pulsed or Latched; Not Supervised	.118
Point Expansion or Conversion	.119
AO-P Transducer	.119
AO-P Transducer Wiring Diagram	.120
Chapter 4 – Equipment Controllers	.121
Wire Type Requirements	.121
Power Source Requirements	.121
Metal Oxide Varistors (MOVs)	.122
BACnet DXR2 Room Automation Station	.122
Engineering	.124
Connection Terminals	.125
MS/TP Connection	.134
Pressurized room with or without Fume Hoods (MSTP)	.135
Airflow communication network (F-COM)	.136
Ethernet Connection	.137
Pressurized Rooms with Fume Hoods (Ethernet)	.138
Sensor Bus Communication (SCOM) Connection	.143
KNX PL-Link Connection	.146
Actuator Terminal Equipment Controller (ATEC) BACnet or N-Variant P1	.148
BACnet Programmable Terminal Equipment Controllers (PTEC) and N-Varian TEC (Updated Hardware)	nt P1 .151
Appendix A – Discontinued Products	.155
Modular Equipment Controller (MEC) and Point Expansion Module (PXM)	.155
Wire Type Requirements	.155
Power Source Requirements	.156
Powering Options.	.156
Point Bus Wiring Restrictions	.157
Multiple MECs on One Power Source	.157
Metal Oxide Varistors (MOVs)	.157
MEC and PXM Wiring Diagrams	.157

Analog Input	158
Analog Output	160
Digital Input	161
Digital Output	162
Universal Inputs	162
MEC Service Boxes	163
Multiple Service Boxes on One Power Source	164
115V Version	164
230V Version Service Box	165
Modular Building Controller/Remote Building Controller (MBC/RBC)	167
Wire Type Requirements	167
Power Source Requirements	168
Class 1/Class 2 Separations	169
Multiple MBCs/RBCs on One Power Source	169
Metal Oxide Varistors (MOVs)	169
MBC/RBC Service Box Wiring Diagrams	170
Point Termination Modules	171
Metal Oxide Varistors (MOVs)	171
Wiring Point Termination Modules	171
Point Termination Module Wiring Diagrams	174
Analog Input	175
Full-Featured Sensor	176
Analog Output	177
Digital Input	178
Digital Output	180
LFSSL (Logical FAST/SLOW/STOP Latched)	180
LFSSP (Logical FAST/SLOW/STOP Pulsed)	181
LOOAL (Logical ON/OFF/AUTO Latched)	183
LOOAP (Logical ON/OFF/AUTO Pulsed)	185
L2SL (Logical Two State Latched)	
L2SP (Logical Two State Pulsed)	188
FLN Controller	189
Wire Type Requirements	189
Power Source Requirements	189
Point Wiring Restrictions	190
Metal Oxide Varistors (MOVs)	190
Stand-alone Control Unit (SCU)	190
Wire Type Requirements	190
Power Source Requirements	191
Point Wiring Restrictions	191
Multiple SCUs on One Power Source	192
Metal Oxide Varistors (MOVs)	192
Digital Outputs	193

Network Devices	
Multi-Point Unit/Digital Point Unit (MPU/DPU)	
Wire Type Requirements	194
Power Source Requirements	194
MPU Grounding	195
Metal Oxide Varistors (MOVs)	195
Digital Output (DO) Wiring	196
Terminal Equipment Controller—Pneumatic Output, Low Voltage	197
Terminal Equipment Controllers—Pneumatic Output	197
Pneumatic Output Controller	197
LonMark® Terminal Equipment Controller (LTEC)	198
Wire Type Requirements	198
Power Source Requirements	199
LTEC Wiring Diagrams	200
Terminal Control Unit (TCU)	214
Wire Type Requirements	214
Power Source Requirements	214
Digital Output (DO) Wiring	215
Grounding	215
Metal Oxide Varistors (MOVs)	215
Unitary Controller (UC)	215
Wire Type Requirements	216
Power Source Requirements	216
Digital Output (DO) Wiring	216
Metal Oxide Varistors (MOVs)	217
Terminal Equipment Controllers (APOGEE Legacy Controllers)	217
Wire Type Requirements	217
Power Source Requirements	217
Terminal Equipment Controllers (TEC) (Legacy Hardware)	219
Digital Output (DO) Wiring	221
Terminal Equipment Controllers - Pneumatic Output	221
BACnet Terminal Equipment Controllers (BTEC) (Legacy Hardware)	222
Glossary	224
Index	228

How to Use This Manual

This wiring guidelines manual was developed to reduce the installed cost of Siemens Industry energy management systems through consistent estimating, installation, and operation. It provides information that can be shared with electrical contractors for proposals and training purposes. This manual does not provide wiring guidelines for specific field devices.

This section covers manual organization, manual conventions and symbols used in the manual, how to access help, related publications, and any other information that will help you use this manual.

Manual Organization

This manual contains the following chapters:

- Chapter 1, Wiring Regulations and Specifications, contains Regulatory and general wiring requirements for installing APOGEE products.
- Chapter 2, Network Electrical Systems, contains communications wiring guidelines for various network systems and the power trunk.
- Chapter 3, *Field Panels*, describes the wiring guidelines for Automation Level Network (ALN) devices that are currently available for purchase.
- Chapter 4, *Equipment Controllers*, describes the wiring guidelines for Field Level Network (FLN) controllers that are currently available for purchase.
- Appendix A, *Discontinued Products*, describes the wiring guidelines for discontinued ALN and FLN devices.
- The Glossary describes the terms and acronyms used in this manual.
- An *Index* helps you locate information presented in this manual.

Manual Conventions

The following table lists conventions to help you use this manual in a quick and efficient manner.

Convention	Examples
Numbered Lists (1, 2, 3…) indicate a procedure with sequential steps.	1. Turn OFF power to the field panel.
	2. Turn ON power to the field panel.
	3. Contact the local Siemens Industry representative.
Conditions that must be completed or met	⊳Composer software is properly installed.
before beginning a task are designated with a	⊳A Valid license is available.
►. Intermediate results (what will happen	1. Select Start > Programs > Siemens > GMS > Composer.
designated with a ⇒.	⇔The Project Management window displays.
esults, which inform the user that a task was	2. Open an existing project or create a new one.
completed successfully, are designated with a	⇔The project window displays.
⇔.	
Actions that should be performed are specified	Type F for Field panels.
in boldface font.	Click OK to save changes and close the dialog box.
Error and system messages are displayed in Courier New font.	The message Report Definition successfully renamed displays in the status bar.

New terms appearing for the first time are italicized.	The field panel continuously executes a user-defined set of instructions called the <i>control program</i> .
i	This symbol signifies Notes. Notes provide additional information or helpful hints.
Cross references to other information are indicated with an arrow and the page number, enclosed in brackets: $[\rightarrow 92]$	For more information on creating flowcharts, see Flowcharts [\rightarrow 92].
Placeholders indicate text that can vary based on your selection. Placeholders are specified in bold print, and enclosed with brackets [].	Type A C D H [username] [field panel #].

Manual Symbols

The following table lists the safety symbols used in this manual to draw attention to important information.

Symbol	Meaning	Description
NOTICE	CAUTION	Equipment damage may occur if a procedure or instruction is not followed as specified. (For online documentation, the NOTICE displays in white with a blue background.)
	CAUTION	Minor or moderate injury may occur if a procedure or instruction is not followed as specified.
	WARNING	Personal injury or property damage may occur if a procedure or instruction is not followed as specified.
\land	DANGER	Electric shock, death, or severe property damage may occur if a procedure or instruction is not followed as specified.

Getting Help

For more information about APOGEE products, contact your local Siemens Industry representative.

Where to Send Comments

Your feedback is important to us. If you have comments about this manual, please submit them to SBT_technical.editor.us.sbt@siemens.com

Chapter 1 – Wiring Regulations and Specifications

Chapter 1 discusses the following topics:

- Regulatory Subjects [→ 13]
- Conduit Sharing—Class 1/Class 2 Separations [→ 14]
- Network Wiring Location Restrictions [→ 15]
- Grounding $[\rightarrow 16]$
- National Electric Code (NEC) Communications Requirements [→ 18]
- Conduit Fill [→ 20]
- General Wiring Guidelines [→ 22]
- Controlling Transients [→ 23]
- Wire Specification Tables $[\rightarrow 24]$

Regulatory Subjects

The wiring procedures described in this manual are based on the following:

- National Electrical Code (NEC) requirements, articles 250, 725, and 800
- Underwriter's Laboratories (UL) and Canadian Standards Association (CSA) listing requirements
- ANSI/TIA/EIA-862 Building Automation Systems (BAS) Cabling Standard for Commercial Buildings
- Electromagnetic Interference (EMI) issues
- Economic considerations

Specific details on cable usage and specifications can be found in these guidelines. In some cases, these guidelines are stricter than NEC or local requirements to avoid costly operational problems caused by EMI. This will improve customer satisfaction and decrease the total installed cost of a job by minimizing costly callbacks.

Third-party hardware, such as Digital Equipment Corporation equipment, purchased instrumentation, etc., should be wired according to the manufacturer's recommendations.

Circuit Classes

Article 725 of the NEC applies to building control system installations and defines different classes of circuits. As applied to Siemens Industry, Inc. Building Automation Systems, these are:

- Class 1 Remote Control Circuits
- Class 1 Power Limited Circuits
- Class 2 Power Limited Circuits
- Class 3 Power Limited Circuits

Class 1 Remote Control Circuits

Circuits not exceeding 600 volts, used for controlling equipment. Typically, this covers DO-type circuits used to control motors by energizing motor starters. These DO circuits are also used to control lights and other items through pilot devices such as relays or electro-pneumatic valves.

Class 1 Power Limited Circuits

Circuits not exceeding 30 volts and 1000VA. Typically, this covers power trunks.

Class 2 Power Limited Circuits

Circuits of relatively low power (such as 24 volts and up to 4 amps).

This covers the bulk of our circuits and includes the ALN communication wiring (Ethernet TCP/IP, P2/P3 RS-485, and MS/TP RS-485), all FLN bus wiring (P1 RS-485, LON, and MS/TP RS-485), 24 Vac power trunk wiring (with 100 VA power limit), and DI, AI, and AO circuits.

Class 3 Power Limited Circuits

Circuits of relatively low power but of higher voltage than Class 2 (such as 120 volts and up to 1 amp). This circuit would be achieved if 1 amp fuses were installed in a 120-volt DO-type circuit. This is not a common application.

See the *Field Purchasing Guide* for recommended wire. The wire listed in the *Field Purchasing Guide* has been selected to meet the requirements of the APOGEE product line.

Radio Frequency Transmitter Limitations

Keep devices that can generate Radio Frequency Interference (RFI), such as Electro-pneumatic devices (EPs), relays, and walkie-talkies, at least 12 feet (3.7 m) away from all field panels.

Conduit Sharing—Class 1/Class 2 Separations

Ĭ

NOTE:

Separate knockouts should be used for high voltage and low voltage wiring. Leave at least 2 inches (50.8 mm) of space between the Class 2 wires and other wires in the panel.

Conduit sharing guidelines are based on the National Electrical Code (NEC) requirements that apply to the installation wiring of building automation systems.

- All wire must have insulation rated for the highest voltage in the conduit and must be approved or listed for the intended application by agencies such as UL, CSA, FM, etc. Protective signaling circuits cannot share conduit with any other circuits.
- Class 2 point wiring cannot share conduit with any Class 1 wiring except where local codes permit.
- Where local codes permit, both Class 1 and Class 2 wiring can be run in the field panel enclosure, providing the Class 2 wire is UL listed 300V 75°C (167°F) or higher, or the Class 2 wire is NEC type CM (FT4) (75°C or higher) or CMP (FT6) (75°C or higher).
- NEC type CL2 and CL2P is not acceptable unless UL listed for other type and rated for 300V 75°C (167°F) or higher.
- All low voltage and high voltage wiring must be routed separately within an enclosure so that low voltage and high voltage wiring cannot come in contact with each other.

Network Wiring Location Restrictions

<u> </u>	Only low voltage signal wiring should be run on a low voltage tray. Do not place I/O or trunk wire in a tray used to carry Class 1 power wiring.	

Parallel Wire Runs

Cable tray spacing

The minimum space between adjacent trays or from a top tray to a lower tray.

Cable tray and conduit spacing

The minimum distance between a cable tray and adjacent conduit.

Conduit spacing

NOTE:

i

Use cable tray spacing for non-metallic conduit.

The minimum distance between adjacent conduit runs.

The following guidelines reflect the recommendations given in IEEE 518-1982 for locating network wiring in proximity to sources of interference:

- For (ALN) trunk Als, AOs, and DIs with circuits greater than 120 volts and carrying more than 20 amps:
 - Cable tray spacing = 26 in. (660.4 mm)
 - Cable tray and conduit spacing = 18 in. (457.2 mm)
 - Conduit spacing = 12 in. (304.8 mm)
- For circuits greater than 1000 volts or greater than 800 amps:
 - Cable tray spacing = 5 ft (1.5 m)
 - Cable tray and conduit spacing = 5 ft (1.5 m)
 - Conduit spacing = 2.5 ft (0.8 m)

Grounding

The following topics are discussed in this section:

- National Electrical Code Grounding Guidelines Compliance [→ 16]
- Earth Ground Current Loops [→ 16]
- Single Earth Ground for AI, DI, and AO Circuits [→ 17]
- Equipment Grounding System Requirements [→ 17]

National Electrical Code Grounding Guidelines Compliance

Grounding must comply with National Electrical Code (NEC) guidelines for grounding of electrical equipment. Under no circumstances should equipment be installed in violation of local electrical codes. In most cases, NEC guidelines have been incorporated into local electrical codes.

Earth Ground Current Loops

Earth ground current loops can interfere with AI, DI, and AO circuits. Building electrical grounds connected to the automation system must be referenced to the same potential levels within a facility.

Conduit entering an enclosure must be grounded to the enclosure.

If a poor electrical connection is found, scrape off the paint under the conduit locknut, tighten the locknut, and retest.

Single Earth Ground for AI, DI, and AO Circuits

- AI, DI, and AO circuits cannot be earth grounded at two points.
- The earth ground reference point on the controlling Building Automation System (BAS) equipment is the only place where AI, DI, or AO can be earth grounded; this is dependent on circuit design.

Equipment Grounding System Requirements

Earth Ground Reference

The earth ground reference for all field panels and equipment controllers must be supplied via a third wire run, with the AC power source providing power to that cabinet. All AC power sources must be bonded per NEC 250 unless isolation is provided between the cabinets.

Equipment Grounding Conductor

The NEC and some building authorities allow the use of conduit as the equipment grounding conductor. Field panels require a third wire or heavy wall conduit (with threaded connections) for the equipment grounding conductor. In addition to an equipment grounding conductor, you may use building steel or water pipes to bond AC power sources if these are part of the earth grounding system approved by the Local Building Authority.

When setting up an equipment grounding system, which consists of an equipment ground connected to an earth ground, you must provide a third wire equipment grounding conductor for any products of Siemens Industry. The equipment grounding conductor must connect to neutral at only one point in the system; that point is the neutral side of the transformer providing power to the equipment being installed. The hot, neutral, and third wire conductors must all be contained in the same conduit (see Figure Earth Grounding System [\rightarrow 17]). This third wire may be connected to earth at more than one point (that is, Siemens Industry does not require an isolated equipment grounding conductor).

Grounding of Isolation Transformers and Standby Power Systems

The installation of isolation transformers and standby power systems follow the same rules as equipment grounding requirements. Again, the neutral side of the locally derived power system must be tied to the nearest approved earth grounding system.

NEC Article 250 Specifications

NEC article 250 states that the path-to-ground from circuits, equipment and metal enclosures for conductors shall:

- 1. Be permanent and continuous
- 2. Have capacity to safely conduct any fault current likely to be imposed on it, and
- 3. Have sufficiently low impedance to limit the voltage-to-ground and to facilitate the operation of circuit protection devices.

The NEC requires that all loads on a power source have their neutral side referenced to the power source neutral and that the power source neutral be connected to the earth grounding system at *only one* point. This is very important in preventing ground loops. If building steel is not the shortest path, then you must use a water pipe or other earth ground as designated by the *local authority*. You may still connect to building steel, although the water pipe is your approved earth grounding reference; however, you cannot connect from your source to steel, and then to the water pipe. Each wire must be separate and of the correct gauge.

Fig. 1: Earth Grounding System.

National Electric Code (NEC) Communications Requirements

The following topics are discussed in this section:

- Smoke and Flame Characteristics [→ 18]
- Common Grounding for Communication Circuits [→ 18]

Smoke and Flame Characteristics

The National Electrical Code (NEC) requires that communication and signaling cables in a building shall be listed for both smoke and flame characteristics suitable for the purpose.

Common Grounding for Communication Circuits

NEC Article 800 requires communications circuits to use a common ground. Use one of the following methods:

- Bond service grounds with No. 6 wire per NEC 250.
- Isolate communications circuits on separate services with an HSTIE or Fiber Optic Trunk Interface on each service.

NEC Article 800 covers communication wiring:

СМР	Use in plenums.
CMR	Use in risers.
СМ	General purpose.
СМХ	Residential and restricted commercial.

NEC Article 725 covers Class 1, Class 2, and Class 3 remote control, signaling and power limited circuits:

CL2P	Use in plenums.
CL2R	Use in risers.
CL2	General purpose.
CL2X	Residential and restricted commercial.

NEC Article 760 covers fire protective signaling systems.

FPLP	Use in plenums.
FPLR	Use in risers.
FPL	General purpose.

Multi-purpose cable types can be substituted for the cables listed in the applications shown above. The multi-purpose cable types are as follows:

MPP	Use in plenums.
MPR	Use in risers.
MP	General purpose.
PLTC	General purpose.

The following figure depicts the cable interchanges permitted by the NEC.

Fig. 2: Interchanges Permitted by National Electric Code.

Conduit Fill

All wire must have insulation rated for the highest voltage in the conduit and must be approved or listed for the intended application by agencies such as UL, CSA, FM, etc.

The following tables contain wire specifications. For more information, see Circuit Classes [\rightarrow 14] and Conduit Sharing–Class1/Class2 Separations [\rightarrow 14] in this chapter and Using Existing Wiring [\rightarrow 32] in Chapter 2.

Cables per Conduit Size – Siemens Industry Recommendation

Siemens Industry recommends a 40 percent conduit fill. Use the following table to determine the number of cables (twisted pairs and twisted shielded pairs) per conduit size at 40% fill. Plenum wiring can be used in place of any low voltage wiring without changes to length. The *Field Purchasing Guide* lists the outside diameter for each cable.

Conduit Fill.						
Outside Diameter ¹⁾		Quantity in Conduit at 40% Fill				
	1/2" (12.7 mm)	3/4" (19.1 mm)	1" (25.4 mm)	1 1/4" (31.8 mm)	1 1/2" (38.1 mm)	2" (50.8 mm)
0.325" (8.255 mm)	1	3	4	7	10	16
0.3" (7.62 mm)	2	3	5	8	12	19
0.25" (6.35 mm)	2	4	7	12	17	27
0.225" (5.715 mm)	3	5	9	15	20	34
0.2" (5.08 mm)	4	7	11	19	26	43
0.175" (4.445 mm)	5	9	14	25	34	56
0.15" (3.81 mm)	7	12	20	34	46	76
0.125" (3.175 mm)	10	17	28	49	66	109

¹⁾ Plenum-rated cable generally has a smaller diameter than equivalent non-plenum types. Check specific product tables in this chapter for specific applications where plenum cable must be used in conduit.

Cables per Conduit Size—NEC Requirements

NEC allowable conduit fill is 53 percent for 1 conductor, 31 percent for 2 conductors, and 40 percent for 3 or more conductors. Use the following table to determine the number of cables (twisted pairs and twisted shielded pairs) per conduit size in accordance with NEC fill requirements. The *Field Purchasing Guide* lists the outside diameter for each cable.

- Protective signaling circuits cannot share conduit with any other circuits.
- Class 2 circuits cannot share conduit with Class 1 circuits except as noted.

Nominal Conduit Fill—NEC Requirements.							
Insulated Conductor	Conduit I.D. Area	Quantity in Conduit ²⁾					
O.D. (inches) ¹⁾	Conductor Area (sq. in.)	1/2" EMT 0.622 0.304	3/4" EMT 0.824 0.533	1" EMT 1.049 0.864	1-1/4" EMT 1.380 1.496	1-1/2" EMT 1.610 2.036	2" EMT 2.067 3.356
0.400	0.126	1	1	2	5	6	10
0.390	0.119	1	1	3	5	7	11
0.380	0.113	1	1	3	5	7	12
0.370	0.108	1	1	3	5	7	12
0.360	0.102	1	1	3	6	8	13
0.350	0.096	1	1	3	6	8	14
0.340	0.091	1	2	4	6	9	15
0.330	0.086	1	2	4	7	9	15
0.320	0.080	1	2	4	7	10	16
0.310	0.075	1	3	4	8	11	18
0.300	0.071	1	3	5	8	11	19
0.295	0.068	1	3	5	8	12	19
0.290	0.066	1	3	5	9	12	20
0.285	0.064	1	3	5	9	13	21
0.280	0.062	1	3	5	9	13	22
0.275	0.059	1	3	6	10	13	22
0.265	0.055	1	4	6	11	15	24
0.255	0.051	2	4	7	11	16	26
0.245	0.047	2	4	7	12	17	28
0.235	0.043	3	5	8	14	19	31
0.225	0.040	3	5	8	15	20	33
0.215	0.036	3	6	9	16	22	37
0.205	0.033	3	6	10	18	24	40
0.195	0.030	4	7	11	20	27	45
0.185	0.027	4	8	13	22	30	50
0.175	0.024	5	9	14	25	34	56
0.165	0.021	5	10	16	28	38	63
0.155	0.019	6	11	18	31	43	71
0.145	0.017	7	13	21	36	49	81
0.135	0.014	8	15	24	42	57	94
0.125	0.012	10	17	28	48	66	109
0.115	0.010	11	20	33	57	78	129
0.105	0.009	14	24	40	69	94	155

Nominal Conduit Fill—NEC Requirements.							
Insulated Conductor	Conduit I.D. Area			Quantity	/ in Conduit ²⁾		
0.095	0.007	17	30	49	84	115	189
0.085	0.006	21	37	61	105	143	236
0.075	0.004	27	48	78	135	184	304
0.065	0.003	36	64	104	180	245	404

¹⁾ Plenum rated cable generally has a smaller diameter than equivalent non-plenum types. Check the tables in this section for specific applications where plenum cable must be used in conduit.

²⁾ Based on NEC guidelines. Allowable fill: 53% for 1 conductor, 31% for 2 conductors, and 40% for 3 or more conductors.

General Wiring Guidelines

When installing an APOGEE Automation System in a building that is already equipped with a Building Automation System (BAS), the existing wiring can be used if the general guidelines in this section and the specific guidelines in Chapter 2 – Network Electrical Systems [\rightarrow 27]are followed.

In many instances, existing conductors in a building may also be used for the trunk as long as they meet the requirements listed in the Network Electrical Systems [\rightarrow 27] chapter.

- Only APOGEE low voltage input signals are present in multi-pair cables.
- Multi-pair cable containing inductive loads is not shared with any APOGEE trunk or input wiring.
- All wiring, equipment controllers, and field panels are at least 5 ft (1.5 m) away from power sources greater than 100 kVA.

NOTE:

Verify motor generator size. Direct on line (DOL) starters for motors greater than 25 hp generally exceed 100 kVA.

- All equipment controllers and field panels are at least 5 ft (1.5 m) away from variable speed drives and variable frequency drives.
- Wire runs are limited to the lengths shown in specific product tables in this guide.
- Twisted pair or twisted shielded pair cable is used according to the specific product tables in this guide.
- Conduit-sharing rules in specific product tables in this guide are used.

No electrical equipment such as PEs, EPs, relays, etc., can be mounted and wired in any APOGEE field panel or equipment controller unless it is specifically mentioned in the product literature. This equipment can radiate electrical noise to the circuit boards. The metal enclosure of the control cabinet will shield the electronics from equipment outside the enclosure.

Controlling Transients

Any sensor or communication wiring that is exiting a building must have transient protection; effective protection requires proper wiring (grounding). Where protection is needed, use the parts listed in the following table.

MOV Part Numbers.			
Part Number	Description	Application	
540-248	MOV (3)60V Ipk 1200 amp	(25 pack) 3 MOV pre-twisted for use on 24 Vac 3-wire power terminals.	
550-809 P10	MOV 60V lpk 4500A	(10 pack) MOV with ¼-inch spade terminals for use across flow switch power in VAV boxes.	

The parts listed in the following table must be ordered from an external supplier.

MOV Information—Order from an External Supplier.			
Description	Application		
MOV 30V lpK 2000 amp	24 Vac input power for use at transformer with earth grounded secondary neutral.		
MOV 60V lpK 1200 amp	TEC damper/actuator 24 Vac outputs.		
MOV 150V lpK 6500 amp	For use across the power line in 102V - 132V applications.		
MOV 208 – 250V lpK 1200 amp	Termination boards or Controllers with on board digital outputs that do not have MOVs should use this part across the digital outputs. Not for use across power lines.		
	Products without digital output MOVs: DXR2, PTM6.2Q250(-M) and TXM1.6R(-M).		
	Products with digital output MOVs: Compact, ATEC, TEC, BTEC, PTEC		
MOV 275V lpK 2500 amp	For use across the power line in 180V - 265V applications.		
Receptacle Assembly with MOVs	Duplex 15A or 20A outlet with three 150V IpK 6500 MOVs configured for 102 - 132V across the line applications (two line-to-line MOVs and one line-to-earth ground MOV).		
Ground Wire	12AWG with captive screw, for connecting 24 Vac neutral from Transformer to grounded enclosure chassis Protective Earth (PE) "" attachment point, or for connecting Equipment Controller "E" or "GND", or Field Panel "" to enclosure chassis in locations with high levels of electrical noise that interfere with controller operation.		

Network Terminators

Terminate Networks were required using following parts.

	Terminator Part Numbers.				
Part Number	Description	Application			
550-975P100	3-Wire Network Terminator, Pkg. of 100	The 3-wire network requires a new network terminator. The new terminator is a 120 ohm 1/2W carbon composition resistor. One terminator must be placed at each end of the 3-wire network section.			
550-974P10	3-Wire Network RS-485 Reference Terminator, Pkg. of 10	The nodes that use a 3-wire network interface must have the RS-485 reference wire (yellow) of the network cable terminated to EARTH GROUND at ONE END ONLY through an RS-485 reference terminator.			
538-664	PMD Trunk Terminator	The 2-wire P2 network terminator is a 120 ohm 1/2W carbon composition resistor in series with two surge diodes forming a capacitor. One terminator must be placed at each end of the 2-wire network section.			
985-124	499 OHM RESISTOR ASSEMBLY KIT	Converts 4 – 20 mA to 2 – 10 V input signal for devices that do not have current inputs. Consists of 499 Ohm, $\frac{1}{2}$ W, 1% metal film resistor with 4 $\frac{1}{2}$ " 18 AWG 300V insulated leads.			

Wire Specification Tables

NOTE:

Wire that meets these specifications can be ordered from the *Field Purchasing Guide* under Siemens Industry corporate pricing agreements.

ALN, FLN, and TX-I/O IBE 3-Wire Cable. ¹⁾			
Cable configuration	1.5-Pair (1 TP & 1 Conductor) w/overall Shield and drain wire		
Gauge	24 AWG (stranded)		
Capacitance	12.5 pf/foot or less		
Twists per foot	4 minimum		
Shields	100% foil with drain wire		
NEC class	UL listed, CM, CMP (75°C or higher)		
CEC class	FT4, FT6 (75°C or higher)		

¹⁾ Required for ALN, FLN, and BACnet MS/TP networks that use the new 3-wire interface, (¹/₂ - +); preferred for TX-I/O island bus expansion. For PXC Compact, PXC Modular, P1 BIM, and BACnet equipment controllers, use the Network Wiring Requirements Decision Tree [→ 35] in Chapter 2 to determine if 1.5-pair or 1-pair cable should be used.

ALN, FLN (P1), Point Expansion Trunk, and TX-I/O IBE. ¹⁾				
Cable configuration	Twisted shielded pair (TSP)			
Gauge	24 AWG (stranded)			
Capacitance	12.5 pf/foot or less			
Twists per foot	4 minimum			
Shields	100% foil with drain wire			
NEC class	UL listed, CM, CMP (75°C or higher)			
CEC class	FT4, FT6 (75°C or higher)			

¹⁾ For use with older 2 -wire networked products. (TEC, SCU, MEC, PXM, MBC). May be used for TX-I/O island bus expansion.

Class 1 Power Trunk. ¹⁾				
Cable configuration	3 conductor			
Gauge	12 AWG or 14 AWG THHN			
UL type	THHN			

¹⁾ Circuit breaker sizes: 20 amp for 12 AWG THHN and 15 amp for 14 AWG THHN. Assumes minimum voltage of 102 Vac at circuit breaker and 5 Vac maximum voltage drop (97 Vac at loads).

Class 2 Power Trunk.			
Cable configuration	2 conductor		
Gauge	14 AWG, 16 AWG, 18 AWG, 20 AWG		
UL type	CL2, CL2R, CL2P		
CSA type	FT4, FT6		

Wire Specification Tables

Class 2 for Point Usage Only (in Conduit and per Local Codes). ¹⁾			
Cable configuration	Twisted pair (unjacketed) or TSP		
Gauge	No. 18 to No. 22 AWG (stranded)		
Capacitance	N/A		
Twists per foot	4 minimum		
Shields	Not required (in case of TSP, 100% foil with drain wire)		
UL (CSA) listed voltage rating	300 Vac		
UL (CSA) listed temperature rating	75°C (167°F) or higher		

¹⁾ 300 Vac wire can be used in field panels containing voltages below 150 Vac.

Class 2 for Low-Voltage Applications Only (Except Trunk).			
Cable configuration	Twisted pair or Twisted shielded pair (TSP)		
Gauge	No. 18 to No. 22 AWG (stranded)		
Capacitance	N/A		
Twists per foot	4 minimum		
Shields	Not required (in case of TSP, 100% foil with drain wire)		
UL type	CM, CMP, CMR (75°C or higher)		
CSA type	FT4, FT6 (75°C or higher)		

Ethernet Basic Link.			
Cable configuration	4 Unshielded Twisted Pair (UTP)		
Gauge	24 AWG (solid)		
Capacitance	17 pf/foot @ 1 KHz, 1 MHz		
IEEE 802.3	Category 5e or better		
Shields	Optional where required		
UL type	CM, CMP, CMR (75°C or higher)		
CSA type	FT4, FT6 (75°C or higher)		

Ethernet Patch Cable.			
Cable configuration	2 or 4 Unshielded Twisted Pair (UTP)		
Gauge	24 AWG (stranded)		
IEEE 802.3	Category 5e or better		
UL type	CM, CMP, CMR (75°C or higher)		
CSA type	FT4, FT6 (75°C or higher)		

Punch Down Block Jumper Cable.			
Cable configuration	1 Unshielded Twisted Pair (UTP), no jacket		
Gauge	24 AWG (solid)		
IEEE 802.3	Category 5e or better		
UL type	CM, CMP, CMR (75°C or higher)		
CSA type	FT4, FT6 (75°C or higher)		

LON Networking Wiring.			
Cable configuration	Unshielded or shielded pair		
Gauge	22 AWG (stranded)		
Capacitance	17 pf/foot @ 1 KHz, 1 MHz		
UL type	CM, CMP, CMR (75°C or higher)		
CSA type	FT4, FT6 (75°C or higher)		

TX-I/O Island Bus Wiring. ¹⁾			
Cable configuration	1 Twisted Shielded Pair (TSP) + 1 Twisted Shielded 3C (Triad)		
	-or- 1 Twisted Shielded 4C		
	-or- 2 Twisted Pair (TP)		
Gauge	14 or 16 AWG (stranded)		
Capacitance	54 pf/ft or less		
Twists per foot	3 to 4		
Shields	100% foil with drain wire (except TP)		
NEC class	UL listed, CM, CMP (75°C or higher)		
CEC class	FT4, FT6 (75°C or higher)		

¹⁾ See TX-I/O Island Bus Guidelines [\rightarrow 91] in Chapter 3 for cable configuration.

KNX/PL-Link Signal and Power Cable.			
Cable configuration	1 Twisted Shielded Pair (1 TSP)		
Gauge	No. 18 to 20 AWG (solid BC)		
Capacitance	32pf/ft, (70pf/ft 18 AWG)		
Twists per foot	3 to 4		
Shields	100% foil with drain wire (<i>do not</i> connect drain wire to earth ground).		
NEC class	UL listed, CMP (300 Vac, 75°C or higher)		
CEC class	FT6, (300 Vac, 75°C or higher)		

Chapter 2 – Network Electrical Systems

Chapter 2 discusses the following topics:

- Dual Port Ethernet Controller Topology Basics [→ 27]
- Ethernet Communications Wiring [→ 30]
- RS-485 MS/TP Communications [→ 33]
- RS-485 ALN (P2/P3) and FLN (P1) Trunk Communications Wiring [→ 45]
- RS-485 ALN and FLN (P1) Communications Wiring on Structured Cabling [→ 52]
- LONWORKS FLN Communications Wiring [→ 59]
- Power Trunk Guidelines [→ 64]

Dual Port Ethernet Controller Topology Basics

The most important aspect of dual port Ethernet controller topology is that it meets the requirements of the application with regard to fault tolerance.

- Fault Tolerant Loop (Ring) Topology with Spanning Tree Protocol (STP)
- Issues with Non-Fault Tolerant Line (Chain) Topology
- Fault Tolerant Loop (Ring) Topology with Rapid Spanning Tree Protocol (RSTP)
- Fault Tolerant Star (Home Run) Topology

Fig. 3: Dual Ethernet Connection Using Up to 90m Solid Copper Cable and Jack Boxes.

Fig. 4: Dual Ethernet Connection Using Up to 30m Stranded Copper Patch Cables.

Requirements for Fault Tolerant Loop Topology with STP

- Controllers include embedded 3 port switch supporting STP and one IP Address
- Loop of up to 8 controllers installed in a line configuration with maximum cable distance of 810 m (2655 ft) consisting of 9 × 90 m (295 ft) runs between RJ45 jacks
- Managed Ethernet switches with STP support complete the loop configuration providing active 10/100BaseTX switch ports at each end of the controller line
- Forwarding is enabled on switch port connected to first controller upstream port 1
- Forwarding is disabled (blocking) on switch port connected to the last controller downstream port 2 to prevent loop from creating communication storm
- Controller fault such as power loss, malfunction or disconnect from the RJ45 jacks causes blocking switch port to changes state to forwarding so that downstream controllers are reconnected
- Controller fault correction causes downstream switch to resume blocking
- Network management using Internet Group Management Protocol (IGMP) allows alarming as otherwise, a line failure by the customer remains unknown
- Multiple STP loops may be installed in parallel as long as no two loops exceed 17 controllers
- No third-party devices or other switches will be installed in the loop

Forwarding by left switch.

Fig. 5: Wiring Diagram one Line of up to 8 Dual Port Ethernet Controllers within a STP Loop Configuration (fault tolerant).

Issues with Non-Fault Tolerant Line Topology

- Controller fault such as power loss, malfunction or disconnect from the RJ45 jacks causes all downstream controllers to lose connectivity until fault is corrected
- No network management for alarming a line failure so the fault location and status remains unknown by Customer

Fig. 6: Wiring Diagram one Line of Dual Port Ethernet Controllers (not fault tolerant downstream will lose connectivity).

Requirements for Fault Tolerant Loop Topology with RSTP

- Ethernet Bridges and Managed switches with support for RSTP.
- RSTP is interoperable with dual port Ethernet controllers which include embedded 3 port switch supporting STP and one IP Address
- RSTP allows larger loops of up to 20 controllers installed in a line configuration with maximum cable distance of 1890 m (6200 ft) consisting of 21 x 90 m (295 ft) runs between RJ45 jacks
- RSTP allows faster 10-30 second network fault recovery using discarding port
- Network management using Internet Group Management Protocol (IGMP) allows alarming as otherwise, a line failure by the customer remains unknown
- Multiple STP loops may be installed in parallel in RSTP configuration as long as no two loops exceed 40 controllers
- No third-party devices or other switches will be installed in the loop (BPDU messages must be transmitted transparently to the management switch)

Fig. 7: Logical Diagram multiple Lines of up to 20 Dual Port Ethernet Controllers within a RSTP Configuration (fault tolerant).

Requirements for Fault Tolerant Star Topology

- Ethernet switches must provide one active 10/100BaseTX port for each controller
- Maximum cable distance 90m between RJ45 jacks at switch and controller
- Switch active port connects to controller upstream port 1
- Controller downstream port 2 is not used
- Switch ports must be active at time of BACnet/IP commissioning
- Controller fault does not impact other controllers

Fig. 8: Star Topology requires one switch port for each controller.

Ethernet Communications Wiring

Preferred Cable Type

Standard TIA/EIA 802.3 (IEEE Std 802.3 or ISO/IEC 8802-3) provides background material on the basic functioning of the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) packet network. Wiring guidelines for TIA/EIA 802.3 links are described in ANSI/TIA/EIA-568-B.1, Commercial Building Telecommunications Cabling Standard and ANSI/TIA/EIA-606 Cabling Administration.

To minimize risk and reduce installed costs of Ethernet communications wiring, use the cables listed in the following table for all estimates and installations.

Preferred Cable Type.					
Eq	uipment	Connection Requirements	Basic Link *	Patch Cable*	Jacks and Patch Panels
•	MLN ALNs: – Ethernet	10Base-T (10 Mbps)	IEEE 802.3 Category 3 certified solid cable or better, terminated in the field panel or at the computer with a standard RJ-45 jack.	IEEE 802.3 Category 3 certified stranded cable or better.	IEEE 802.3 Category 3 certified RJ-45 connectors or better.
• • •	 BACnet/IP AEM Hubs Switches Routers Network Interface Cord 	100Base-TX (100 Mbps)	IEEE 802.3 Category 5e certified solid cable or better, terminated in the field panel or at the computer with a standard RJ-45 jack.	IEEE 802.3 Category 5e certified stranded cable or better.	IEEE 802.3 Category 5e certified RJ-45 connectors or better.

*See Wire Specification Tables [\rightarrow 24] in Chapter 1.

MLN—Workstation to Ethernet Wiring

The Insight server and client workstations operate a Management Level Network (MLN) connected directly to an Ethernet network. The Ethernet type is TCP/IP running at 10Base-T minimum including connections between each switch. See Figure *Workstation to Ethernet Wiring*.

Fig. 9: Workstation to Ethernet Wiring.

ALN—Workstation to Field Panel Ethernet Wiring

The Insight server and client workstations operate a Management Level Network (MLN) connected directly to an Ethernet network. The Ethernet type is TCP/IP running at 10Base-T minimum including connections between each switch. See Figure *Workstation to Ethernet Wiring*.

Ethernet/IP ALN

APOGEE Ethernet/IP uses a TCP/IP-based Automation Level Network (ALN) that communicates over a customer Ethernet cabling and IP network to reduce overall system and maintenance costs. Otherwise, system operation is identical to existing RS-485 ALN installations. See the Table Preferred Cable Type [\rightarrow 30] for Ethernet ALN cabling requirements. Wiring from the Ethernet switch to the Insight workstation or BACnet/IP field panel uses the same wiring guides as the MLN. See the section MLN—Workstation to Ethernet Wiring [\rightarrow 31] in this chapter.

BACnet/IP ALN

The BACnet client supports communication with BACnet devices over Ethernet or TCP/UDP.

Wiring from the Ethernet switch to the CT workstation or BACnet/IP field panel uses the same wiring guides as the MLN. See the section MLN—Workstation to Ethernet Wiring [\rightarrow 31] in this chapter. Cabling requirements are the same as for Ethernet ALN devices; see the Table Preferred Cable Type [\rightarrow 30].

APOGEE Ethernet Microserver (AEM)—Remote ALN

The APOGEE Ethernet Microserver (AEM) allows a single field panel to be connected directly to an Ethernet network. This AEM field panel may host an RS-485 up to a maximum of 99 RS-485 field panels. See the following figure for an example of an AEM layout.

Fig. 10: Workstation to Ethernet Wiring Using an AEM.

The AEM uses the TCP/IP communications protocol and connects to Ethernet via a 100Base-TS or 10Base-T half duplex switch or switch port and to the APOGEE field panel using the RS-232 modem port. The AEM can auto-connect to 10Base-T or 100Base-TX half duplex switch port (switch speed should be fixed).

NOTE:

Actual communication speed of hosted RS-485 ALN is 38400 bps so it is recommended to keep the number of hosted field panels to 40 and to monitor resident BATT point to ensure fastest recovery after power loss.

Using Existing Wiring

Configure IP addresses or DHCP names before plugging the AEM into the 10Base-T or 100Base-TX connector.

Existing Category 3 Ethernet wiring may be used, but connection is limited to 10Base-T. Category 5e or better cables (basic link, L1, L2, L3), jacks, and patch panels allow 100Base-TX operation with appropriate network equipment and are recommended for new installations. The solid copper basic link must be pulled into the field panel and terminated with an RJ-45 jack and connected to the AEM with an L1 patch cable. All wiring and connections should be certified Category 5e or better by the vendor.

RS-485 MS/TP Communications

Inter-node protocol communications on P1, P2 and BACnet MS/TP networks take place over RS-485 physical media.

- This media is defined as a 2-wire half-duplex, differential multipoint serial connection.
- The EIA standard also specifies a third wire interconnection.
 - This third wire connection is important to maintaining signal integrity in systems encompassing large networks in electrically noisy environments.
 - In some cases, the third wire reference is earth ground. In other cases, an actual third reference wire is run between all nodes.

Isolation may also be provided between the controller main electronics (earth referenced side) and the network. Interoperability between nodes with different grounding schemes and isolated versus non-isolated can be maintained by using guidelines discussed in this section.

Operating in Electrically Noisy Environments

Non-isolated network interfaces that are referenced to earth at each node are much more susceptible to noise due to differences in the earth ground potential. Large equipment often injects noise into the earth grounding system when starting, stopping, or changing speeds. (VFDs, with their carrier frequencies of 3 to 10 KHz and high harmonics, are right in the RS-485 communications baud rate band.)

Fig. 11: PWM Waveform Phase A to B.

Local surges from lighting and power grid switching cause more noise. If this noise is over the common mode voltage acceptable by the RS-485 interface circuits, it causes interruptions in communications.

3-wire RS-485 Network Interfaces

In order to provide higher noise immunity and high data reliability, the network interfaces for Siemens Industry RS-485 interfaces now provide the RS-485 common reference signal in the network interface connector. Older 2-wire interfaces provided the +/- signal lines and Earth (or in some cases just a convenient tie point (FLN devices)). By providing the RS-485 circuit common reference signal, all 3-wire nodes wired using a new 1.5-pair shielded cable are referenced together.

The older 2-wire circuit uses a capacitive connection to earth as the reference, which is more susceptible to earth ground noise. 2-wire connections are still supported per the Network Wiring Requirements Decision Tree, but 3-wire connections are highly recommended, especially for all new interfaces that provide a true 3-wire connection.

The use of 1-pair or 1.5-pair cabling is not a requirement of the RS-485 protocol. It is a result of the electrical interface, which was changed starting with the PXC Compact, PXC Modular, and P1-BIM.

Using Cimetrics Routers on an APOGEE BACnet MS/TP Network

NOTE

Cimetrics routers may only be used for non-smoke control applications.

Although Cimetrics BACnet routers are not the preferred solution, they may be used on an APOGEE BACnet MS/TP network. In order for Cimetrics routers to work properly, they must be wired as shown in the following illustration.

- Only one router is allowed per isolated network section and it must be an end device.
 - Limiting each isolated network section to one router and using 1.5-pair cable with the reference connection near the router minimizes the voltage difference between the two ground references.
 - The limitation of one router per network section is due to the type of environment in which the controllers are normally installed. Very few APOGEE network installations can be considered electrically quiet. For example, a small-sized office environment may be electrically quiet.
- The Cimetrics router's RS-485 circuitry is **not** earth grounded unless the paint on the chassis is removed and the chassis is then connected to earth.
 - In addition, an internal "Z" jumper must be removed to help ensure that the RS-485 circuit is isolated from earth.
 - In order to keep the Cimetrics router an isolated device, **do not** tie the chassis to earth.
- If Polycool devices are used on the network, do not enable the line termination feature.
- 1.5-pair cable is highly recommended. Using 1 TSP cable reduces noise immunity.
- The following must be done if single-pair cable is used:
 - The network must be terminated with 120 ohm resistors (550-975P100).
 - Do not tie the shield to the third terminal on the network plug. Instead, use a wire-nut to bypass the shield and make a continuous shield connection as shown in the following figure.

Fig. 12: Using Cimetrics Routers on an APOGEE BACnet MS/TP Network.

Network Wiring Requirements Decision Tree

3-Wire Interface Nodes

NOTE:

The wiring method for devices with a 3-wire interface is the same whether they are on a BACnet ALN or FLN.

The following table outlines the Siemens Industry devices that were re-released with 3-wire RS-485 network interfaces.

3-Wire RS-485 Network Interface Terminal Wiring (Using 1.5-Twisted Shielded Pair Cable).				
Product Name	Network Protocol ²⁾	Terminal Usage ³⁾	Terminal for 2-Wire ⁴⁾	Network Electrical Loading ¹⁾
DXR2.M	BACnet MS/TP	÷- +		1/8
BACnet Actuator (550-430, 550-431)	BACnet MS/TP	<u></u> . +	E	1/8
BACnet Short Platform (550-432, 550-433)	BACnet MS/TP	<u></u> . +	E	1/8
BACnet Long Platform (Updated Version) (550-490, 550-491, and 550-492)	BACnet MS/TP	ų- +	E	1/8
MSTP-BIM (TXB3.M)	BACnet MS/TP	∜ - +		1/8
PXC Compact	ALN/FLN (P2, P1, MS/TP)	÷- +	Ę	1/8
PXC Modular	ALN/FLN (P2, P1, MS/TP)	S - +	Ē	1/8
P1-BIM (TXB1.P1, TXB1.P1-4)	FLN (P1)	S - +		1/8

¹⁾ RS-485 spec allows for 32 electrical loads on a section of network cabling (a network repeater allows for more devices). Electrically 32 full loads (factor 1) have same resistance as 256 x 1/8 load devices.

²⁾ RS-485 communication traffic and speed will limit number of MSTP devices per ALN/FLN, refer to BACnet Application Guide. Typical limit is 10 devices for MSTP ALN while limit is 50 devices per MSTP FLN at 76800 bps.

 $^{3)}$ RS-485 network common may be marked with S, but functions as $\rlaparklef{lem:stars}$.

⁴⁾ Terminal must be connected to earth ground for compatibility with 2-wire (1-Twisted Shielded Pair) cable.

1.5-Pair Network Cable

The network cable recommended for use with the 3-wire (isolated RS-485 common) is a single pair cable with third wire (1.5-pair) that is used to tie the RS-485 reference (communication common) of all the nodes on the network together.

All the Siemens Industry products listed in the Table 3-Wire RS-485 Network Interface Terminal Wiring (Using 1.5-Pair Cable) use the 3-wire interface.

- By providing the RS-485 ground signal of the interface to the network termination plug, all node communication ports can be referenced together providing a high degree of noise immunity.
- The RS-485 common reference wire is terminated at one point (and only one point) to earth ground.
- An overall foil shield and drain wire provide additional noise protection.

i
The 1.5-pair cables can be found in the *Field Purchasing Guide*, section 14-01 (http://iknow.us009.siemens.net/fpg/sec14-01/default.asp). See the following table.

- Contact the cable supplier listed in the *Field Purchasing Guide* for availability. Some cable may be special order if it has never been stocked.
- The decision to use the orange jacket cable or orange jacket with blue stripe cable is up to the user/customer. The only difference in the cables is the addition of the blue stripe, which can be useful to indicate a different protocol usage.

Recommended 1.5-Pair Cable Types.				
Cable type Plenum Rating Description		Use		
1.5-pair	plenum	orange jacket with blue stripe	FLN	
1.5-pair	non-plenum	orange jacket with blue stripe	FLN	
1.5-pair	plenum	orange jacket	ALN	
1.5-pair	non-plenum	orange jacket	ALN	

In all cases, cable impedance is 120 ohms.

1.5-pair cable is highly recommended for installation in electrically noisy environments, such as near VFDs, large inductive loads, high voltage circuits greater 480 Vac, and any time the network is expected to cross a building earth ground differential (between two connected buildings that may have slightly different earth ground potentials). See the Network Wiring Requirements Decision Tree [\rightarrow 35] for recommended cable usage.

- For any new installation, the choice of cable should be made for the entire network.
- It is not acceptable to switch back-and-forth between 1-pair and 1.5-pair cable.
- The use of the shield as the third wire is prohibited.
- When using a 1-pair cable on devices with the 3-wire interface, the shield should be daisy-chained through the controller and not connected to the "S" pin or 4. The shield bypasses the controller using wire nuts to continue the shield.

1.5-pair Cable Specifications

1.5-pair Cable Specifications.			
Twisted Pair			
• Gauge	24 AWG (stranded)		
Capacitance	12.5 picofarad/foot (conductor to conductor) 24 picofarad/foot (conductor to shield)		
Twists per foot	4		
Reference Wire	24 AWG stranded, 3 inch lay with twisted pair		
Shield	100% overall foil		

Fig. 14: Figure. 1.5-pair Cable.

Network Loading

The RS-485 specification allows 32 full load devices on a section of network cable before a repeater is required. Most Siemens BACnet nodes are 1/8 load devices, so. in theory, you could place 256 on a network section. Response times normally limit the maximum number of devices on a network to lower values of around 96 devices.

The PXC Modular, PXC-36, and P1 BIM have 1/4 or 1/8 load interfaces, which would allow for a maximum of 128 devices on a network section. These limits are strictly electrical load limits, please check the network manager/next higher controller specs for limits on the total number of addressable nodes on a network.

The network distance for a fully or partially loaded network is 4000 feet (1220 meters) at a maximum network speed of 76.8K bps. Lower speeds do not mean longer network sections are possible. The maximum network section is 4000 feet. Network repeaters can be used to extend this distance.

To determine how many devices can be on a network section, add up all the loading numbers and do not exceed 32. Many third-party devices have full load interfaces. Check the manufacturer's literature for network loading information.

Network Cable Sharing and Distances from Higher Power Cables.
Network cable installed environment
Never run network cabling closer than 5 feet to a Variable Frequency or Variable Speed Drive except at the point where the network must connect to the VFD/VSD. Network entry into a VFD must be through separate conduit and all network wiring must be kept as far as possible for high power cabling in the drive.
Never run network cable closer than 5 feet from circuits carrying 100KVa or greater. Always cross high power cables (at a distance of 5 feet) at a 90 degree angle.
Network run in open cable trays with circuits carrying over 20 amps should be no closer than 26 inches to the higher power cables
Network run in enclosed trave with circuits carrying over 20 amos should be no closer than 18 inches to

Ν the higher power cables.

Fig. 15: 3-Wire (1.5 pair) Network Wiring Detail.

Chapter 2 - Network Electrical Systems

RS-485 MS/TP Communications

NOTE:

When replacing nodes that use a 3-wire interface on existing 2-wire networks, use the following wiring method.

RS-485 MS/TP Communications

Fig. 17: Replacing a 2-Wire Node with a 3-Wire Node.

Network Repeater for 3-Wire Networks

When placing nodes on a network repeater, (capable of supporting 3-wire networks), use the following sample connection methods. An RS-485 repeater that supports 3-wire interface cabling methods can be purchased from Black Box, (Model ICD107A along with 12Vdc power source (PSD100). This repeater is fully optically isolated. This repeater is recommended whenever cable is run between two buildings or sections of building supplied from separate power sources. Black Box can be found in the *Field Purchasing Guide* section 16-05 (http://iknow.us009.siemens.net/fpg/sec16-05/default.asp).

- Network traffic is only allowed to go through two repeaters in series.
- Baud rate and mode switches must be setup to conform to network speed and half duplex 2-wire (vs. 4-wire) operation

The following figures depict several scenarios for network repeater usage.

RS-485 MS/TP Communications

RS-485 MS/TP Communications

Fig. 19: Intra-Building Repeater or Mixed 1pr & 1.5Pr Cable.

3-Wire Network Terminator (550-975P100, Pkg. of 100)

The 3-wire network requires a new network terminator. The new terminator is a 120 ohm 1/2W carbon composition resistor. One terminator must be placed at each end of the 3-wire network section.

3-Wire Network RS-485 Reference Terminator (550-974P10 Pkg. of 10)

The nodes that use a 3-wire network interface must have the RS-485 reference wire (yellow) of the network cable terminated to **EARTH GROUND** at **ONE END ONLY** through an RS-485 reference terminator (shown below). The RS-485 reference terminator consists of a PTC thermistor (polyfuse device) and wire to allow connection to earth ground. A PTC was chosen in case the third wire of the network cable, (the common reference between all 3-wire nodes), is accidentally grounded to earth ground at a second location that could cause high ground currents to flow, due to a difference in earth ground potential. The PTC would open during the short condition if large currents start to flow in the reference wire. Without the PTC or 100 ohm resistor, sufficient current could flow to damage the cable. The PTC will return to normal resistance (less than 1 ohm) when the fault condition is removed.

Before the RS-485 reference terminator is installed, the third wire (yellow) must be tested with a DMM to insure it is not already connected to earth ground. If the wire is connected to earth ground the fault condition must be remedied before terminating the wire using the RS-485 reference terminator.

Fig. 20: Network RS-485 Reference Terminator.

BACnet Nodes on Siemens Controllers or Third-Party Equipment (Using 1.5 pr cable)

Not all Siemens Building Technologies provide a 3-wire MS/TP network interface. In order to connect to a 3-wire network use the following diagram as a guide. This guide may also be used when connecting to third-party controllers that support a 2-wire interface. If the Master node supports a 3-wire network, then wire the network in the same manner as the BACnet slaves. The RS-485 common must be referenced to earth ground through the RS-485 reference terminator (550-974P10) at one end of the network, (master end preferred).

Depending on the manufacturer, the third wire on 3-wire network interfaces has several names (for example: Ref, Ground, Com. SC (Signal Common), R (for Reference), GND, SG (Signal Ground)).

SBT chose the General Ground symbol (+) as the international symbol for Equipotential Point versus protective/earth ground or noiseless ground. Some early

BACnet controllers may be marked with the earth symbol () or the **S** designation. This pin is not the termination point for the shield of the communications cable.

NOTE:

The symbol ($\frac{1}{2}$), is the symbol being used to represent RS-485 communications common reference.

Early versions of some controllers may show the earth ground symbol (合) or the "S" designation.

44 | 231

RS-485 ALN (P2/P3) and FLN (P1) Trunk Communications Wiring

3-Wire Network Interface

Fig. 21: BACnet Nodes on Siemens Controllers or Third-Party Equipment.

RS-485 ALN (P2/P3) and FLN (P1) Trunk Communications Wiring

BACnet RS-485 FLN

The BACnet FLN supports communication for BACnet devices over 2-wire RS-485 trunks.

Wiring from the field panel FLN port to the BACnet device uses the same wiring guidelines as the RS-485 FLN (P1) trunk. See the Table 1.5-pair Cable Specifications $[\rightarrow 37]$.

See the section RS-485 MS/TP Communications [\rightarrow 33] for connecting 3-wire RS-485 trunks.

Multi-Drop Trunk Cabling Limits

The following table provides the maximum wiring distances per 2-wire RS-485 trunk section. At bit rates over 9600 bps, no stubs or tees are permitted in the trunk cabling. A Trunk Terminator is required at each end of the trunk section at speeds over 9600 bps. See Figure Multi-Drop Trunk Terminator [\rightarrow 49].

Distance per 2-wire Trunk Section. ^{1,2} (Using Recommended Cabling—Based on Cable Wire to Wire Capacitance.)								
				Speed and	Maximum Dis	tance		
Trunk Type	4800 bps	Max. Distance	9600 bps	Max. Distance	19.2K – 57.6K bps	Max. Distance	> 57.6K bps	Max. Distance
ALN Trunk	18 AWG	10,000 ft (3048 m)	18 AWG	4,000 ft (1219 m)	N/A			
ALN Trunk	20 AWG	4,000 ft (1219 m)	20 AWG	4,000 ft (1219 m)				
ALN Trunk	24 AWG	4,000 ft (1219 m)	24 AWG	4,000 ft (1219 m)	24 AWG (Low Cap)	4,000 ft (1219 m)	24 AWG (Low Cap)	3,280 ft (1 km)
FLN Trunk	18 AWG	5,000 ft (1524 m)	N/A					
FLN Trunk	20 AWG	4,000 ft (1219 m)						
FLN Trunk ³	24 AWG	4,000 ft (1219 m)	24 AWG	4,000 ft (1219 m)	24 AWG (Low Cap)	4,000 ft (1219 m)	24 AWG (Low Cap)	3,280 ft (1 km)

¹⁾ A trunk section is referenced as a length of cable that is electrically isolated from another cable. Electrical isolation is obtained with network devices such as HSTIEs, TI2s, and Fiber Optic TIs.

²⁾ The maximum amount of cable per logical trunk may be extended beyond the maximum physical trunk segments limits shown in this table via network devices, such as the HSTIE or TIE, that function as Trunk Extenders. See HSTIE Usage in this chapter for more information.

³⁾ Reduce the FLN trunk length by 20 feet (6 m) for every BACnet TEC on the FLN above 150 devices.

RS-485 ALN Trunk Shield Connection Using 2-Wire Cabling

NOTE:

i

ALN trunk terminal "S" is grounded or connected to the field panel case. It is used only to provide a shield connection for the ALN trunk cable. NEC Article 800 does not allow a communication cable to provide a ground path between equipment chassis. The Figure *RS-485 ALN Trunk Shield Connection* shows how the ALN trunk shield is connected to only one field panel marked "OUT" and is tied back at the field panel marked "IN".

Fig. 22: RS-485 ALN Trunk Shield Connection.

- 1. The "S" pin of the PXC-C and PXC-M must be left open, see NOTE.
- 2. The "E" pin of the MEC and the 🗇 pin of the PXC Compact and PXC Modular must be tied to earth ground.
- 3. The "S" pin of the MEC, MBC, SCU, and FLNC is earth grounded so the shield conductor can be connected there.

NOTE:

The equipotential symbol (±), is the symbol being used to represent RS-485 communications common reference.

Early versions of some 3-Wire controllers (PXC Compact, PXC Modular, P1-BIM,

Long Platform BACnet TECs and BACnet Equipment Controllers) may show the

earth ground symbol () or the "S" designation.

i

RS-485 FLN (P1) Trunk Shield Connection

3.

NOTE: The symbol (\downarrow), is the symbol being used to represent RS-485 communications common reference.

Early versions of some controllers may show the earth ground symbol () or the "S" designation.

FLN trunk terminal "S" is not grounded or connected to the equipment controller case. It is used only to tie shields together. The Figure *FLN P1 Trunk Connection to TEC— Electronic Output* shows how the FLN trunk is connected to electronic output Terminal Equipment Controllers.

Fig. 23: RS-485 FLN (P1) Trunk Shield Connection—Electronic Output.

- * Field Panel Notes (FP begins shield earth ground)
- ^{1.} MBC, SCU & FLNC: connect shield to FLN "S" pin; earth ground is internally connected.
- ^{2.} MEC: connect "E" pin to enclosure earth ground or Service Box "E" pin and connect shield to FLN "S" pin.
 - PXC-M & PXC-C: connect () and shield to enclosure earth ground and leave FLN "S" pin unconnected.
- ⁴ When FLN Speed is set greater than 4800 bps use Trunk Terminator (538-664) at both ends of trunk wire. . FLN Device Notes (shield is continuous from FP or tied back and earth ground restarted; if present connect Earth Ground).
- ^{5.} TEC/ATEC: tie both shields to "S" pin and if required connect transformer neutral to earth ground; do not earth ground "N" pin.
- ^{6.} N-VARIANT TEC/ATEC: tie both shields together and do not connect to controller leaving
 unconnected. Connect transformer neutral to earth ground; if needed earth ground "E" pin to provide highest noise immunity.
- ^{7.} UC: **bypass "S" pin or restart shield on "S" pin; connect "E" pin to enclosure earth ground.
- ^{8.} DPU: tie both shields to "S" pin; earth ground is internally connected.
- 9. P1-BIM: leave "S" pin open **bypass or restart shield on enclosure earth ground; connect (peg sym) to enclosure earth ground.
- ^{10.} MPU: **bypass "S" pin or restart shield on "S" pin; connect "G" pin to enclosure earth ground.
- ^{11.} PXM: **bypass "S" pin or restart shield on "S" pin; connect "E" pin to enclosure earth ground.
- ¹² PPM: leave "S" pin open **bypass or restart shield on enclosure earth ground; connect (peg sym) to enclosure earth ground.
- 13. P1-PXC: leave "S" pin open **bypass or restart shield on enclosure earth ground; connect (peg sym) to enclosure earth ground.

i

Communications Ground

See Grounding [\rightarrow 16], National Electric Code (NEC) Communications Requirements [\rightarrow 18], and Controlling Transients [\rightarrow 23], in Chapter 1 for definitions of NEC Articles and Local Building Ground.

All RS-485 ALN and FLN (P1) trunks must share the same electrical service and single building ground point. Wherever the electrical services are not bonded, as described in NEC Article 250 or by local authorities, appropriate network devices such as the HSTIE, Fiber Optic Trunk Interface or the Trunk Interface II should be used.

Only one side of the network device should be grounded to the single building ground point. Network devices plugged into the field panel may be grounded to the field panel chassis as shown in the *Installation Instructions*. The third wire (green or green/yellow) from the field panel enclosure is tied to the single building ground point. Either all RS-485 FLN (P1) equipment controller power trunk neutrals must be tied to the single building ground point or network isolation devices must be used.

Multi-Drop Trunk Terminator

The Multi-Drop Trunk Terminator (P/N 538-664) consists of a 120-ohm resistor in series with two opposing polarity diodes placed in parallel. See Figure *Multi-Drop Trunk Terminator*.

The Multi-Drop Trunk Terminator is required at each end of a 19.2K bps ALN or FLN (P1) trunk segment. See Figure *ALN Trunk Terminator Requirements*.

No more than two trunk terminators should be used on a single trunk segment. Using more than two can cause unpredictable results.

i

NOTE:

While Trunk Terminators are required only on RS-485 ALN or FLN trunks running over 19.2K bps, due to accumulated cable distortion, Trunk Terminators are recommended on any RS-485 ALN or FLN trunk at 9600 bps if old style TIEs are installed (silver enclosures) or if the trunks are over 4000 ft (1219 m) in total length.

Fig. 24: Multi-Drop Trunk Terminator.

i

NOTE:

Trunk terminators are internal switch settings inside the HSTIE (or TIE). The Figure *ALN Trunk Terminator Requirements* shows three logical trunk segments and three sets of trunk terminators.

Fig. 25: ALN Trunk Terminator Requirements.

RS-485 2-Wire Network Devices

To minimize risk and reduce installed costs, use only the network devices listed in the following table on RS-485 ALN and FLN trunks. The following table lists the power source requirements for each network device.

See each product section in this manual for specific device power source requirements.

Power Source Requirements for 2-wire RS-485 devices.				
Product	Input Voltage	Line Frequency	Maximum Power	
HSTIE	115/230 Vac	50/60 Hz	6 VA	
Trunk Interface II	115/230 Vac	50/60 Hz	6 VA	
Fiber Optic Trunk Interface	115/230 Vac	50/60 Hz	6 VA	
Fiber Optic Hub	115/230 Vac	50/60 Hz	10 VA	

High Speed Trunk Interface (HSTIE)

The High Speed Trunk Isolator/Extender (HSTIE) is used to protect, isolate, extend (re-time) an RS-485 ALN or FLN trunk. Only the HSTIE can extend the maximum wire length of a trunk segment. Other devices such as Trunk Interfaces with leased line modems or fiber optics do not increase the maximum wire length of a trunk segment.

HSTIE Usage

The number of High Speed Trunk Isolator Extenders (HSTIEs) on a logical RS-485 ALN or a logical FLN trunk is directly related to the total trunk length, type of trunk wire used, and the time delay allowed by the network protocol. Trunk cabling causes bit distortion that limits the total trunk length to the distances listed in table *Distance per 2-wire Trunk Section*.

Since the HSTIE re-times the packet bytes, the maximum amount of trunk a network can support has increased. The HSTIE introduces a delay limiting the number that can be used in series. Do not exceed the HSTIE usage limits shown in table *Speed vs. Maximum Number of HSTIEs in Series.*

Speed vs. Maximum Number of HSTIEs in Series.				
	Speed			
	1200 bps 4800 bps 9600 bps through 115,200 bps			
ALN only	10	6	6	
FLN only	N/A	6	6	

RS-485 ALN and FLN (P1) Communications Wiring on Structured Cabling

NOTE:

The Insight Server and Client, APOGEE Ethernet Microserver (AEM), and other field panels operating Ethernet protocols do not use the chained patch cables referred to in this section. These devices must be plugged into an operational TCP/IP network using standard Ethernet patch cables.

Installation

The Structured Cable System (SCS) is installed per industry standards in a star distribution topology. This does not comply with the RS-485 wiring system used for HVAC or most other building automation systems (BAS). Special patch cables or punch down cables at each end of a wiring segment are used to convert the star topology to multi-drop trunk topology. The wiring segments and patch cables are individually certified. Once plugged in, the wiring segments and patch cables must be certified as an ALN or FLN.

Unplugging a patch cable from a structured cabling system will split the multidrop trunk and disconnect part of the RS-485 ALN or FLN (P1) from the BAS.

Use of Shielded and Unshielded Twisted Pair Cable

Shielded Category 5 cabling is used where excessive noise is expected on the information system cabling, for example, when it is near a high-power transmitter. In these cases, the same shielded Category 5 cable will be used for the RS-485 ALN and FLN trunks.

Sheath Sharing and Cable Routing

- Use separate binder groups (a group of 4 or 25 cable pair cables in same sheath) for building automation system signals. Use blue binder group for HVAC.
- A riser cable may have many 25 pair binder groups. Building automation system signals and voice and data signals can share the same riser cable, but not the same binder group.
- Horizontal binder groups can have either 25 cable pairs or 4 cable pairs. Building
 automation system signals and voice and data signals can share the same cable
 tray, but not the same binder group.
- Use a 4-pair (blue) binder for each separate ALN.
- Use a separate 4-pair (blue) binder for FLN1, FLN2, and FLN3 on each Field Panel Controller. These FLN signals are multiplexed and may share the same binder. Do not mix with FLN signals from other controllers.

MLN, AEM ALN, and other Ethernet protocol signals do not use the same interconnects and must not share the same binder group as RS-485 ALN or FLN signals. Mixing Ethernet protocol signals within the same binder group will result in loss of signal integrity and possible loss of RS-485 ALN or FLN communications.

Fig. 27: Components of an SCS 4 UTP Cable.

Riser Segment Length

The Telecommunications (wiring) Closet-to-riser interface will generally be Category 5 riser cable on new installations. Following information systems standards, basic link cable runs are limited to 600 ft (190 m) of solid copper terminated by punch down blocks in the main and intermediate wiring closets.

SCS segments are wired per TIA 568A (preferred) or 568B. Observing the 600 ft (190 m) restriction allows future conversion to Ethernet devices in the field panel without rewiring the SCS segment. See the following table for RS-485 ALN and FLN pinout. The Figure *Punching Down the Riser Cabling for an RS-485 ALN or FLN* shows incoming cable punch down in an intermediate wiring closet from a main wiring closet.

Wiring Procedure for ALN and FLN (P1) on Structured Cabling.				
Wiring Block Position	Wiring Block Device Connection Conductor Pair Signal Path Position Color Signal Path		RJ45 TIA568A (Preferred)	
1	+	White-Blue	Outgoing RS-485 ALN or FLN	5
2	_	Blue		4
3	+	White-Orange	ge Incoming RS-485 ALN or FLN	
4	_	Orange		6
5	Not used	White-Green	Second outgoing signal pair or initiating device	1
6	Not used	Green	(contact closure)	2
7	Not used	White-Brown	Second incoming signal pair or indication device (4-	7
8	Not used	Brown	20 mA)	8

Fig. 28: Punching Down the Riser Cabling for an RS-485 ALN or FLN.

Converting SCS Star Segments to RS-485 ALN and FLN Chain Segments

The Telecommunications (wiring) Closet-to-device outlet will generally be Commercial Category 5E or IEEE Category 6 cable on new installations. Following information systems standards, basic link cable runs are limited to 295 ft (90 m) of solid copper terminated by punch down blocks in the wiring closet and RJ-45 jacks in the field panel or zone.

SCS segments are wired per TIA 568A (preferred) or 568B. Observing the 295 ft (90 m) restriction allows future conversion to Ethernet Devices in the field panel without rewiring the SCS segment.

Fig. 30: Punching Down the Connecting Blocks to the Wiring Block.

Punch Down Jumper Wires

The following table shows the cross-connect terminations used to create the chained multi-drop RS-485 ALN and FLN communications signal in the wiring closet. Use Note 4a for floor-to-centralized distribution chain (Figure *Punching Down CAT5 Cross-Connect Wires to Connecting Blocks*) and use Note 4b with a second riser cable for floor-to-floor distribution chain (not shown).

Punching Down CAT5 Cross-Connect Wires to Connecting Blocks.				
Note Number	Description of Riser and Horizontal Cross-Connect Signals	Cross-Connect Terminations		
1	Incoming signal to floor (riser cable 1, pair 2) to incoming signal of first device or zone (horizontal cable 1, pair 2)	3 to 3 (white/blue jumper) 4 to 4 (blue jumper)		
2	Outgoing signal (horizontal cable 1, pair 1 to incoming signal of next device or zone (horizontal cable 2, pair 2)	1 to 3 (white/blue jumper) 2 to 4 (blue jumper)		
3	Outgoing signal (horizontal cable 2, pair 1) to incoming signal of next device or zone (horizontal cable 3, pair 2)	1 to 3 (white/blue jumper) 2 to 4 (blue jumper)		
4a (See the following figure)	Outgoing signal (horizontal cable 3, pair 1) from last device or zone to outgoing signal from floor (riser cable 1, pair 1) back to main distribution	1 to 1 (white/blue jumper) 2 to 2 (blue jumper)		
4b (Not shown)	Outgoing signal (horizontal cable 3, pair 1) from last device or zone to outgoing signal to next floor (riser cable 2, pair 2) telecommunication closet	1 to 3 (white/blue jumper) 2 to 4 (blue jumper)		

Fig. 31: Punching Down CAT5 Cross-Connect Wires to Connecting Blocks.

Patch Cables

Field panels and zones are chained with patch cables.

- Figure RS-485 ALN and FLN to RJ-45 Chained Patch Cable, 538-908(S) shows a middle device chain for the field panel or zone.
- Figure RS-485 ALN and FLN to RJ-45 Terminated Patch Cable, 538-909(S) shows a terminated chain for the field panel or Zone.
- Figure Multiplexed FLN 1, 2, 3 to RJ-45 Terminated Patch Cable, 538-911(S) shows three Zones of FLN (P1) multiplexed from a single Field Panel Controller.

Shields (S suffix on part number) are used only where shielded cable is brought to the field panel or zone, ensuring impedance is maintained. Terminators are used for all end-of-line connections including both the RS-485 ALN and FLN.

Chapter 2 – Network Electrical Systems RS-485 ALN and FLN (P1) Communications Wiring on Structured Cabling

Fig. 34: Multiplexed FLN 1, 2, 3 to RJ-45 Terminated Patch Cable, 538-911(S).

Converting Chain Segments to SCS Star Segments

All field panels should be taken offline and controlled devices placed under manual control prior to changing field panels and network from RS-485 to Ethernet ALN.

- 1. Remove chained patch cables from the field panel ALN port and RJ-45 jack box.
- 2. Install Ethernet controller and RJ-45 patch cable in the field panel.
- **3.** Remove all UTP cross-connect wires from punchdown connecting blocks. See Figure 12.
- **4.** Install RJ-45 patch panel to the punch-down connecting blocks per TIA 568A or TIA 568B, as required, and install RJ-45 patch cable between the patch panel and the network device.

LONWORKS FLN Communications Wiring

i

NOTE:

L model MECs provide a LonWorks® floor level network. Read this section if you are installing an L model MEC. For F model MECs, see the *P1 FLN* section of this document. Other types of MEC do not provide floor level networks.

Network Requirements

The APOGEE with LonWorks system communicates on a LonWorks compatible Free Topology floor level network (LonWorks FLN). You must observe the limitations of the LonTalk® communication protocol (node count, load count, wire specifications, and wire length limits) when designing the network wiring. Use approved cables only; these include unshielded and shielded (where specified) two conductor 22 AWG Level IV cable. See tables in this section, as well as the Table LONWORKS FLN Wiring Specifications [\rightarrow 60] and Figure LONWORKS Floor Level Network [\rightarrow 60].

Logical Network Limitations.			
Maximum number of subnets per network	255		
Maximum number of nodes per subnet	127		
Maximum number of nodes per network	32,385		
A system may contain an unlimited number of domains			
A node may be a member of two domains			
A device may contain more than one node			

Physical Network Limitations.			
Specification	Limit		
Maximum electrical bus loads per segment	64		
Maximum repeater depth	1		
Network terminators (resistors) per segment	2, 105 ohm, wired in parallel		
Network speeds	78K bps		

Communication Wiring Requirements

To connect to the LonWorks® network, use 22 AWG twisted pair (TP), level 4, Echelon® approved wire.

A WARNING

Use the recommended LonWorks® cable: 22 AWG unshielded or shielded (where specified), Level IV per NEMA standards (not equivalent to EIA/TIA Level 4 cable). Network cabling is not polarity sensitive.

LonWorks FLN Wiring Specifications.			
Wire Type and Gauge	Max. Total Wire Length (1 Segment)	Max. Node-to-Node Length	
22 AWG 1 pair, stranded, unshielded, level IV per NEMA standards, blue plenum jacket	1640 ft (500 m)	1312 ft (400 m)	

Building Level Network (BLN)

Fig. 35: LonWorks Floor Level Network.

Nodes per Subnet/Network

Any device that contains a Neuron ID (and therefore a unique address) is counted as a node. Devices such as repeaters and network terminators do not have addresses and thus are not counted as nodes.

Electrical Loads

The number of electrical LonWorks bus loads allowed per segment is 64. All devices, with the exception of the network terminator, count as one electrical load. Networks with more than 60 nodes should use a repeater. Two-port (P/N 587-450) and three-port (P/N 587-455) repeaters are available.

Segment

A LonWorks FLN consists of 1, 2, or 3 network segments. A segment is defined as a part of the physical network containing nodes that can communicate with each other without requiring intervention from an intermediate device, such as a repeater.

Wiring Between Buildings

Use a LonWorks repeater for segments that run between buildings to protect the network against lightning or other high voltage spikes. Additional communication grade surge suppressors should be used as well.

Repeater Depth

Repeater depth refers to the number of repeaters that can be connected in series to any given segment. The APOGEE with LonWorks system repeater depth is 1, which means that only one end of a segment can be connected to a repeater. This allows you to extend the channel wire length by either one or two segments, depending on which repeater type you use. Two-port (P/N 587-450) and three-port (P/N 587-455) repeaters are available.

Network Speeds

The LonWorks FLN operates at 78K bps.

Conduit Sharing

The LON FLN cable can be run in the same conduit or raceway with 24 Vac power and AI, DI, and AO circuits. For more information on conduit sharing, see Conduit Sharing—Class 1/Class 2 Separations [\rightarrow 14] in this document.

Wire Lengths

The maximum total wire length per segment is calculated by summing the lengths of all network wire on a segment. The maximum node-to-node length is the maximum distance allowed between adjacent nodes on the same segment. See Figure *Determining Network Length—Example*.

Two-port and three-port repeaters can extend the subnet by providing one or two additional segments, with wire lengths as defined in Table LonWorks FLN Wiring Specifications [\rightarrow 60].

NOTE:

Sensor wiring (the wiring from the LTEC to the LTEC room temperature sensor) must be included in the wire length calculations for a segment, because the sensor wiring carries the network signal.

Fig. 36: Determining Network Length—Example.

Network Wiring

Only approved cables may be used for network wiring. These include unshielded and shielded (where specified) to conductor 22 AWG Level IV cable.

LTEC Controllers use the FTT-10 transceiver that allows free topology wiring. This includes

T-taps, stars, branches, loops, as well as standard daisy chain. In all cases, maximum network wire length, including each sensor cable, cannot exceed 1640 feet (500 meters). See Figure *LonWorks Network Topology*.

For network lengths that exceed 500 meters (1640 feet), a two-port or three-port repeater can be used (part numbers 587-450 and 587-455, respectively). This will allow three separate network lengths of 500 meters.

Each network segment (1 without repeater, 3 with repeater) requires a pair of terminating resistors (part number 587-649, packs of 100) wired in parallel anywhere on the segment, at the field panel, or at the repeater. See LonWorks FLN Network Terminations [\rightarrow 63] in this chapter for more information on segment termination.

NOTE: Bus Polarity Must be Observed in Loop Topology.

LonWorks FLN Network Terminations

All LonWorks FLN segments must have a single 52 ohm network termination, made up of two 105 ohm, 1% tolerance, 1/4-watt resistors wired in parallel. These resistors are available in packages of 100 (P/N 587-649P100).

Recommended Terminator Installation

Install the network terminations as follows:

- On a single segment LonWorks FLN, install the termination at the L model MEC.
- On a 2 or 3 segment LonWorks FLN, install each segment termination at the repeater.

Power Trunk Guidelines

A Class 2 circuit, as defined in the National Electrical Code (NEC, operates at less than 30 volts AC (Vac), and is limited to 100 volt-amps (VA) or less. Class 2 circuits are granted special exceptions in the NEC for installation wiring, making it unnecessary to use conduit in most applications.

Class 2 Power Sources

There are two types of Class 2 power sources:

- Inherently limited
- Not inherently limited

Inherently Limited Class 2 Power Source

An inherently limited Class 2 power source has some form of current-limiting characteristic designed into the product. Sources of this type are often protected by a current-limiting impedance or embedded fusible link, but other methods are also used. As long as the current limiting is an integral part of the power supply, it will fall into this category.

i

NOTE:

Because of this built-in current-limiting characteristic, a circuit powered by this type of source needs no further protection to qualify as a Class 2 circuit.

Inherently limited Class 2 transformers are generally available with ratings up to about 60 VA. They will often be direct plug-in type transformers, similar to those used to power calculators or other small devices. This makes them well suited to applications using a separate transformer for each controller. They can also be used for small power trunk applications, up to the VA rating of the transformer.

Not Inherently Limited Class 2 Power Source

A Class 2 source that is not inherently limited does not have built-in current limiting protection. At the time of installation, a current-limiting device must be installed between the source and the loads. The most common current limiting device for this application is a single fuse or integral transformer circuit breaker, which must be sized so that the power available to the loads does not exceed 100 VA.

Transformers that are not inherently limited are most commonly used for power trunk applications. Transformers of this type are usually direct wire types, and are available in sizes that permit power trunks up to the full 100 VA allowed. It should be noted that with the additional power capabilities come additional requirements and restrictions at the time of application.

NOTE:

In order to meet NEC Class 2 requirements, using a transformer that is not inherently limited is subject to the following rules:

- Each transformer must have a nameplate rating of 100 VA or less.
- Unloaded (open circuit) voltage on any circuit cannot exceed 30 Vac.
- Each trunk must be limited to 100 VA or less.

- For 24V power trunks, each transformer circuit must be protected by a single fuse or integral circuit breaker rated 4 amps or less. This protection is required even if the transformer is rated at 100 VA or less.
- A fuse block for the trunk fuses may be required by local code.

Always check local codes to determine whether there are differences from the NEC. Specifically, you should determine whether fused circuits are acceptable as Class 2 in your area.

Class 2 Power Trunks

The following information will help you lay out power trunks for supplying power to multiple controllers.

Each power trunk will be supplied by a step-down transformer located near a convenient source of line voltage. In general, over-current protection will be required between the step-down transformer and the controllers. See Figures Power Trunk Layout, Class 2 Circuits [\rightarrow 65] and Power Trunk Layout, Class 1 Circuit [\rightarrow 65] and Table Power Trunk Transformer Specification Data [\rightarrow 65] for details.

Use Class 2 power trunks where possible because they can often be run without conduit. Where conduit is required, Class 2 power trunks can be run in the same conduit with FLN trunks and AI or DI wiring.

Grounding

Earth ground point for Class 2 power trunk transformer secondary neutral must be connected back to earth ground for Service using a dedicated ground wire. Service must be same as used for FLN Controller and all other FLN devices.

Restrictions

- When using power trunks, any relays, EPs, or contactors must be protected with MOVs at their connection to the trunk.
- The fused side of each power trunk must only be connected to terminals labeled +, 24 Vac, or HOT.
- Where different services are used, they must be banded per NEC Article 250, or Communication Isolation devices must be used.
- Multiple power trunks from the same transformer must be kept in phase. Avoid using different transformers to power the loads and the controllers. If unavoidable, use relay modules to provide isolation for loads connected to different transformers.
- If power trunks are connected to UCs, the unfused side of the transformer must be grounded at the transformer and can only be connected to device terminals labeled COMMON or NEUTRAL.

Failure to adhere to these polarity conventions can result in equipment damage.

Fig. 38: Power Trunk Layout, Class 2 Circuits.

Fig. 39: Power Trunk Layout, Class 1 Circuit.

Power Trunk Guidelines

Power Trunk Transformer Specification Data			
Primary Volts: As Required Secondary Volts 24 (50/60 Hz) ¹		24 Volts Secondary	
Volt-Amp Rating	Output Amperage	Fuse Amps ²	
50	2.08	2.5	
75	3.12	3.2	
100	4.16	4.0	
150 ³	6.35	4.0	
250 ³	10.4	4.0	
350 ³	14.6	4.0	
500 ³	20.8	4.0	
750 ³	31.2	4.0	
1000 ³	41.7	4.0	

¹⁾ NEC requires that the Secondary must be grounded if the Primary exceeds 150 volts to ground.

²⁾ The fuse for each circuit from a transformer rated greater than 100 VA must be 4.0 amps maximum. The type of fuse required depends on local interpretation of the National Electric Code. Most frequently, transformers with multiple output circuits and multiple fuses are interpreted as Class 1 circuits.

³⁾ To comply with NEC Class 2 requirements, each circuit from transformers cannot be greater than 100 VA and transformers cannot exceed 100 VA. Circuits connected to transformers rated over 100 VA must be treated as Class 1 – that is, in conduit, separate from trunk and point wiring. When power requirements exceed 100 VA, it is recommended that multiple transformers 100 VA or less be used, rather than a single transformer. Check local codes to determine whether larger transformers, in combination with fused circuits, can be classified as Class 2 circuits.

Power Trunk Layout

Layout is accomplished by completing the following procedures:

- 1. Determine the VA rating minimum voltage input for each controller.
- 2. Determine the number of power trunks required.
- 3. Determine the wring runs and calculate the voltage at the last controller of each trunk type.
- 4. Select and locate the transformers.

Step 1 - Determine the VA Rating for Each Controller

VA ratings can be found under the heading Power Source Requirements in the chapter that covers each type of controller.

If future options are to be installed, the VA rating of the affected controllers can be increased. Therefore, if future upgrades will be implemented, include their power consumption in your calculations.

Example

Controller	Туре	VA Required	
C1	DXR2.M18-101B (Fan Coil Ap	15 VA	
C2, C3, C4	TEC (Dual Duct Controller—1 AVS, Application 35 with Hot Water Heat)		13.6 VA
C5	Standard UC 4 UI @ 1.25 each 3 UO @ 1.25 each 2nd I/0 card Keypad display Total	15.0 VA 5.0 VA 3.75 VA 4.0 VA 5.0 VA 32.75 VA	32.75 VA
C6, C7	TEC (Dual Duct Controller—1 AVS, Application 35 with 2-stage Electric Heat)		27.9 VA
C8	Standard UC 3 UI @ 1.25 each 1 UO @ 1.25 each Total	15.0 VA 3.75 VA 1.25 VA 20.0 VA	20.0 VA
C9, C10	TEC (Dual Duct Controller—1	19.4 VA	
C11	M12P-102B-GDE (Variable Air	19.4 VA	
C12	TEC (Constant Volume Controller—Electronic Output, Application 30) 5.7 VA		

Fig. 40: Example Layout.

Step 2 - Determine the Number of Power Trunks Required

Use the following steps to select and locate the transformers.

- **1.** Based on the total VA, determine the transformer(s) you will use to supply power to the trunks.
 - ⇒ For example, if the total VA required for all controllers is 129.3 VA, you could use any combination of inherently limited Class 2 transformers that supply the required power. Or, based on the transformers listed in Table *Physical Network Limitations*, you could use two 75 VA not inherently limited transformers, each with a field installed 4A fuse. Or, if acceptable to the authority having jurisdiction, use one 150 VA transformer with two 4A fuses. See Figures Power Trunk Layout, Class 2 Circuits [→ 65] and Power Trunk Layout, Class 1 Circuit [→ 65] and Table Power Trunk Transformer Specification Data [→ 65] for details.

NOTE:

All transformers listed in Table Power Trunk Transformer Specification Data [\rightarrow 65] are the "not inherently limited" type. Therefore, you must adhere to the following guidelines to comply with NEC Class 2 requirements.

- Each transformer must be limited to 100 VA or less.
- Unloaded (open circuit) voltage on any circuit must not exceed 30 Vac.
- Each trunk must be limited to 100 VA or less.

- For 24V power trunks, each circuit must be protected by fuses rated 4 amps or less. A fuse block for the trunk fuses can be required by local code.

- 2. Determine the minimum number of power trunks needed:
 - ⇒ Minimum number of trunks = Total VA/100 VA.
 - ➡ Depending on your loads and how they are positioned, it may be necessary to use more than the minimum number of trunks.
- **3.** Locate the transformers and fuse blocks, with one fuse for each of the trunks at the breaker panel. Connect the line side of all fuses to the secondary of the transformer. One power trunk will be connected to the load side of each fuse.

Example

1. Determine the total VA ratings for all controllers. In this example, the VA required is:

1	×	5.7	VA	=	5.7	VA
1	Х	15.0	VA	=	15.0	
3	×	13.6	VA	=	40.8	VA
1	×	32.7 5	VA	=	32.75	VA
2	×	27.9	VA	=	55.8	VA

228.25 VA

- 2. Determine the minimum number of power trunks you will need:
 - Minimum number of trunks = 228.25 VA ÷ 100 VA = 2.28
 - Since this number is greater than 2, it will be necessary to use a minimum of three power trunks.

NOTE:

This does not imply that transformers totaling 300 VA will be required.

Step 3 - Determine the Wiring Runs and Calculate the Voltage Available at the Last Controllers of Each Trunk Type

A wiring run is the distance from the transformer to the end controller in a series. It can be composed of one or more legs. A leg is the distance from the transformer to the first controller, or the distance from one controller to the next controller.

Figure Wiring Run shows the following:

- L1, L2, and L3 are all legs of a wiring run to C3.
- L1, L4, and L6 are all legs in a wiring run to C6.
- L1, L2, and L5 are all legs in a wiring run to C5.

Fig. 41: Wiring Run.

- **1.** Configure the power trunks so that the total VA rating of all controllers does not exceed 100 VA per trunk.
- **2.** Calculate the voltage available at the last controller on each run. Verify that it is greater than the minimum required voltage for the controller.

NOTE:

Different controllers have different power ratings. You may need to calculate the voltage available at the last controller of each type on each wiring run. To calculate these voltages, you must know the following:

- The length of each leg of the wiring run.
- The VA rating for each controller on the wiring run.
- Which devices pull power through each leg.
- **3.** Determine how many VA are being drawn through each leg by summing the VA ratings for all controllers pulling power through each leg.
- 4. Determine the voltage drop for each leg:
 - ⇒ Voltage drop = (total VA)/24V × 0.005 ohms/ft × distance in feet
 - ⇔ Where:
 - 0.005 is the resistance in ohms/ft for a pair of No. 14 AWG wires.

NOTE:

If a different wire gauge is used, the corresponding resistance must also be used. The values for all approved wire pairs are as follows:

- AWG 14 = 0.005 ohms/ft
- AWG 16 = 0.008 ohms/ft
- AWG 18 = 0.012 ohms/ft
- AWG 20 = 0.020 ohms/ft
- AWG 22 = 0.033 ohms/ft
- AWG 24 = 0.051 ohms/ft (UTP resistance greater than 2C = 0.048 ohms/ft)
- 5. Determine the voltage available at the last controllers:
 - a. Calculate the starting voltage:
 Starting voltage = transformer voltage × 0.9
 Where:
 0.9 is an efficiency factor to account for transformer inefficiencies and lint voltage variations.
 - b. Calculate the voltage drop to the last controllers: Sum the voltage drops of all legs between the transformer and the last controller For example, in Figure Wiring Run Voltage drop to C5 = (Vdrop L1) + (Vdrop L2) + (Vdrop L5)
 - c. Calculate the voltage at the last controller
 Starting voltage Voltage drop to the last controller (Step 5a minus Step 5b)
 - d. Check the power source requirements for the DXR2 or PTEC/TEC and verify that your total (the voltage available at the last controller) is greater than the minimum required for that controller type. If your total is not greater than the minimum, the power trunk must be reconfigured.

Example

- 1. Configure the power trunks so that the total VA rating of all devices does not exceed 100 VA per trunk. (Many configurations are possible. See Figure *Completed Example Layout* for the configuration used in this example.)
 - Trunk A: (1 × 5.7) + (3 × 13.6) + (1 × 32.75) = (1 x 15 = 88.55 VA)
 - Trunk B: (1 × 27.9) + (1 × 20) + (2 × 19.4) = 86.7 VA
 - Trunk C: (1 × 27.9) + (1 × 19.4) + (1 × 5.7) = 53.0 VA
- **2.** Calculate the voltage available at the last controller on each run to verify that it is greater than the minimum required voltage for the device.

Fig. 42: Completed Example Layout.

3. Calculate how much power is drawn through each leg:

Trunk A				
Leg 1	= VA (C1) + VA (C2) + VA (C3) + VA (C4) + VA (C5)			
	= 15 + 13.6 + 13.6 + 13.6 + 32.75			
	= 88.55 VA			
Leg 2	= VA (C1) + VA (C2) + VA (C3) + VA (C4)			
	= 10 + 13.6 + 13.6 + 13.6			
	= 55.8 VA			
Leg 3	= VA (C4)			
	= 13.6 VA			
Leg 4	= VA (C1) + VA (C2)			
	= 15 + 13.6			
	= 28.6 VA			
Leg 5	= VA (C1)			
	= 15 VA			
By similar calculations, power drawn through the remaining legs is:

Trunk B	Trunk C
Leg 1 = 66.7 VA	Leg 1 = 42.6 VA
Leg 2 = 19.4 VA	Leg 2 = 33.6 VA
Leg 3 = 47.3 VA	Leg 3 = 27.9 VA
Leg 4 = 27.9 VA	

- ♦ Determine the voltage drop for each leg:
 - Solution Soluti Solution Solution Solution Solution Solution Solution S
 - 0.005 is the resistance in ohms/ft. for a pair of No. 14 AWG wires.

Trunk A
Vdrop (Leg 1) = (74.75 VA / 24V) × 0.005 ohms/ft × 10 ft. = 0.16V
Vdrop (Leg 2) = (42.2 VA / 24V) × 0.005 ohms/ft × 15 ft. = 0.13V
Vdrop (Leg 3) = (13.6 VA / 24V) × 0.005 ohms/ft × 40 ft. = 0.11V
Vdrop (Leg 4) = (28.6 VA / 24V) × 0.005 ohms/ft × 10 ft. = 0.06V
Vdrop (Leg 5) = (15 VA / 24V) × 0.005 ohms/ft × 50 ft. = 0.16V

By similar calculations, the voltage drops for the remaining legs are:

Trunk B	Trunk C
Vdrop (Leg 1) = 0.18 V	Vdrop (Leg 1) = 0.28V
Vdrop (Leg 2) = 0.06V	Vdrop (Leg 2) = 0.28V
Vdrop (Leg 3) = 0.64V	Vdrop (Leg 3) = 0.15V
Vdrop (Leg 4) = 0.15V	

- ♦ Determine the voltage available at the last remote actuator (A1) on controller (C1):
 - a. Calculate the starting voltage:
 Starting voltage = 24V × 0.9 = 21.6V
 Where:
 0.9 is an efficiency factor.
 - b. Calculate the voltage drop to the last controllers or remote actuators: Vdrop (to C1) = Vdrop (Leg 5) + Vdrop (Leg 4) + Vdrop (Leg 2) + Vdrop (Leg 1) = 0.16V + 0.06V + 0.13V + 0.16V = 0.51V
 - c. Calculate the voltage at the last controller remote actuator
 V(A1) = Starting voltage Vdrop (to A1)
 = 21.6V 0.51V
 = 21.09V
 - Check that your calculation is greater than the minimum required voltage The minimum voltage for a DXR2 Automation Station: 20.4V Since 21.09V is greater than the 20.4V required this leg is correct.

If these calculations had resulted in a voltage less than the minimum required, it would have been necessary to reconfigure the layout of the power trunk.

i

NOTE:

Rerouting the power trunk so that controllers with the lowest minimum voltage requirements are at the end of the run, and controllers with the highest minimum voltage requirements are closest to the transformer can help correct voltage drop problems.

If this is not possible, or still does not provide the necessary voltage at the last device, try using a T-shaped power trunk (such as Trunks A or B) rather than a straight line (such as Trunk C) to reduce the voltage drop even further. In other words, a T-shaped power trunk allows you to obtain a higher voltage at the last controller. Using larger gauge wire for the power trunk will also help reduce the voltage drop.

To complete this example, the results for the last controllers on the remaining runs are found to be:

	Voltage	Minimum	Status
V(C4)	21.16	19.2	ОК
V(C6)	20.63	19.2	ОК
V(C10)	21.36	19.2	ОК
V(C7)	20.89	19.2	ОК

Since there are different types of equipment controllers (various DXR2s, PTEC/TECs, etc.) with different minimum power requirements mixed on the same trunk, you must identify the last type of each controller on each trunk. Determine if any of these controllers has a higher minimum voltage requirement than the controller at the end of the run. In this example, calculations are also necessary to determine the following:

	Voltage	Minimum	Status
V(C5)	20.94	20.4	ОК
V(C8)	21.42	20.4	ОК

Since the voltage at each controller was found to be greater than the minimum requirement, this layout is correct.

Step 4 - Select and Locate the Transformers

- **1.** Using the trunk configuration that was defined and verified in Step 3 above, there are a number of options available:
 - Two 100 VA transformers and one 75 VA transformer can be chosen from Table *Physical Network Limitations* and provided with 4A fuses.
 - Two 100 VA transformers can be chosen from Table *Physical Network Limitations*, each provided with 4A fuses, and one 55 VA or larger inherently limited transformer from a local source could be used.
 - If local codes permit, one 250 VA transformer can be chosen from Table *Physical Network Limitations* and provided with three fuses.
- **2.** Locate the transformers and fuse block, with three fuses, if required, at the breaker panel. Not all transformers require fuses; however, those that do should be connected as follows:
 - Connect the line side of fuses to the secondaries of the transformers.
 - One power trunk will be connected to the load side of each fuse where required.

Chapter 3 – Field Panels

Control Circuit Point Wiring

The following illustrations apply to the PXC Modular (TX-I/O), PXC Compact, and MEC.

LFSSL (Logical FAST/SLOW/STOP Latched)

NOTE:

DO-1 and DO-2 invert value: NO DI-3 normally closed: NO

Fig. 43: Connecting an LFSSL (Proof Optional).

LFSSL Control Circuit States.				
State DO-1 DO-2 DI-3				
FAST	ON	OFF	ON	
SLOW	OFF	ON	ON	
STOP	OFF	OFF	OFF	

LFSSP (Logical FAST/SLOW/STOP Pulsed)

Do not install the Field Panel HAND/OFF/AUTO (HOA) option for points defined as LFSSP.

i

NOTE:

DI-4 normally closed: NO

Fig. 44: Connecting an LFSSL (Proof Optional).

LFSSP Control Circuit States.				
itate DO-1 DO-2 DO-3 DI-4				
STOP	Pulsed ON	OFF	OFF	OFF
FAST	OFF	Pulsed ON	OFF	ON
SLOW	OFF	OFF	Pulsed ON	ON

LOOAL (Logical ON/OFF/AUTO Latched)

WARNING

Do not install the Field Panel HAND/OFF/AUTO (HOA) option for points defined as LOOAL.

i

NOTE:

DO-1 and DO-2 invert value: NO DI-3 normally closed: NO

Fig. 45: Connecting an LOOAL (Proof Optional).

LOOAL Control Circuit States.				
State DO-1 DO-2 DI-3				
ON	ON	ON	ON	
OFF	OFF	ON	OFF	
AUTO	OFF	OFF	AUTO	

LOOAP (Logical ON/OFF/AUTO Pulsed)

WARNING

Do not install the Field Panel HAND/OFF/AUTO (HOA) option for points defined as LOOAP.

i

NOTE:

DO-3 invert value: NO DI-4 normally closed: NO

Fig. 46: Connecting an LOOAP (Proof Optional).

LOOAP Control Circuit States.					
State	DO-1 DO-3 DO-3 DI-4				
ON	Pulsed ON	OFF	ON	ON	
OFF	OFF	Pulsed ON	ON	OFF	
AUTO	OFF	OFF	OFF	AUTO	

L2SL (Logical Two State Latched)

WARNING

Do not install the Field Panel HAND/OFF/AUTO (HOA) option for points defined as L2SL.

i

NOTE:

DO-1 invert value: NO DI-2 normally closed: NO

Fig. 47: Connecting an L2SL (Proof Mandatory).

L2SL Control Circuit States.				
State DO-1 DI-2				
ON	ON	ON		
OFF OFF OFF				

L2SP (Logical Two State Pulsed)

Do not install the Field Panel HAND/OFF/AUTO (HOA) option for points defined as L2SP.	
	Do not install the Field Panel HAND/OFF/AUTO (HOA) option for points defined as L2SP.

i

NOTE: DI-3 normally closed: NO

Fig. 48: Connecting an L2SP (Proof Optional).

L2SP Control Circuit States.					
State DO-1 DO-2 DI-3					
ON	Pulsed ON	OFF	ON		
ON	OFF	Pulsed ON	OFF		

PX Series Service Boxes

1)

Do not connect inductive loads, such as drill motors, vacuum cleaners, or compressors, to the duplex receptacle on the 115V Service Box.

PX Series Service Box Source Requirements and Outputs						
			Maximum Input		Maximum 24 Vac Output	
PX Series Service Box Model	Input Voltage	Line Frequency	Transformer	Service Outlets	Total ¹	Class ²
115V 192VA	115 Vac	50/60 Hz	2A	2A ²	192 VA	96 VA
115V 384VA	115 Vac	50/60 Hz	4A	2A ²	384 VA	96 VA
230V 192VA	230 Vac	50/60 Hz	1A	N/A	192 VA	96 VA
230V 384VA	230 Vac	50/60 Hz	2A	N/A	384 VA	96 VA

Total 24 Vac Output Power is distributed to both Class 1 Power Limited Terminations, for use inside the enclosure only, and a Class 2 Termination, which may also be used outside the enclosure.

²⁾ Service outlets (115 Vac only) are not fused or switched, but are restricted to continuously-powered network devices (0.5A) and reserve power for laptop computers (1.5A). Plan Branch circuit for each additional 2A.

PX Series 115V Service Boxes (192 VA or 384 VA)

Â	
	Possible shock hazard! The power switch only disables power to the control side of the 24 Vac transformer. Power remains ON at the duplex receptacle (115V versions) and in the service box. Power may be present at the field devices. To avoid injury, follow proper safety precautions.

115 Vac source power to the service box enters the enclosure from the top right or right-hand side conduit knockouts. Source voltage must be current-limited to 20 amps or less (15 amps or less for Smoke Control), depending on the requirements of the particular installation.

Two pigtails and an earth grounding stud are provided under the wire cover for easy connection by an electrician. The AC hot is pre-wired to the transformer through a single pole On/Off switch and a circuit breaker. The pigtails are also connected to a duplex receptacle, which is not internally switched or fused. MOVs (3 × 150V) are installed on input power. Earth ground is available at the CTLR connector and at the duplex receptacle. Transformer secondary neutral (green) and Service Box earth ground (green/yellow) have ring terminals for mounting on earth ground stud.

Low voltage is routed from the transformer and supplies 24 Vac power at either 192 VA or 384 VA maximum. The CTLR and PS connectors are rated Class 1 power limited and connected equipment must reside in the enclosure with the service box. The Class 2 connector is limited to 96 VA and may also be connected to equipment outside of the enclosure. A MOV (30V) is installed on the transformer secondary. See the following figure for a wiring diagram.

Fig. 49: Wiring Diagram for 115V Service Box (192 VA or 384 VA).

PX Series 230V Service Boxes (192 VA or 384 VA)

230V (high-voltage) source power to the service box enters the enclosure from the top right or right-hand side conduit knockouts. Source voltage must be current limited to 10 amps or less, depending on the requirements of the particular installation.

A termination block for power and ground termination is provided on the wire cover for easy connection by an electrician. The termination block is pre-wired to the transformer through a double pole On/Off switch and a circuit breaker. MOVs (3 × 275V) are installed on input power. Termination block earth ground (green/yellow), transformer secondary neutral (green) and Service Box earth ground (green/yellow) have ring terminals for mounting on earth ground stud.

Low voltage is routed from the transformer and supplies 24 Vac power at either 192 VA or 384 VA maximum. The CTLR and PS connectors are rated Class 1 power limited and connected equipment must reside in the enclosure with the service box. The Class 2 connector is limited to 96 VA and may also be connected to equipment outside of the enclosure. A MOV (30V) is installed on the transformer secondary. See the following figure for a wiring diagram.

Fig. 50: Wiring Diagram for 230V Service Box (192 VA or 384 VA).

PX Series Service Box Grounding

System Neutral (\perp) must be continuous throughout the TX-I/O bus.

- System Neutral is required to be earth-grounded at a single point only.
- For a PXA Service Box: Connect the green wire to the earth ground stud under the wire cover.
- For migrating with an MEC Service Box: The earth ground is installed in the primary field panel by a single external jumper between the service box **E** terminal and **N** terminal.
- For a Third-party Transformer connect the transformer secondary neutral to the building-approved earth ground at the terminal block.
- When a separate 24Vac source is installed in any secondary field panel isolate power using a TXA1.IBE communication module in primary and each secondary field panel.

See the following figures for wiring information.

115V Service Box

Fig. 52: Grounding Diagram for 230V Service Box (192 VA or 384 VA).

Fig. 53: Detail of PX Series Enclosure Earth Ground Stud (Under Wire Cover).

Multiple PX Series Service Boxes on One Power Source

The following table shows the number of PX Series Service Boxes allowed on a single three-wire (ACH, an ACN, and earth ground) circuit, if local code permits.

Number of PX Series Service Boxes Allowed on a Single Three-Wire Circuit.				
	Maximum Values for Concentrated Loads		Maximum Values for Evenly Spaced Loads	
Circuit Breaker Size ¹	Length ²	192/384 VA ³	Length ²	192/384 VA ³
10 amp (No.14 AWG THHN) (230V models only)	115 ft (35.06 m)	6/3	130 ft (40.63 m)	8/4
15 amp (No.14 AWG THHN)	75 ft (22.87 m)	3/2	100 ft (30.48 m)	3/2
20 amp (No.12 AWG THHN)	115 ft (35.06 m)	4/3	130 ft (40.63 m)	4/3

¹⁾ For 115 Vac versions, assume minimum voltage of 102 Vac at the circuit breaker and 5 Vac maximum voltage drop (97 Vac) at loads. For 230 Vac versions assume minimum voltage of 204 Vac at the circuit breaker and 10 Vac maximum voltage drop (194 Vac) at loads. See Class 1 power trunk information in the *Wire Specification Tables* section of Chapter 1. Smoke control applications may not exceed 15 ampcircuit breakers.

²⁾ Conduit length from PX Series Service Box to PX Series Service Box.

³⁾ Number includes 2A reserved for duplex outlet on 115 Vac versions; not used with 10A circuit breakers.

PXC Service Box Dimensions

Fig. 54: 115V Service Box (192 VA or 384 VA).

Fig. 55: 230V Service Box (192 VA or 384 VA).

TX-I/O Product Range

Wire Type Requirements

TX-I/O Wire Type Requirements.					
Circuit Type	Class	Wire Type	Maximum Distance ¹	Conduit Sharing ²⁾	
AC Line Power (120V or greater) to transformer	1	No. 12 to No. 14 AWG THHN	See NEC and PX Series Service Boxes $[\rightarrow 81]$	Check local codes	
Universal Input/Output	2	No.18 to No.22 AWG, TP ³⁾ or TSP ⁴ CM (FT4) or CMP (FT6) ³⁾	750 ft (230 m) ¹⁾	Check local codes	
Low Voltage Input/Output on SCS (Basic Link)	2	24 AWG UTP ⁵⁾ , solid 4 pair unshielded	295 ft (90 m) ¹⁾	Check local codes	
Low Voltage Input/Output on SCS (Patch Cables)	2	24 AWG UTP ⁵⁾ , stranded 4 pair unshielded	33 ft (10 m) ¹⁾	Check local codes	
Dedicated Digital Input	2	No.14 to No.22 AWG. TP not required below 1 Hz. at faster pulse speeds, use TP or TSP ⁴⁾ ; check job specifications and local codes.	750 ft (230 m)	Check local codes	
Digital Output	1, 2	No.14 to No.22 AWG. TP not required; check job specifications and local codes.	Check local codes	Check local codes	
TX-I/O Island Bus Low voltage AC, low voltage DC, and communication inside low voltage enclosure.	2	No. 14 or 16 AWG, 2 Twisted Pair (TP)	10 ft (3 m)	N/A	
TX-I/O Island Bus Low voltage AC, low voltage DC, and communication between enclosures or inside high voltage enclosures ⁷⁾ .	2	1 Twisted Shielded Pair (TSP) + 1 Twisted Shielded 3C (Triad) -or- 1 Twisted Shielded 4C, No. 14 AWG or 16 AWG	164 ft (50m) ⁶⁾	Check local codes	
TX-I/O Island Bus Expansion Communication and Power	2	24 AWG 1.5-pair (1 TP & 1 Conductor) with overall shield and drain wire.24 AWG Low Cap Twisted shielded pair (TSP).	2 × 200 ft (61 m)	Check local codes	

¹⁾ Wire length affects point intercept entry. Adjust intercept accordingly.

²⁾ Conduit sharing rules: No Class 2 point wiring can share conduit with any Class 1 wiring except where local codes permit. (Both Class 1 and Class 2 wiring can be run in the field panel providing the Class 2 wire is UL listed 300V 75°C (167°F) or higher, or the Class 2 wire is NEC type CM (FT4) (75°C or higher) or CMP (FT6) (75°C or higher). NEC type CL2 and CL2P is not acceptable unless UL listed and marked 300V 75°C (167°F) or higher.

³⁾ Twisted pair, non-jacketed, UL listed 75°C (167°F) and 300V cable can be used in place of CM (FT4) or CMP (FT6) (both must be rated 75°C or higher) cable when contained in conduit per local codes. See the *Field Purchasing Guide* for wire.

- ⁴⁾ Twisted Shielded Pair TSP is not required for general installation, does not affect TXIO Module specifications, and may be substituted where otherwise specified. TSP should be used in areas of high electrical noise (for example when in proximity to VFDs and other large motors). Where used, connect the shield drain wire to the grounding system inside enclosure.
- ⁵⁾ Cable must be part of a Structured Cabling System (SCS).
- ⁶⁾ Maximum distance is total of all cable on the TX-I/O island bus for 14 AWG four conductor cable. See the formulas in this section for associated maximum power and maximum distance for each wire type.

⁷⁾ See TX-I/O Island Bus Guidelines [\rightarrow 91] in this section for cable configuration.

Power Source Requirements

\angle : \land	Install external supply line fu device.
	Fuse type and value should controlled device datasheet.

1)

G

supply line fusing in series with relay contacts and controlled value should be lowest required by control relay datasheet or

Failure to install fuse may result in damage to relay or device.

TX-I/O Power Source Requirements – I/O Modules.				
Product	Part Number	Input Voltage	Maximum Power ¹⁾	
Digital Input Module	TXM1.8D	24 Vdc	1.1 W	
Digital Input Module	TXM1.16D	24 Vdc	1.4 W	
Relay Module	TXM1.6R	24 Vdc	1.7 W	
Relay Module	TXM1.6R-M	24 Vdc	1.9 W	
Universal Module	TXM1.8U	24 Vdc	1.5 W ²	
Universal Module	TXM1.8U-ML	24 Vdc	1.8 W ²	
Super Universal Module	TXM1.8X	24 Vdc	2.2 W ^{2) 3)}	
Super Universal Module	TXM1.8X-ML	24 Vdc	2.3 W ^{2,3}	

1) The 24 Vdc self forming TX-I/O Bus and interconnecting wiring is Class 2.

2) Class 2 Distribution Terminals are provided for 24 Vac.

3) Class 2 Distribution Terminals are provided for 24 Vdc. A maximum of 4.8 W per module may be distributed for external sensors. This is not included in the maximum power shown above.

PXC Series Power Source Requirements.				
Product	Input Voltage	Maximum Power Consumption	24 Vdc Sensor Power Output ¹⁾	
PXC Modular	24 Vac	24 VA	N/A	
PXC Compact 36	24 Vac	35 VA	200 mA	
PXC Compact 24	24 Vac	20 VA	200 mA	
PXC Compact 16	24 Vac	18 VA	200 mA	

24 Vdc for up to eight external sensors at 25 mA each. Combined total of the external sensor power outputs cannot exceed 200 mA ±10% over full operating temperature range.

TX-I/O Product Range

TX-I/O Power Source Requirements – Power Modules and Bus Modules.					
Product	Input Voltage	Line Frequency	Maximum Input Power	Maximum Output	
				24 Vdc ¹⁾	24 Vdc
Power Supply Module	24 Vac	50/60 Hz	150 VA	28.8 W	96 VA
Bus Connection Module	24 Vac	50/60 Hz	96 VA	0 W	96 VA
Island Bus Expansion Module	24 Vdc	N/A	1.2 W	N/A	N/A
P1 Bus Interface Module	24 Vac	50/60 Hz	125 VA	14.4 W	96 VA

24 Vdc power may be shared.

1)

Powering Options

Input 24 Vac

One of the options for powering TX-I/O modules and 24V devices is the PX Series Service Box.

See PX Series Service Boxes [\rightarrow 81] in this chapter for more information.

Analog Input Powered Devices

The 24 Vdc output terminals on TXM1.8X and TXM1.8X-ML modules can power approved sensors or devices that draw less than 4.8 W (200 mA) total. Subtract the sensor or device power source requirements and the TX-I/O power source requirements from the maximum output of the TX-I/O Power Supply or P1 BIM.

An external source must power sensors that require more power than the TX-I/O Power Supply or P1 BIM can provide. The external source can be connected to the same AC line as the 24 Vac transformer or service box as long as it is only used to power low voltage devices (less than 30 volts).

Analog Output Powered Devices

The TX-I/O Power Supply and P1 BIM each provide 24 Vac 96 VA maximum Class 2 power distribution from the service box to the TX-I/O module AC outputs.

Metal Oxide Varistors (MOVs)

MOVs are not factory installed on the Digital Output module terminals. Install MOVs at the appropriate voltage rating on the DO terminals to prolong contact life. See Table *MOV part number* in the Controlling Transients [\rightarrow 23] section of Chapter 1 for recommended MOV types.

NOTE: DO WIRED NORMALLY OPEN AND NORMALLY CLOSED.

Fig. 56: Figure 47. Field Installed MOVs.

TX-I/O Island Bus Guidelines

Power and Communications	Specifics	Diagram
ALN	RS-485; Supervised	Figure ALN Trunk Shield Connection [→ 47]
FLN	RS-485; Supervised	Figure FLN P1 Trunk Shield Connection [→ 48]
Power	24 Vac; Supervised	See the TX-I/O Island Bus Wiring
TX-I/O island bus	24 Vdc; Supervised	Diagrams
TX-I/O island bus expansion	RS-485; Supervised	

Power and Communications	Specifics
ALN	RS-485; Supervised
FLN	RS-485; Supervised
Power	24 Vac; Supervised
TX-I/O island bus	24 Vdc; Supervised

To ensure error free communication and prevent equipment damage, observe the TX-I/O island bus wiring guidelines in this section.

- All connections to 24 Vac must be home run back to transformer.
- Distribute 24V~ transformer power to additional TX-I/O Power Supplies and Bus Connection Modules using twisted pair cable in a star configuration.
- Distribute 24 Vdc Communication Supply and Data (CS/CD/L) from the TX-I/O Power Supply or P1 BIM to other power supplies or Bus Connection Modules using twisted pair cable in a chain configuration.
- When using NEC Class 2 wiring on a TX-I/O island bus extended from an enclosure with a transformer, install a circuit interrupter to limit up to 4A maximum where necessary. A 4A interrupted output is available on the PX Series Service Boxes.
- TX-I/O island bus cables (24V~/J/CS/CD) must be run together either by NEC Class 2 methods or, where not limited by local code, by NEC Class 1 power limited methods.

TX-I/O Island Bus Power and Communication Options

TX-I/O Island Bus

The TX-I/O island bus consists of the following signals:

- Communication and supply (CS)
- Communication data (CD)
- AC power (24V~)
- System neutral (1)

These signals operate over the self-forming TX-I/O module rails and are externally available at TX-I/O Power Supply and Bus Connection Module connectors.

TX-I/O Island Bus Expansion

The TX-I/O island bus expansion consists of the following signals:

- Communication data (CD) over RS-485 (+)
- Communication data (CD) over RS-485 (–)
- Signal common over RS-485 (+)

These signals operate over RS-485 cable and are available at Island Bus Expansion module connectors.

TX-I/O Module Support

Controllers that Support a TX-I/O Island Bus.				
	PXC Modular Series	PXC Compact 36	P1 Bus Interface Module (BIM)	
Points Supported	500	32	80	
TX-I/O Modules Supported (Maximum)	64	4	10	
Power Supplies Supported	4	4	3	
TX-I/O Power Supply	N/A ¹	N/A ¹	14.4 W ²	

¹⁾ Use a TX-I/O Power Supply to power TX-I/O modules. See Figure RS-485 ALN Trunk Shield Connection [\rightarrow 47].

²⁾ See Figure RS-485 FLN (P1) Trunk Shield Connection—Electronic Output [→ 48].

• A maximum of 16 bus connections are permitted per island bus. For example, 1 P1 BIM + 3 TX-I/O Power Supply modules + 12 Bus Connection Modules = 16 bus connection points.

Controllers that Support a TX-I/O Island Bus.				
TC Modular Series TC Compact 36				
Points Supported	500	32		
TX-I/O Modules Supported (Maximum)	64	4		
Power Supplies Supported	4	4		

- A maximum of 16 bus connections are permitted per island bus. For example, 4 TX-I/O Power Supply modules + 12 Bus Connection Modules = 16 bus connection points
- On a TX-I/O island bus, multiple power supplies may be used in parallel (connected using CS/CD terminals), or up to two power supplies may be used in series (self-forming bus rails).

See Table TX-I/O Wire Type Requirements [\rightarrow 88] for the maximum island bus distance.

TX-I/O Island Bus Wiring Diagrams

Fig. 57: PXC Modular with TX-I/O Island Bus—Power and Communication Wiring.

Fig. 58: PXC-36 with TX-I/O Island Bus—Power and Communication Wiring.

i

NOTE: The common terminal from the PXC-36 to the Power Supply module on the Island Bus *must* be connected.

TX-I/O Island Bus Extension Cable Options

The maximum TX-I/O island bus cable length is 164 ft (50 m). This length is based on 54 picofarads per foot (pF/ft) capacitance, which is typical of shielded PVC tray cable.

- When the TX-I/O island bus is inside an electrically quiet enclosure, use 2 Twisted Pair (TP) with 24V~/1 home run to the transformer and CS/CD run between the Power Supply or Bus Connection Module. System Neutral (1) is not required to run with CS/CD.
- For use between enclosures or in an electronically noisy enclosure where AC and DC power require the same size cable, use 1 Twisted Shielded 4C for CS/CD/L /24V~.
- For use between enclosures or in an electronically noisy enclosure where AC and DC power require different size cable, use 1 TSP for 24V~/1 and 1 Twisted Shielded 3C (Triad) for CS/CD/1.

Operating the TX-I/O Bus in an Electrically Noisy Enclosure

Electrically noisy enclosures include motor control cabinets with VFD or motor power greater than 100 kVA, such as direct online (DOL) starters for motors greater than 25 HP.

The TX-I/O island bus cable must be shielded and separated from high voltage wire as described in Chapter 1 [\rightarrow 14].

Calculating the Maximum TX-I/O Island Bus Cable Length

The following factors are used to determine the maximum TX-I/O island bus cable length or power transfer:

- Total capacitance
- Vdc drop
- Vac drop

Total capacitance includes all branches. Total TX-I/O island bus cable capacitance must be less than 9 nanofarads (nF). Exceeding this limit causes communication errors.

Maximum power delivered to each branch is determined by TX-I/O island bus length for the branch, cable resistance and allowable voltage drop factor (12 for DC or 48 for AC).

 $R = 2 \times \text{branch length in feet } \times \Omega/\text{ft cable, or}$

 $R = 2 \times \text{branch length in meters} \times \Omega/\text{m cable}$

Where:

R is determined using maximum ambient temperature of wire at 75°C not mean 25°C.

14 AWG = 0.006 Ω/ft	2.0mm ² = 0.0104 Ω/m
16 AWG = 0.009 Ω/ft	1.25mm² = 0.0168 Ω/m

Maximum DC Power (CS, CD, \bot) = Vdrop × Vdc / R = 0.5 Vdc × 24 Vdc / R = 12 V2 / R

Maximum AC Power (24V~, 1) = Vdrop × Vac / R = 2 Vac × 24 Vac / R = 48 V2 / R

Example 1

Calculating the maximum TX-I/O island bus power that a Power Supply can deliver to a Bus Connection Module over the maximum wire length (164 ft).

- One 14 AWG shielded triad (CS, CD, 1)
 + One 14 AWG twisted shielded pair (24V~, 1)
- R(14 AWG) = 2 × 164 ft × 0.006 Ω/ft = 1.968 Ω ~ 2 Ω
- Maximum DC Power = $12 V^2 / 2 \Omega = 6 W$
- Maximum AC Power = $48 V^2 / 2 \Omega = 24 VA$

- or -

- One 16 AWG twisted shielded 4 Conductor (CS, CD, 1, 24V~)
- R(16 AWG) = 2 × 164 ft × 0.009 Ω/ft = 2.952 Ω ~ 3 Ω
- Maximum DC Power = $12 V^2 / 3 \Omega = 4 W$
- Maximum AC Power = $48 V^2 / 3 \Omega = 16 VA$

Example 2

Calculating the maximum distance between a fully-loaded Bus Connection Module and a Power Supply.

- One 14 AWG twisted shielded 4 Conductor (CS, CD, ⊥, 24V~)
- R(14 AWG) = 2 × 164 ft × 0.006 Ω/ft = 1.968 Ω ~ 2 Ω
- DC Length = 12 V² / (2 × 0.006 Ω/ft × 28.8 W) = 35 ft
- AC Length = $48 V^2 / (2 \times 0.006 \Omega/\text{ft} \times 96 VA) = 42 \text{ ft}$
- DC Length must be no greater than 35 ft
- If 4 branches are used, the total length of 140 ft is within the 164 ft maximum.
- Transformer at the power supplies must be at least 4 × 150 VA + 24 VA (PXC) = 624 VA
- Each branch must have a 24V~ interrupt to be run as Class 2

TX-IO Module Wiring Diagrams

Module Type	Specifics [Page Number]
Digital Input Modules (TXM1.8D and TXM1.16D)	Digital Input Module Terminal Layout [→ 98]
	Dry Contacts; Supervised
Digital Output Modules (TXM1.6R and TXM1.6R-M)	Digital Output Module Terminal Layout [→ 99]
	Latched; Not Supervised
	Pulsed; Not Supervised
Universal and Super Universal Input/Output Modules	Universal Module Terminal Layout [→ 101]
(TXM1.8U, TXM1.8U-ML, TXM1.8X, and TXM1.8X-ML)	Super Universal Module Terminal Layout [→ 101]
	Digital Input (Dry Contacts; Not Supervised) [→ 102]
	Digital Input (Using AI, Supervised) See MEC Wiring Diagram to Use an AI as a DI [→ 162]
	Temperature Sensor Input (RTD and Thermistor; Supervised) $[\rightarrow 103]$
	0-10 Vdc Input (Voltage; Supervised) [→ 103]
	2-wire and 3-wire Active Input (Current; Supervised)—Super Universal Modules Only [→ 104]
	Analog Output (Voltage or Current; Not Supervised) [→ 104]

Symbols

TX-I/O modules use the following set of symbols.

L	System neutral ('N' on MEC Service Box)
ę	Protective Earth (PE) is Approved Building Earth Ground terminal at enclosure
	(output to terminal "宁" on PX Series Service Boxes or terminal 'E' on MEC Service Box)
Ē	Protective Ground input on equipment for connection to PE
Ŷ	Equipotential (RS-485 communications common reference terminal)
‡	Configurable point
÷	Output (arrow pointing OUT from center of module)
cito	Input (arrow pointing IN toward center of module)
Vm	24 Vdc output (field supply)
Vas	AC/DC output, 12 to 24V (field supply)
~	24 Vac input from Service Box ('H' on MEC Service Box)

Digital Input Modules (TXM1.8D and TXM1.16D)

i

NOTE:

Potential free (dry contact) for all points.

The neutral of a digital input can be connected to any neutral terminal on the same module. Several digital inputs can also share a neutral terminal on the same module.

NOTE:

Counter inputs faster than 1 Hz that are routed for more than 33 ft (10 m) in the same wire runs as analog inputs must be shielded.

Digital Input Module Terminal Layout.																
			TXM1.	8D, T	XM1.16 D TXM1.16D only											
I/O point	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
System Neutral ⊥ (–) ¹⁾	1	3	5	7	9	11	13	15	18	20	22	24	26	28	30	32
Input (+)	2	4	6	8	10	12	14	16	19	21	23	25	27	29	31	33

Terminals 1, 3, 5 etc. are neutral terminals. They are connected in the plug-in I/O module but not in the terminal base. When the I/O module is removed, there is no connection.

Dry Contacts; Supervised, Digital Input Module

- K1 Status contact (N/O)
- K2 Status contact (N/C)
- K3 Pulsed accumulator
- S5 Electronic switch (rated for 30V, 10 mA)

Dry Contacts; Supervised, Digital Input Module.

Digital Output Modules (TXM1.6R and TXM1.6R-M)

1)

A DANGER

Digital Output modules connected to high voltage should incorporate a readily accessible disconnect device outside the panel.

All low voltage and high voltage wiring must be routed separately within an enclosure so that low voltage and high voltage wiring cannot come in contact with each other. High- and lowvoltage circuits cannot be located on adjacent terminals within a module.

Digital Output Module Terminal Layout.								
Output Point	(1)	(2)	(3)	(4)	(5)	(6)		
Common	3	9	15	20	26	32		
N/O Contact	2	8	14	21	27	33		
N/C Contact	4	10	16	19	25	31		

For logical point types with several I/O points, do the following:

- Always use adjacent I/O points.
- Confine each logical point type to one module only.

Latched; Not Supervised, Digital Output Module

- Q1 Switched load (NO contact)
- Q2 Switched load (NC contact)

Latched; Not Supervised, Digital Output Module.

Pulsed; Not Supervised, Digital Output Module

- Q1 Pulse-driven device (for example, a stepping switch)
- K1 Power contactor, self-latching

Pulsed; Not Supervised, Digital Output Module.

Universal and Super Universal Modules (TXM1.8U and TXM1.8U-ML; TXM1.8X and TXM1.8X-ML)

Universal Modules

TXM1.8X

TXM1.8X-ML

2)

Universal Module Terminal Layout.								
I/O Point (1) (2) (3) (4) (5) (6) (7) (8)								(8)
Measuring Neutral L (-) ¹⁾	2	6	10	14	19	23	27	31
Input [‡] (+)	4 8 12 16 21 25 29 33						33	
AC Actuator Supply Voltage ²⁾		Selected from: 7, 15, 24, 32						

¹⁾ All measuring/neutral terminals are connected in the plug-in I/O module, not in the terminal base. When the I/O module is removed, there is no connection. The neutral of a digital input can be connected to any neutral terminal on the same module. Several digital inputs can also share a neutral terminal.

All AC actuator supply voltage terminals are connected in the I/O module, not in the terminal base. They are protected through the fuse on the TX-I/O Power Supply or P1 BIM.

Super Universal Module Terminal Layout.								
I/O Point	(1)	(2)	(3)	(4)	(5) ¹⁾	(6) ¹⁾	(7) 1)	(8) ¹⁾
Measuring Neutral L (-) ²⁾	2	6	10	14	19	23	27	31
Input ‡ (+)	4	8	12	16	21	25	29	33
AC Actuator Supply Voltage ³⁾			Seleo	cted from	: 7, 15, 2	4, 32		
24 Vdc Sensor Supply Voltage ⁴⁾			Selec	cted from	: 3, 11, 2	20, 28		

¹⁾ 0 to 20 mA output is available on points 5 through 8 only.

²⁾ All measuring/neutral terminals are connected in the plug-in I/O module, not in the terminal base. When the I/O module is removed, there is no connection. The neutral of a digital input can be connected to any neutral terminal on the same module. Several digital inputs can also share a neutral terminal.

³⁾ All AC actuator supply voltage terminals are connected in the I/O module, not in the terminal base. They are protected through the fuse on the TX-I/O Power Supply or P1 BIM.

Digital Input, Dry Contacts; Not Supervised, Universal and Super Universal Modules

 K1
 Status contact (N/O)

 K2
 Status contact (N/C)

 K3
 Pulsed accumulator

 S5
 Electronic switch (rated for 30V, 6 mA for 150 ms, then 1 mA)

Digital Input, Dry Contacts; Not Supervised, Universal and Super Universal Modules.

⁴⁾ All 24 Vdc supply terminals are connected. They are overload protected in the module.

Temperature Sensor Input (RTD and Thermistor); Supervised, Universal and Super Universal Modules

- B1 Ni 1000 LS
- B2 RTD or 100K, 10K Type II and 10K Type III Thermistor temperature sensors
- R3 Resistive Input Not supported

Temperature Sensor Input (RTD and Thermistor); Supervised, Universal and Super Universal Modules.

0-10 Vdc Input (Voltage); Supervised, Universal and Super Universal Modules

- B4 0-10V sensor with external supply
- B5 0-10V sensor with 24 Vac supply

0-10 Vdc Input (Voltage); Supervised, Universal and Super Universal Modules.

TXIO0037R1

2-wire and 3-wire Active Input (Current); Supervised, Super Universal Modules Only

- B4 Active sensor with 24 Vdc supply
- B5 Active sensor with 24 Vac supply
- B6 Active sensor 4 to 20 mA (2 wire)
- B7 Active sensor with external supply (earth ground only at Service Box)

2-wire and 3-wire Active Input (Current); Supervised, Super Universal Modules Only.

Analog Ouput (Voltage or Current); Not Supervised, Universal and Super Universal Modules

Y4 24 Vac external

Analog Ouput (Voltage or Current); Not Supervised, Universal and Super Universal Modules.

PXC Compact Series Controller

NOTE:

UL-recognized wire (labeled with a backwards "RU") is not field-installable. Use only UL-listed wire.

For analog inputs, termination for shield is provided, if required. Termination for shield is not provided for digital inputs. For more information, see the PXC Compact Series wiring diagrams [\rightarrow 110].

Wire Type Requirements

NOTE:

UL-recognized wire (labeled with a backwards "RU") is not field-installable. Use only UL-listed wire.

For analog inputs, termination for shield is provided, if required. Termination for shield is not provided for digital inputs. For more information, see the wiring diagrams.

PXC Compact Series Wire Type Requirements.									
Circuit Type	Class	Wire Type	Maximum Distance ¹⁾	Conduit Sharing ²⁾					
AC Line Power (120V or greater)	1	No. 12 to No. 14 AWG THHN	See NEC ³⁾	Check local codes					
AC Low Voltage Power	2	No. 12 to No. 18 AWG THHN	See NEC ³⁾	Check local codes					
Universal Input/Output	2	No.18 to No.22 AWG, $TP^{4)}$ or $TSP^{5)}$ CM (FT4) or CMP (FT6) ⁴⁾	750 ft (230 m)	Check local codes					
Universal Input/Output on SCS (Basic Link)	2	24 AWG UTP ⁶⁾ , solid	295 ft (90 m)	Check local codes					
Universal Input/Output on SCS (Patch Cables)	2	24 AWG UTP ⁶⁾ , stranded	33 ft (10 m)	Check local codes					
Dedicated Digital Input	2	No.14 to No.22 AWG. TP not required ⁵⁾ ; check job specifications and local codes.	750 ft (230 m)	Check local codes					
Digital Output	1, 2	No.14 to No.22 AWG. TP not required; check job specifications and local codes.	Check local codes	Check local codes					
TX-I/O Island Bus Cable	See Wire	<i>Type Requirements</i> in the section, TX-I/O	Product Range [→ 88].						

¹⁾ Wire length affects point intercept entry. Adjust intercept accordingly.

²⁾ Conduit sharing rules: No Class 2 point wiring can share conduit with any Class 1 wiring except where local codes permit. (Both Class 1 and Class 2 wiring can be run in the field panel providing the Class 2 wire is UL listed 300V 75°C (167°F) or higher, or the Class 2 wire is NEC type CM (FT4) (75°C or higher) or CMP (FT6) (75°C or higher). NEC type CL2 and CL2P is not acceptable unless UL listed and marked 300V 75°C (167°F) or higher.

³⁾ National Electric Code.

⁴⁾ Twisted pair, non-jacketed, UL listed 75°C (167°F) and 300V cable can be used in place of CM (FT4) or CMP (FT6) (both must be rated 75°C or higher) cable when contained in conduit per local codes. See the *Field Purchasing Guide* for wire.

⁵⁾ Twisted Shielded Pair TSP is not required for general installation, does not affect PXC Compact specifications, and may be substituted where otherwise specified. TSP should be used in areas of high electrical noise (for example when in proximity to VFDs and 100 kVa or larger motors). Where used, connect the shield drain wire to the grounding system inside enclosure.

⁶⁾ Cable must be part of a Structured Cabling System (SCS).

PXC Compact Power Source Requirements.								
Product Input Line Frequency Maximum Voltage								
PXC-16	24 Vac	50/60 Hz	18 VA					
PXC-24	24 Vac	50/60 Hz	20 VA					
PXC-36	24 Vac	50/60 Hz	35 VA					

Power Source Requirements

¹⁾ The 24V wiring is Class 2.

²⁾ An external connection is provided for power at 24 Vdc at 50 mA per termination (200 mA maximum all terminations) for external sensors.

Analog Input Powered Devices

Approved sensors can be powered by the PXC Compact Series 24 Vdc Sensor Supply.

- Version 1 of the PXC-16 and PXC-24 support up to 100 mA. The Version 1 model number format is PXC16-xxx.A or PXC24-xxx.A.
- All versions of PXC-36 and Version 2 and later of the PXC-16 and PXC-24 support 200 mA. The Version 2 model number format is PXC16.2-xxx.A or PXC24.2xxx.A.

Sensors requiring more power must be powered by an external source.

- The external source can be connected to the same 24 Vac line as the PX Series Service Box power supply as long as it is only used to power low voltage devices (less than 30 volts).
- An external sensor supply must be connected to the same Building Earth Ground as the PXC Compact

Analog Output Powered Devices

The PXC Compact does not provide actuator output power. See the PX Series Service Box [\rightarrow 81] section in this chapter.

Powering Options

One of the options for powering the PXC Compact, point blocks, and 24V devices is the PX Series Service Box.

See PX Series Service Boxes [\rightarrow 81] in this chapter for more information.

Metal Oxide Varistors (MOVs)

MOVs are factory installed on the DO terminals.

Line Voltage Receptacle

Line voltage MOVs are factory-installed on all service boxes. If using a third-party transformer, use an appropriate MOV. See Table *MOV part number* in the Controlling Transients [\rightarrow 23] section of Chapter 1.

PXC Compact Series Universal I/O

The PXC Compact Series provides Universal Input and Universal Input/Output points that are software-configurable to be 0 to 10 Vdc input, 4 to 20 mA input, 1K RTD input, 10K or 100K Thermistor input, digital input, pulse accumulator input, or 0 to 10Vdc analog output. The point types and their possible configurations are shown in this section.

	PXC-16 Supported Point Types.									
		Config	gurable Points		Dedicated Points	;				
Point Type		Universal Input (UI) Points 1-3	Universal Input/Output (U) Points 4-8	Analog Output (AO) Points 9-11	Digital Input (DI) Points 12-13	Digital Output (DO) Points 14-16				
Analog	Voltage 0 to 10 Vdc	•	•							
Input"	Current 4 to 20 mA	•	•							
	RTD Pt 1K ¹⁾	•	•							
	RTD Ni 1K ²⁾	•	•							
	Thermistor 10K NTC ³⁾	•	•							
	Thermistor 100K NTC ³⁾⁾	•	•							
Digital	Status (Binary Input)	•	•		•					
Input	Pulse Accumulator (Counter)	•	•							
Analog Output	Voltage 0 to 10 Vdc		•	•						
Digital Output	Binary/Digital Output					•				

¹⁾ Platinum 1K 375 or 385 alpha.

²⁾ Siemens, Johnson Controls, and DIN Standard Nickel.

³⁾ 10K and 100K Type 2 and 10K Type 3.

⁴⁾ Sensor supply 24 Vdc, 4.8W

	PXC-24 Supported Point Types.								
			Configurable Poi	ints	Dedicat	Dedicated Points			
Point Type		Universal Input (UI) Points 1-3	Universal Input/Output (U) Points 4-12	Super Universal (X) Points 13-16	Analog Output (AO) Points 17-19	Digital Output (DO) Points 20-24			
Analog	Voltage 0 to 10 Vdc	•	•	•					
Input ^{oy}	Current 4 to 20 mA	•	•	•					
	RTD Pt 1K ¹⁾	•	•	•					
	RTD Ni 1K ²⁾	•	•	•					
	Thermistor 10K NTC ³⁾	•	•	•					
	Thermistor 100K NTC ³⁾	•	•	•					
Digital	Status (Binary Input)	•	•	•					
Input	Pulse Accumulator (Counter)	•	•	•					
Analog	Voltage 0 to 10 Vdc		•	•	•				
Output	Current 0 to 20 mA			•					
Digital Output	Binary/Digital Output			•4)		•			

¹⁾ Platinum 1K 375 or 385 alpha.

²⁾ Siemens, Johnson Controls, and DIN Standard Nickel.

³⁾ 10K and 100K Type 2 and 10K Type 3.

⁴⁾ Requires an external relay.

⁵⁾ Sensor supply 24 Vdc, 4.8W

	PXC-36 Supported Point Types.									
		Configurab	le Points	Dedicated Points						
Point Type		Super Universal (X) Points 1-6	Universal Input/Output (U) Points 7-24	Digital Input (DI) Points 25-28	Digital Output (DO) Points 29-36					
Analog	Voltage 0 to 10 Vdc	•	•							
Input ³	Current 4 to 20 mA	•	•							
	RTD Pt 1K ¹⁾	•	•							
	RTD Ni 1K ²⁾	•	•							
	Thermistor 10K NTC ³⁾	•	•							
	Thermistor 100K NTC ³⁾	•	•							
Digital Input	Status (Binary Input)	•	•	•						
	Pulse Accumulator (Counter)	•	•							
Analog	Voltage 0 to 10 Vdc	•	•							
Output	Current 0 to 20 mA	•								
	PXC-36 Supported Point Types.									
-------------------	-------------------------------	-----------------------------------	--	------------------------------------	-------------------------------------	--	--	--		
		Configurab	le Points	Dedicated Points						
Point Type		Super Universal (X) Points 1-6	Universal Input/Output (U) Points 7-24	Digital Input (DI) Points 25-28	Digital Output (DO) Points 29-36					
Digital Output	Binary/Digital Output	•4)			•					

¹⁾ Platinum 1K 375 or 385 alpha.

²⁾ Siemens, Johnson Controls, and DIN Standard Nickel.

- ³⁾ 10K and 100K Type 2 and 10K Type 3.
- ⁴⁾ Requires an external relay.
- ⁵⁾ Sensor supply 24 Vdc, 4.8W

Compact Series Sensor Wiring

The PXC Compact uses a shared ground between sensors to reduce the number of required terminal connections. The PXC Compact ground contacts are shared as shown the following figures.

Shared Ground Connections (PXC-16 and PXC-24).

Shared Ground Connections (PXC-36).

PXC Compact Series Wiring Diagrams

WARNING

All transformer or isolated power supply secondary neutrals requiring connection to earth ground must be directly connected to an approved building earth ground terminal located at the point termination module where the signal is terminated. This is represented in the following diagrams by "E" at the earth ground symbol.

Point Type	Specifics [Page Number]	
Analog Input	Internally powered, voltage or current, supervised [\rightarrow 111]	
	Externally powered, voltage or current, supervised [\rightarrow 111]	
	RTDs or Thermistors, supervised [\rightarrow 112]	
Analog Output	0-10 Vdc, not supervised [→ 113]	
	0-20 mA, not supervised [→ 114]	
Digital Input	Dry contacts, not supervised [\rightarrow 116]	
	Pulse accumulating, not supervised [→ 117]	
	Using AI, Supervised – See the MEC wiring diagram [\rightarrow 162]	
Digital Output	Pulsed or latched, not supervised [\rightarrow 118]	

Analog Input, Internally Powered; Supervised

Fig. 61: Connecting an Internally Powered Analog Input (Voltage or Current).

Analog Input, Externally Powered; Supervised

Fig. 62: Connecting an Externally Powered Analog Input (Voltage or Current).

Analog Input, RTDs or Thermistors; Supervised

125-3002

Fig. 64: Connecting an Analog Output (0 to 10 Vdc).

Connecting an Analog Output (0 to 20 mA) (PXC-16 and PXC-24).

Digital Input, Dry Contacts; Not Supervised

Fig. 65: Connecting a Digital Input (Dry Contacts).

- 1) A single common may be used for all digital inputs.
- 2) Excitation equals 24 Vdc at 6 mA for 150 msec, then 1 mA. Must be stable for 100 msec.
- 3) Excitation equals 24 Vdc at 10 mA. Cannot be used for pulse accumulating.
- 4) Dry contact only. Does not require gold contacts.
- 5) Solid state device must be rated for 30V minimum, with RDS on less than 1K ohms and RDS off greater than 100K ohms.

Digital Input, Pulse Accumulating; Not Supervised

Fig. 66: Connecting a Digital Input (Pulse Accumulating).

- ¹⁾ Excitation equals 24VDC at 6 mA for 150 msec, then 1 mA. Pulse rate equals 20 Hz.
- ²⁾ Separate commons for each input.

Digital Output, Pulsed or Latched; Not Supervised

Point Expansion or Conversion

AO-P Transducer

The AO-P Transducer converts field panel voltage output or current output to pneumatic output.

Recommended maximum wiring runs for the AO-P Transducer Remote Mount (545-208) and the AO-P Transducer Panel Mount (545-113) are listed in table *AO-P Transducer Remote Mount and Panel Mount Wiring Run Limitations*.

AO-P Transducer Remote Mount and Panel Mount Wiring Run Limitations.					
Circuit Type	Class	Wire Type ¹⁾	Maximum Distance		
24 Vac Power	2	No. 18 to 22	750 ft (230 m)		
0 to 10 Vdc (Signal)	2	No. 18 to 22 TP	1000 ft (305 m)		
0 to 5 Vdc (feedback)	2	No. 18 to 22 TP	1000 ft (305 m)		
Digital Output	2	No. 18 to 22	1000 ft (305 m)		
4 to 20 mA	2	No. 18 to 22 TP	1000 ft (305 m)		

¹⁾ See the *Wire Specification Tables* section in Chapter 1—Wiring for more information.

Power Source Requirements

Power Source Requirements for AO-P Transducer.					
Product Input Voltage Line Frequency Maximum Power					
AO-P Transducer	24 Vac	50/60 Hz	1 VA		

AO-P Wiring Connections.			
AO-P Transducer Wire Color	Connection		
Red (HK)	24 Vac		
Black (N)	Neutral		
Yellow (+)	0 to 10 Vdc, or 4 to 20 mA (Signal +)		
White (F)	0 to 5 Vdc (Feedback +)		
Gray (I-)	Signal/Feedback Negative (-)		
Orange (A) ¹⁾	DO (Dry Contact)		
Orange (B) ¹⁾	DO (Dry Contact)		

¹⁾ Together, the two orange wires make up the DO. These connections are optional. The DO reports the position of the Hand-Auto switch:

- Open Contact=Auto Mode

- Closed Contact=Hand Mode

AO-P Transducer Wiring Diagram

Fig. 68: Connecting an AO-P Transducer Input.

i

NOTE:

Both the jumper on the back and the jumper for A09 must be set to current for 4 to 20 mA input.

Chapter 4 – Equipment Controllers

Wire	Туре	Requirements
------	------	--------------

Equipment Controller Wire Type Requirements.						
Circuit Type	Class	Wire Type (AWG)	Distance	Conduit Sharing ¹⁾		
Input Power	2	Check local codes	Check local codes	Class 2		
Digital Output	2	Check local codes	150 ft (46 m)	Class 2		
Analog Output	2	Check local codes	150 ft (46 m)	Class 2		
Digital Inputs	2	No. 18 to No. 22 TP	150 ft (46 m)	Class 2		
Analog Inputs	2	No. 18 to No. 22 TP	100 ft (30 m)	Class 2		
Room Temperature Sensor	2	Pre-terminated 3 TP	100 ft (30 m)	Class 2		
KNX/PL-Link	2	No. 18 to No. 20 STP	1,000 ft (328 m)	Class 2		
P1, MS/TP or FCOM	2	No. 24 STP w/ Reference	4,000 ft (1200 m) up to 100 Kbps, 80% above.	Class 2		
SCOM	2	No. 24, 2 x STP w/ Reference or 3 x STP	4,000 ft (1200 m) up to 100 Kbps, 80% above.	Class 2		
Actuator/Signal	2	No. 18 to No. 14, 4C common twist	260 ft (80 m) No. 14	Class 2		

Conduit sharing rules were determined through EMI and shared conduit testing. These rules indicate wiring methods that have no adverse effect on the proper operation of the equipment, but do not necessarily indicate compliance with local codes.

Power Source Requirements

BACnet Equipment Controllers can be powered in three ways. Correct sizing and fusing must be maintained for each of these powering techniques:

- Individual transformer using a transformer rated for Class 2 service.
- Class 2 power trunk. For more information, see the section Power Trunk Guidelines [→ 64].
- Low voltage source of the device the controller is controlling (for example, fan powered boxes, electric room heat, fan coils, and heat pumps).

Total VA rating is dependent upon the controlled DO loads (for example, actuators, contactors, etc.).

1)

The phase of all devices on a power trunk must be identical.

Phase differences can destroy equipment. Any relays, EPs, or contactors sharing power must be clamped with MOVs at their locations.

Metal Oxide Varistors (MOVs)

All DOs are normally open, 24 Vac switched triacs. Metal oxide varistors (MOVs) must be used across the DO terminals when connected to loads. MOVs are factory-installed in all ATEC, PTEC, and TEC products.

When installing MOVs across the DO relay contacts on termination boards, keeping the MOV leads as short as possible makes the MOV more effective at reducing spikes from field wiring or controlled devices. Remove and reinstall any MOVs with leads longer than 1 inch (2.5 cm). See the section Controlling Transients [\rightarrow 23] for MOV part numbers.

BACnet DXR2 Room Automation Station

The information in this section also applies to DXP controllers and P1 DXR automation stations except where noted.

Power Data

DXR2

Power Supply	
Operating Voltage	AC 24V -15%/+20%
Frequency	50/60 Hz
Internal fuse	4 A irreversible
Class 2 Transformer	4 A resettable or replaceable
Controller Voltage Input Required for Attached Field Devices (Triac) 19.2V	AC 20.4V minimum Increase this value by the voltage drop of the wire to the remote field device.

Actuating DXR2 and Lab DXR2

Power supply				
Operating voltage	AC 24 V -15%/+20%			
Frequency	50/60 Hz			
Internal fuse	4 A irreversible			
Class 2 Transformer	4 A resettable or replaceable			
Controller Voltage Input Required for Attached Field Devices (Triac) 19.2V	AC 19.5V minimum Increase this value by the voltage drop of the wire to the remote field device.			

Observe Polarity of AC 24 V~ Power Cable.

Reversing HOT ~ and COMMON wires on 24V~ connector input can destroy DXR2. Observe color of wire used for HOT and COMMON throughout the power trunk. COMMON originates on the neutral side of the 24 Vac power transformer, which must be tied to earth at the transformer, and only at this point.

Fig. 69: Connecting Power Cable.

Maximum Apparent Power (VA) for Transformer Sizing.							
Base Model ¹⁾ Load ²⁾ Hase Model ¹⁾ Base Ma Load ²⁾ A 2 E		Max. Load Triac Output AC 24 V~ 250 mA Each ^{3) 4) 9)}	Max. Load all Aux. Outputs AC 24 V~ ⁵⁾	Max. Load KNX PL- Link (at 50 mA) ⁶⁾	Max. Load DC 24 V+ (2.4 W) ⁷⁾	Max. Allowed Power ⁸⁾ Consumption Including Connected Field Devices	
DXR2.E12P	8	6 x 6 = 36	12	4	—	60	
DXR2.E18	8	8 x 6 = 48	18	4	6	72	
DXR2.E17C	8	4 x 12 = 48	18	2	3	79	
DXR2.E10PL	11	4 x 12 = 48	-	4	-	63	
DXR2.M11	6	6 x 6 = 36	12	4	—	58	
DXR2.M12P	6	6 x 6 = 36	12	4	—	58	
DXR2.M17C	8	4 x 12 = 48	18	2	3	79	
DXR2.M18	6	8 x 6 = 48	18	4	6	70	
DXR2.M10PL	10	4 x 12 = 48	-	4	-	62	
DXR2.T12P11)	6	6 x 6 = 36	12	4	—	58	
DXR2.T18P11)	6	8 x 6 = 48	18	4	6	70	

¹⁾ Maximum Apparent Power applies to Base Model only. See the appropriate automation station application manual for information about reducing power requirements.

- ²⁾ Base load includes controller and I/O not including field device loads in other columns.
- ³⁾ Each Triac switches up to 6 VA; use interposing relay for field devices requiring greater load.
- ⁴⁾ Use AC 20.4V~ minimum. For DXR2 controller power trunk calculations, refer to Chapter 2 Network Electrical Systems [→ 27]. Use AC 19.5V~ for Actuating or Lab DXR2.
- ⁵⁾ Maximum power is available at any V~ terminal or shared between all V~ terminals.
- ⁶⁾ Switch off PL-Link supply and use external KNX power supplies when KNX device load exceeds maximum.
- ⁷⁾ Calculate 1 VA for each 0.4 W used by external field devices.
- ⁸⁾ Total all power used, maximum allowed power listed on product rating label must not be exceeded.
- ⁹⁾ Maximum load Triac output AC 24V~ 500 mA each for Actuating or Lab DXR2 or DXR2.
- ¹⁰⁾ For thermal valve actuators (starting current) with pulse width modulation 5...50% and pulse length of ca. 1 s.
- ¹¹⁾ P1 DXR automation station.

Engineering

Engineering [24 V] [Content Released]

Identification

Each device has a unique serial number to ensure efficient commissioning. It is provided on the adhesive barcode label. The serial number can be read directly into the engineering tool using a barcode reader.

Wiring

Wiring must be sufficiently insulated to the available rated voltage. Sizing and fusing of the wiring depend on the connected load. See the section Wire Type Requirements $[\rightarrow 121]$.

Triac Outputs AC 24V (Y1 – Y8)

Individual Triac outputs may have a maximum load of 6 VA (heating up the device). The following possibilities are permitted:

- Multiple motorized actuators with a total of maximum 6 VA.
- One (1) thermal actuator with 6 VA (0.25 A) start load in a cold state, controlled using the algorithm PWM 0 through100%.
- One (1) thermal actuator with 9 VA (0.37 A) start load each in a cold state, controlled using the algorithm PWM 5 through 50%.

For transformer design (voltage drop off), each thermal actuator must be counted at the full start load, since the Triac outputs can be freely controlled. The heating sequence and cooling sequence are not normally active at the same time (exception: downdraft compensation).

The total of the base load, bus power, field supply, and Triacs may not exceed 72 VA (DXR2.E18P) or 70 VA (DXR2.M18P/T18P). The DXR2.E17C/M17C may not exceed 79VA. Power consumption is 96 VA with pulse width modulation. See the section Power Trunk Layout [\rightarrow 67].

NOTE: The DXR2.*x*17C and DXR2.*x*17CX have a maximum load of 12 VA per Triac.

For the DXR2... 24V variant, the high side switch Triacs (closed the contact at AC 24V) are used. As a result, the VAV compact controllers GDB181.1E/3 or GLB181.1E/3 can only be set to operating mode **con** using 0 through 10V.

DC Through 10V Outputs (Y10 – Y40)

The DC 0 through 10V outputs supply maximum 1 mA.

AC 24V Supply for Field Devices (V~)

Actuators (valves, dampers) and active sensors are supplied directly by the device. Separate AC 24V power supply is only required if field devices consume more than 12 VA (on DXR2.x11... and DXR2.x12...) or 18 VA (on DXR2.x18).

DC 24V Power Supply for Field Devices (V+), DXR2.*x*18 and DXR2.*x*17... Only

Actuators (valves, dampers) and active sensors are supplied directly by the device. A separate DC 24V field supply is only required if field devices use more than 2.4 Watts.

Digital Inputs (D1 – D2)

Digital inputs are not suitable for operating lighting or blinds. Use the **KNK PL-Link** push button devices.

Analog Inputs (X1 – X2)

Analog inputs are not suitable for operating lighting or blinds. Use the **KNK PL-Link** push button devices.

Connection Terminals

IP

Terminal	Symbol	Description	Modul e	Channel
1, 2 Ethernet		2 x RJ45 interface for 2-port Ethernet switch		
11, 12 KNX	+, -	KNX connection		
3136 inputs	3136 inputs D1 Digital input		1	1
	X1, X2	Universal input	1	5, 6
	\perp	System zero		
	V~	Field supply AC 24 V for active sensors		
USB	•~~	USB interface		
5152 power 24	V~	Power SELV / PELV AC 24 V		
V~	\perp	System zero		
6169 Triacs	Y1Y6	Switching output AC 24 V	11	16
	\perp	System zero		
8184 analog	Y10, Y20	Positioning output DC 010 V	21	1, 2
outputs	\perp	System zero		
	V~	Field supply AC 24 V		
ΔP differential	P1+	Connected to the higher pressure	31	1
pressure detector	P1-	Connected to the lower pressure	31	1
Service	SVC	Service button		
Display	RUN	Operation LED		

Terminal	Symbol	Description	Modul e	Channel
1, 2 Ethernet		2 x RJ45 interface for 2-port Ethernet switch		
11, 12 KNX	+, -	KNX connection		
3141 inputs D1, D2 Digital input		Digital input	1	1, 2
	X1X4	Universal input	1	58
	\perp	System zero		
	V~	Field supply AC 24 V for active sensors		
	V+	Field supply DC 24 V for active sensors		
USB	•	USB interface		
5152 power 24	V~	Power SELV / PELV AC 24 V		
V~	\perp	System zero		
6172 Triacs	Y1Y8	Switching output AC 24 V	11	18
	1	System zero		
8188 analog	Y10Y40	Positioning output DC 010 V	21	14
outputs	\perp	System zero		
	V~	Field supply AC 24 V		
Service	SVC	Service button		
Display	RUN	Operation LED		

DXR2.E17C							
11 12 11 KNX 12		31 32 33 34 35 B1 B2 ⊥ X1 V~	36 37 38 39 40 41 ⊥ X2 X3 V+ ⊥ X4]		
SIEM DXR2.	MENS .E17C DX	R2.E17C		S			
	$ \begin{bmatrix} 51 & 24 & V_{-} & 52 & 61 \\ - & - & 1 & 01 \\ - & - & 1 & 02 \\ \hline & 01 & 1 & 02 \\ \hline & 01 & 1 & 02 \\ \hline & 01 & 01 & 02 \\ \hline & 01 & 02 & 03 \\ \hline & 000 & 000 \\ \hline$						
Pin	Description		Terminal	Module	Channel		
1, 2 Ethernet	2 x RJ45 interface for 2-port E	Ethernet switch					
11, 12 KNX	KNX connection		+, -				
3141 inputs	10K Resistance input		B1, B2	1	910		
	Universal input	X1X4	1	58			
	System neutral		\perp				
	Field supply AC 24 V for active sensors		V~				
	Field supply DC 24 V for activ	e sensors	V+				
USB	USB interface		•				
5152 power 24V~	Power supply SELV / PELV A	C 24 V	~				
	System neutral		\perp				
6165 inputs	Digital input		D1, D2, D3	1	13		
	System neutral		\perp				
7173	SCOM		+, -				
	System neutral		\perp				
8186 triacs	Switching output AC 24 V		Y1Y4	11	14		
	System neutral		\perp				
9198 analog	Positioning output DC 010 V		Y10Y40	21	14		
outputs	System neutral		\perp				
	Field supply AC 24 V		V~				
Service	Service button		SVC				
Display	Operation LED		RUN				
	Active communication LED		SCOM				

Pin	Description	Terminal	Module	Channel
1, 2 Ethernet	2 x RJ45 interface for 2-port Ethernet switch			
11, 12 KNX	KNX connection	+, -		
USB	USB interface	● <u>´</u>		
5152 power 24V~	Power supply SELV / PELV AC 24V	V~		
	System neutral	\perp		
6469 Triac outputs	Switching output AC 24V	Y3Y6	11	36
71 Digital output	Positioning output DC 010 V	Y10	21	1, 2
	System neutral	1		
7377	Digital Input	D1	1	1
	Universal inputs	X1, X2	1	5, 6
	System neutral	\perp		
ΔP differential	Connected to the higher pressure	P1+	31	1
pressure detector	Connected to the lower pressure	P1-	31	1
Motor Control Outputs	Shaft turns clockwise (CW)		11	2
	Shaft turns counter clockwise (CCW)		11	1
Service	Service button	SVC		
Display	Operation LED	RUN		

MS/TP

Terminal	Symbol	Description	Modul e	Channel
2123 MS/TP	↓, +, -	MS/TP connection		
11, 12 KNX	+, -	KNX connection		
3136 inputs	D1	Digital input	1	1
	X1, X2	Universal input	1	5, 6
	\perp	System zero		
	V~	Field supply AC 24 V for active sensors		
USB	•< <u>+</u>	USB interface		
5152 power 24 V~	V~	Power supply AC 24 V		
	\perp	System neutral (always ground to the transformer)		
6169 Triacs	Y1Y6	Switching output AC 24 V	11	16
	\perp	System zero		
8184 analog	Y10, Y20	Positioning output DC 010 V	21	1, 2
outputs	\perp	System zero		
	V~	Field supply AC 24 V		
Service	SVC	Service button		
Display	RUN	Operation LED		

Terminal	Symbol	Description	Modul e	Channel
2123 MS/TP	↓, +, -	MS/TP connection		
11, 12 KNX	+, -	KNX connection		
3136 inputs	D1	Digital input	1	1
	X1, X2	Universal input	1	5, 6
	\perp	System zero		
	V~	Field supply AC 24 V for active sensors		
USB	•< <u>`</u>	USB interface		
5152 power 24 V~	V~	Power SELV / PELV AC 24 V		
	\perp	System neutral (always ground to the transformer)		
6169 Triacs	Y1Y6	Switching output AC 24 V	11	16
	\bot	System zero		
8184 analog	Y10, Y20	Positioning output DC 010 V	21	1, 2
outputs	\perp	System zero		
	V~	Field supply AC 24 V		
ΔP differential pressure detector	P1+	Connected to the higher pressure	31	1
	P1-	Connected to the lower pressure	31	1
Service	SVC	Service button		
Display	RUN	Operation LED		

DXR2.M17C					
1 1 1 1 1 1	[0000] <u>21 22 23</u> <u>21 ± MSTP</u> + <u>23 24</u> + <u>FCOM</u> + <u>26</u> 3	31 32 33 34 35 B1 B2 ⊥ X1 V~	36 37 38 39 40 41 ⊥ X2 X3 V+ ⊥ X4		
	MENS 2.M17C DXR	2.M17C		FS	
51 24 V~ 52 1 ~ 1 1 51 52 51 52 5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	81 — TRIAC 24V~ Y1 L Y2 Y3 L 81 82 83 84 85	$\begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & & \\ \hline & & & &$	0V OUT 20 Y30 ⊥ 4 95 96 97	98 98
Pin	Description		Terminal	Module	Channel
2123	MSTP Communication		+, -		
	Isolated comm. ground reference	e	\downarrow		
2426	FCOM		+, -		
	Isolated comm. ground reference	\downarrow			
11, 12 KNX	KNX connection		+, -		
3141 inputs	10K Resistance input		B1, B2	1	910
	Universal input		X1X4	1	58
	System neutral		\bot		
	Field supply AC 24 V for active sensors		V~		
	Field supply DC 24 V for active sensors		V+		
USB	USB interface		€~~÷		
5152 power 24V~	Power supply SELV / PELV AC	24 V	~		
	System neutral		\perp		
6165 inputs	Digital input		D1, D2, D3	1	13
	System neutral		\perp		
7173	SCOM		+, -		
	System neutral		\perp		
8186 triacs	Switching output AC 24 V		Y1Y4	11	14
	System neutral		\perp		
9198 analog	Positioning output DC 010 V		Y10Y40	21	14
ουτραιs	System neutral		\perp		
	Field supply AC 24 V	V~			

Pin	Description	Terminal	Module	Channel
Service	Service button	SVC		
Display	Operation LED	RUN		
	Active communication LED	SCOM		
	LED for future use	FCOM		

Terminal	Symbol	Description	Modul e	Channel
2123 MS/TP	↓ , +, -	MS/TP connection		
11, 12 KNX	+, -	KNX connection		
3141 inputs	D1, D2	Digital input	1	1, 2
	X1X4	Universal input	1	58
	\perp	System zero		
	V~	Field supply AC 24 V for active sensors		
	V+	Field supply DC 24 V for active sensors		
USB	⊷	USB interface		
5152 power 24 V~	V~	Power SELV / PELV AC 24 V		
	\perp	System neutral (always ground to the transformer)		
6172 Triacs	Y1Y8	Switching output AC 24 V	11	18
	\perp	System zero		
8188 analog	Y10Y40	Positioning output DC 010 V	21	14
outputs	\perp	System zero		
	V~	Field supply AC 24 V		
Service	SVC	Service button		
Display	RUN	Operation LED		

Pin	Description	Terminal	Module	Channel
2123 MS/TP	MS/TP connection	↓, +, -		
11, 12 KNX	KNX connection	+, -		
USB	USB interface	⊷		
5152 power	Power supply AC 24 V	V~		
24 V~	System neutral (must always be grounded at the transformer)	\perp		
6469 Triac outputs	Switching output AC 24V	Y3Y6	11	36
71 Digital output	Positioning output DC 010 V	Y10	21	1, 2
	System neutral	\perp		
7377	Digital Input	D1	1	1
	Universal inputs	X1, X2	1	5, 6
	System neutral	\perp		
ΔP differential	Connected to the higher pressure	P1+	31	1
pressure detector	Connected to the lower pressure	P1-	31	1
Motor Control Outputs	Shaft turns clockwise (CW)		11	2
	Shaft turns counter clockwise (CCW)		11	1
Service	Service button	SVC		
Display	Operation LED	RUN		

MS/TP Connection

Use recommended 3-wire (1.5-Pair Network Cable [\rightarrow 36]). Wire the nut shield of both cables or tie back the shield for the end of line, and terminate the shield at router's MSTP port. Connect the yellow reference wire to common terminal 21, the black wire to – terminal 22 and the white wire to + terminal 23. If DXR2.M is at the MSTP cable end of line, install a 120 Ohm resistor between – terminal 22 and + terminal 23. Observe polarity throughout the MSTP network.

Fig. 70: Connecting MS/TP Port to 3-Wire (1.5 STP) Cable.

Fig. 71: Connecting DXR2.M MS/TP Port to Existing 2-Wire (1 STP) Cable.

Pressurized room with or without Fume Hoods (MSTP)

For Critical Environment DXRs in a pressurized space:

- The DXR2M controllers should have their MSTP ports connected per 1.5 pair recommendations, see MS/TP Connection [→ 134].
- DXR2.M17xx controllers have a second RS485 port called FCOM.
- Each pressurized space will have its own FCOM bus. The FCOM ports of all controllers in a pressurized space should be connected, including the DXR2 with the room HVAC coordination application.
- The number of DXR2M devices on FCOM is determined by the number of remote room segments (CetRSegm). The maximum number is 5 remote room segments.
- A single pressurized space may include up to 5 Fume Hoods (1 segment each) if there are no remote room segments.
- DXR2.M17C handles 1 room segment. DXR2.M17CX handles 2 room segments.
- BACnet addresses for controllers in the pressurized space should be contiguous.
- Max Master must be 30 or less.
- The exception to the 5 remote segment limit is if the MSTP network is dedicated to the single pressurized space, either with connection at a field panel or with a router. In this case, the limit is 8. The BACnet addresses must be contiguous with the max master set to the highest address, <= to 8.

Fig. 72: Lab MS/TP with Fume Hoods

MSTP

Fig. 73: Lab MS/TP - Common Pressurized Space

Fig. 74: Lab MSTP – Combination Multi-room and Fume Hoods

Airflow communication network (F-COM)

On CET MS/TP automation stations (DXR2.M17x), the data collected over the F-COM (flow communication) network communicates data related to air supplied and exhausted in and out of the room, including supply terminal(s), extract terminal(s), and fume hood(s). This **separate**, **dedicated network** is needed because the standard BACnet MS/TP network is occupied with other network traffic. FCOM handles airflow related data necessary for dynamic room pressurization changes.

Multiple fume hood flows are totaled by the CetRCtl group master object. The result is displayed in the object for Room fume hood air volume flow (AirFIFhR) located in the pressure control AF (CetAirFITck11 or CetPFICas11).

The following figure provides a simplified view of F-COM network only. The standard BACnet MS/TP network wiring is not shown.

Ethernet Connection

Room automation stations are connected to one another using switches and Ethernet cables with RJ45 connectors. For more information on interconnection between controllers see, Dual Port Ethernet Controller Topology Basics [\rightarrow 27].

NOTE:

For critical environment DXRs with fume hood controls, all controllers in a pressurized space must be on a common switch. See the *Pressurized Rooms with Fume Hoods* and *Lab DXR2 Networking Examples* section for optional configurations.

Fig. 77: Dual Ethernet Connection Using Up to 30m Stranded Copper Patch Cables.

Pressurized Rooms with Fume Hoods (Ethernet)

For Critical Environment DXRs in a pressurized space:

- The DXR2.E controllers may be in a star configuration, a daisy chain configuration or a daisy chain with loop back and RSTP.
 - The daisy chain may include up to 20 devices (room or fume hood).
- All controllers in a pressurized space must be on a common switch.
- Multiple pressurized spaces can be in the daisy chain and on the same switch.
- If doing RSTP, loop back to the same switch. The standard DXR documentation shows the loop back with different switches.
- A single pressurized space may include up to 20 Fume Hoods (1 exhaust each), and should not exceed 16 supply and extracts.
 NOTE: DXR2.C handles 1 supply and 1 extract. DXR2.CX handles 2 supplies and 2 extracts.
- The controller running the room HVAC coordination application should be a C (1 room segment) when more than two supply/extract tracking pair and 8 fume hoods are in the pressurized space.

Lab DXR2 Networking Examples

Fig. 78: Lab DXR2 network - Daisy chain

Chapter 4 – Equipment Controllers

Fig. 80: Lab DXR2 network - Ring

Fig. 81: Lab DXR2 network - Daisy chain

- Two rooms daisy chained with RSTP
- Room integrity maintained

Fig. 82: Lab DXR2 network – RSTP

- Not supported
- RSTP configuration: Rm 101 is exposed to network traffic due to second switch
- Room integrity not maintained

Fig. 83: Lab DXR2 network – RSTP

- Not supported
- RSTP using two switches

Fig. 84: Lab DXR2 network - Star

- Supported
- Dedicated switch port for each Lab DXR2

Fig. 85: Lab DXR2 network - Star

- Dedicated switch port for each Lab DXR
- Room integrity maintained

Fig. 86: Lab DXR2 network - Star

- Not supported
- Star configuration: Rm 101 is exposed to network traffic due to second switch
- Room integrity not maintained

Fig. 87: Lab DXR2 network - Daisy chain

- Not recommended
- Single DXR2 failure could affect multiple rooms (depends on device location)

Sensor Bus Communication (SCOM) Connection

SCOM provides dedicated digital sensor communication.

- Star topology for 24Vac wiring (incl. 0..10V signal)
- Diameter of 24Vac wire is a limiting factor for the distance between controller and sensor
- SCOM must be wired in Line topology.
 SCOM is an RS-485 communication any cable for BACnet/MSTP could be used (e.g. Belden 9925). It is also allowed to use a 2 x 2-wire twisted pair to wire back and forth for cable saving purpose and for installing the terminators in the controller enclosure (e.g. J-Y(St)Y 2x2x0.8 or KNX cable)
- Consider 120 Ohm terminators on the two ends in case the total SCOM length is > 30m /100ft
- Additional terminals needed at the controller for SCOM and 24 Vac wiring
- 3 cables are connected to the sensor (2 Knock-outs available at the DXA.S04P1-B)

Fig. 88: SCOM connection for DXR2.x17C...

Lab DXR power, signal and communications to two/four APS with Actuator in IP54 box

- Maximum cable distance between DXR enclosure and APS and Actuator limited by 24 Vac
 - 80 m (260 ft) on 14 AWG wire
 - 50 m (164 ft) on 16 AWG wire
 - For IP54 splash proof box orientate power/signal and SCOM conduits facing down
 - Actuator cable run through side conduit connection
 - Signal cable from Lab DXR to APS Y and U
 - Dedicated 18 AWG twisted pair

Run in same 4 conductor twisted cable as 24 Vac

 SCOM run in line topology from Lab DXR to each APS maximum cable length 800 m (2600 ft)

Two MSTP cables with reference wire

One data cable with two pairs using APS reference impedance in place of reference wire

Fig. 89: DXR2.x17C... wiring of Sensor/Actuator with two ducts, central transformers, line topology for SCOM.
Chapter 4 – Equipment Controllers BACnet DXR2 Room Automation Station

Fig. 90: DXR2.x17CX.. wiring of Sensor/Actuator with four ducts, central transformers, line topology for SCOM.

KNX PL-Link Connection

KNX PL-Link distances within the APOGEE Automation system are typically short and not subject to large electrical noise. It is recommended to use 20 AWG solid copper unshielded twisted pair cables; however, the drain wire must not be connected. Substitute 18 AWG solid copper shielded twisted pair cable where long wire runs make voltage drop a concern. Use CMP where plenum rating is required.

Fig. 91: Connecting KNX PL-Link.

Fig. 92: KNX PL-Link Device Termination.

DXR0017R1

NOTE:

The operating supply voltage range for the KNX/PL-Link is DC 21 through 30V. DXR2 supplies 50 mA that may not be shared. To obtain more power, shut off the DXR2 KNX/PL-Link supply and connect up to eight JB125C23 KNX power supplies. The devices receive power from the connected room automation station using the KNX PL-Link Terminals +11 and -12. Calculate the voltage drop using cable resistance in Power Trunk Layout [\rightarrow 67]. All devices must have a minimum input of DC 21V.

KNX/PL-Link Interface Power Consumption (From Room Automation Station).				
Part Number	Description	Maximum mA at DC 24V		
QMX3.P02	Wall Temperature Sensor with Switches	7.5		
QMX3.P30	Wall Temperature Sensor Only	7.5		
QMX3.P34	Wall Temperature Sensor with Display	7.5		
QMX3.P37	Wall Temperature Sensor with Switches and Display	10		
QXM3.P40	Wall Temperature/RH/ Sensor without Display	7.5		
QMX3.P70	Wall Temperature/RH/C02 Sensor	15		
QMX3.P74	Wall Temperature/RH/C02 Sensor with Display	15		
QMX3.P87	Fume Hood Operating Display Panel	8		
QMX3.P88	Fume Hood Operating Display Panel (Thin)	8		
JB260C23	Binary Input (4x)	10		
JB510C23	Binary Output (2x Relay)	10		
JB512C23	Switching Actuator (1x 20 A Relay)	10		
JB513C23	Binary Output (3x Relay)	10		
JB520C23	Solar Protection (1x Actuator)	10		
JB521C23	Solar Protection (2x Actuator)	10		
JB525C23	Universal 120V Dimmer	10		
JB125C23	KNX Power Supply 80 mA at DC 2V AC 120V, 50 through 60 Hz (maximum eight on Bus)	(80 640)		

Actuator Terminal Equipment Controller (ATEC) BACnet or N-Variant P1

Fig. 93: Power Trunk Connection to ATEC.

BACnet ATEC or N-Variant P1 ATEC (Updated Hardware) Power Source Requirements.					
Product	Input Voltage	Line Frequency	Maximum Power ^{1) 2) 3)}		
BACnet Actuator	24 Vac	50/60 Hz	5 VA + DO loads		

1) Total VA rating is dependent upon the controlled DO loads (for example, actuators, contactors, and so on) and is limited to 12 VA per DO.

2) Smoke control listed ATECs are limited to 6 VA max per DO.

3) Do not control more than the nameplate rated loads for DOs of the electronic output controllers. The controller UL and CSA listing is based on the nameplate power rating.

Fig. 95: ATEC VAV with Hot Water Reheat, Fan and Spare DO.

Fig. 97: ATEC Wiring for A13/A14/AO.

BACnet Programmable Terminal Equipment Controllers (PTEC) and N-Variant P1 TEC (Updated Hardware)

Earth Ground Reference

The earth ground reference for all field panels and equipment controllers must be supplied via a third wire run, with the AC power source providing power to that cabinet. All AC power sources must be bonded per NEC 250 unless isolation is provided between the cabinets.

For more information, see the Equipment Grounding System Requirements [\rightarrow 17] section of this manual.

BACnet PTEC or N-Variant P1 TEC (Updated Hardware) Power Source Requirements.					
Product	Input Voltage	Line Frequency	Maximum Power ^{1) 2) 3) 4)}		
BACnet Equipment Controller (6 DO Platform)	24 Vac	50/60 Hz	3 VA + DO loads		
BACnet Equipment Controller (8 DO Platform)	24 Vac	50/60 Hz	7 VA + DO loads		

¹⁾ Total VA rating is dependent upon the controlled DO loads (for example, actuators, contactors, and so on) and is limited to 12 VA per DO.

²⁾ Smoke control listed ATECs are limited to 6 VA maximum per DO.

- ³⁾ Do not control more than the nameplate rated loads for DOs of the electronic output controllers. The controller UL and CSA listing is based on the nameplate power rating.
- ⁴⁾ For higher VA requirements, 110 or 220 Vac requirements, separate transformers used to power the load, or DC power requirements, use an interposing 220V 4-relay module (TEC Relay Module P/N 540-147).

NOTE: See the Installation Instructions for point wiring diagrams.

Fig. 99: 6 DO Controller with 1 DI, 1 DI/AI-T, and Air Velocity Sensor.

Fig. 102: 8 DO Controller with 1 AI-V/I, 2AI-T, 2 DI, 3 AO-V, and 1 Air Velocity Sensor.

Fig. 103: 8 DO Controller with 2 AI-V/I, 1 AI-T, 2 DI, 3 AO-V, and 2 Air Velocity Sensors.

Fig. 104: 8 DO Controller with 2 AI-V/I, 1AI-T, 2 DI, 3 Fast AO-V, and 2 Offboard Air Velocity Sensor Inputs.

Appendix A – Discontinued Products

The following products are no longer available for new sales; this information is for reference only.

Modular Equipment Controller (MEC) and Point Expansion Module (PXM)

MEC, MEC with LON, and PXM Points Wire Type Requirements. Maximum Distance¹ Conduit Sharing² **Circuit Type** Class Wire Type AC Line Power (120V or greater) 1 No. 12 to No. 14 AWG THHN See NEC Check local codes 2 See NEC AC Low Voltage Power No. 12 to No. 18 AWG THHN Check local codes 2 No.18 or No.22 AWG TP or TSP⁵ CM 750 ft (230 m) Check local codes Analog Input 1K Ohm platinum RTD (FT4) or CMP (FT6)³ 2 No.18 or No.22 AWG TP or TSP5 CM Analog Input 750 ft (230 m) Check local codes 0-10V (FT4) or CMP (FT6)³ 2 No.18 or No.22 AWG TP or TSP5 CM 750 ft (230 m) Check local codes Analog Input 0-20 mA (FT4) or CMP (FT6)³ Analog Output 2 No.18 or No.22 AWG TP or TSP5 CM 750 ft (230 m) Check local codes 0-10V (FT4) or CMP (FT6)³ Analog Output 2 No.18 or No.22 AWG TP or TSP5 CM 750 ft (230 m) Check local codes 0-20 mA (FT4) or CMP (FT6)³ 2 24 AWG UTP⁶, solid or stranded. Check local codes Analog and Digital Inputs on SCS 328 ft (100 m) **Digital Input** 2 No.14 to No.22 AWG. 750 ft (230 m) Check local codes TP not required below 1 Hz. at faster pulse speeds, use TP or TSP⁵; check job specifications and local codes. **Digital Output** 1.2 No.14 to No.22 AWG. Check local codes Check local codes TP not required; check job specifications and local codes. MEC Point EXP Bus⁴ 2 No. 24 AWG TSP 200 ft (61 m) Check local codes CM (FT4) or CMP (FT6)³

Wire Type Requirements

¹⁾ Wire length affects point intercept entry. Adjust intercept accordingly.

²⁾ Conduit sharing rules: No Class 2 point wiring can share conduit with any Class 1 wiring except where local codes permit. (Both Class 1 and Class 2 wiring can be run in the field panel providing the Class 2 wire is UL listed 300V 75°C (167°F) or higher, or the Class 2 wire is NEC type CM (FT4) (75°C or higher) or CMP (FT6) (75°C or higher). NEC type CL2 and CL2P is not acceptable unless UL listed and marked 300V 75°C (167°F) or higher.

³⁾ Twisted pair, non-jacketed, UL listed 75°C (167°F) and 300V cable can be used in place of CM (FT4) or CMP (FT6) (both must be rated 75°C or higher) cable when contained in conduit per local codes. See the *Field Purchasing Guide* for wire.

⁴⁾ All point blocks wired to an MEC must be daisy-chained. The total wire length from the MEC to the last point block in the chain must be no longer than 200 ft (61 m). Unlike BLN connections, shield wires to the point blocks must be terminated at both ends.

⁵⁾ Twisted Shielded Pair TSP is not required, does not affect MEC specifications, and may be substituted where otherwise specified. TSP should be used in areas of high electrical noise (for example when in proximity to VFDs and 100 kVa or larger motors). Where used, connect the shield drain wire to the MEC Shield terminals or equivalent grounding system inside enclosure.

⁶⁾ Cable must be part of a Structured Cabling System (SCS).

NOTE:

UL-recognized wire (labeled with a backwards "RU") is not field-installable. Use only UL-listed wire.

For analog inputs, termination for shield is provided, if required. Termination for shield is not provided for digital inputs. For more information, see the wiring diagrams.

Power Source Requirements

Power Source Requirements for MEC.					
Product	Input Voltage	Line Frequency	Maximum Power ^{1,2}		
MEC	24 Vac	50/60 Hz	35 VA		
MEC with FLN	24 Vac	50/60 Hz	50 VA		
L model MEC	24 Vac	50/60 Hz	50 VA		
MEC Digital Point Block, 4 DI, 4 DO	24 Vac	50/60 Hz	14 VA		
MEC Digital Point Block, 8 DI, 4 DO	24 Vac	50/60 Hz	18 VA		
MEC Analog Point Block, 4 Al, 4 AO	24 Vac	50/60 Hz	20 VA		
MEC Analog Point Block, 8 Al	24 Vac	50/60 Hz	18 VA		
Point Expansion Module	24 Vac	50/60 Hz	18 VA		
PX Series Service Box – 192 VA	192 VA	50/60 Hz	200 VA ³		
PX Series Service Box – 384 VA	384 VA	50/60 Hz	175 VA		

¹⁾ The 24V wiring is Class 2. It draws less than 50 watts of power. AC power uses Class 1 wire.

²⁾ An external connection is provided for power at 24 Vdc at 50 mA per termination (200 mA maximum all terminations) for external sensors.

³⁾ Service outlets are restricted to only continuously power network devices.

Analog Input Powered Devices

Approved sensors drawing less than 25 mA can be powered by the MEC analog input (AI) connections. Sensors requiring more power must be powered by an external source. The external source can be connected to the same AC line as the MEC power supply as long as it is only used to power low voltage devices (less than 30 volts).

Analog Output Powered Devices

The PX Series Service Box provides a 24 Vac 100 VA total power source to any auxiliary device via a two-wire connection (L, N).

Powering Options

One of the options for powering the MEC, point blocks, and 24V devices is the PX Series Service Box.

See PX Series Service Box in this chapter for more information.

Point Bus Wiring Restrictions

All point blocks wired to an MEC must be daisy-chained. The total wire length from the MEC to the last point block in the chain must be no longer than 200 ft (61 m).

NOTE:

Unlike BLN connections, shield wires to the point blocks must be terminated at both ends.

Multiple MECs on One Power Source

Table *Number of MECs Allowed on a Single Three-Wire Circuit* shows the number of MECs allowed on a single three-wire (ACH, an ACN, and Earth Ground) circuit, if local code permits.

Number of MECs Allowed on a Single Three-Wire Circuit.					
Circuit Breaker Size ¹	Maximum Values forMaximum Values forConcentrated LoadsEvenly Spaced Loads				
	Length ²	MEC	Length ²	MEC	
15 amp (No.14 AWG THHN)	75 ft (22.87 m)	7/10	100 ft (30.48 m)	7/10	
20 amp (No.12 AWG THHN)	115 ft (35.06 m)	7/10	130 ft (40.63 m)	7/10	

Assumes minimum voltage of 102 Vac at circuit breaker and 5 Vac maximum voltage drop (97 Vac at loads). See Class 1 power trunk information in *the Wire Specification Tables* section of Chapter 1.

²⁾ Conduit length from MEC to MEC.

1)

Metal Oxide Varistors (MOVs)

For MECs, MOVs must be used across the DO terminals when connected to loads in all cabinets. MOVs are factory-installed on all DOs in MECs. See the section Controlling Transients [\rightarrow 23] for MOV part numbers.

When installing MOVs across the DO relay contacts on termination boards, keep the MOV leads as short as possible. This makes the MOV more effective in reducing spikes from field wiring or controlled devices. Remove and reinstall any MOVs with leads longer than 1 to 1-1/2 in. (25.4 mm to 38.1 mm).

Line Voltage Receptacle

V150LA20A MOVs are factory-installed on all MEC 115V service box receptacles.

MEC and PXM Wiring Diagrams

Point Type	Specifics	Diagram
Analog Input	4-20 mA, 2-wire	Figure 71
	4-20 mA, externally powered	Figure 72
	4-20 mA, 3-wire, internally powered	Figure 73
	0-10 Vdc, externally powered	Figure 74
	0-10 Vdc, internally powered	Figure 75
	1000 Ohm platinum RTD	Figure 76

Modular Equipment Controller (MEC) and Point Expansion Module (PXM)

Point Type	Specifics	Diagram
Analog Output	4-20 mA	Figure 77
	0-10 Vdc	Figure 78
Digital Input	Dry contacts	Figure 79
	Pulse accumulating	Figure 80
Digital Output	Pulsed or latched	Figure 81
Universal Input		Figure 82

WARNING

All transformer or isolated power supply secondary neutrals requiring connection to earth ground must be directly connected to an approved building earth ground terminal located at the point termination module where the signal is terminated. This is represented in the following diagrams by "E" at the earth ground symbol.

Analog Input

Fig. 106: Connecting an Externally Powered Analog Input (4 to 20 mA).

Modular Equipment Controller (MEC) and Point Expansion Module (PXM)

Fig. 107: Connecting an Internally Powered 3-Wire Analog Input (4 to 20 mA).

Fig. 109: Connecting an Internally Powered Analog Input (0 to 10 Vdc).

Modular Equipment Controller (MEC) and Point Expansion Module (PXM)

Fig. 110: Connecting an Analog Input (1000 ohm Platinum RTD).

Analog Output

Fig. 111: Connecting an Analog Output (4 to 20 mA).

Fig. 112: Connecting an Analog Output (0 to 10 Vdc).

2,3 DI6 2,3 DI5 2,3 DI1 COM¹ 9 DI5 DI2 10 DI1 2 11 DI6 3 00000 DI2 12 4 13 14 15 DI3 DI7 5 DI3 6 DI4 DI8 7 MEC0038R2 DI4 16 DI8 2,3 DI7

Fig. 113: Connecting a Digital Input (Dry Contacts).

- ¹⁾ A single common may be used for all digital inputs.
- ²⁾ Excitation equals 24 Vdc at 22 mA. Pulse rate equals 10 Hz.
- ³⁾ Dry contact only. Does not require gold contacts.
- ⁴⁾ Solid state device must be rated for 30V minimum, with RDS on less than 1K ohms and RDS off greater than 100K ohms

Digital Output

Fig. 115: Connecting a Digital Output (Pulsed or Latched).

Universal Inputs

To use an AI as a DI, wire the device as follows:

- **1.** Wire a 1/2-Watt, 3.3K-ohm resistor between the 24 Vdc sensor supply and the dry contact to be monitored. (See the following Figures.)
- 2. Wire the other side of the dry contact into the signal terminal of an AI point.
- 3. In parallel to the first 3.3K-ohm resistor, wire a second 3.3K-ohm resistor.
- 4. Set the jumper for the corresponding AI to current.
- 5. Define the point in the Firmware as an LDI.

Fig. 117: PXM Wiring Diagram to use an AI as a DI.

MEC Service Boxes

One of the options for powering the TX-I/O, PXC Compact, MEC, point blocks, and 24V devices is the Service Box.

Do not connect inductive loads, such as drill motors, vacuum cleaners, or compressors, to the duplex receptacle on the 115V Service Box.

Service Box Source Requirements and Outputs						
Maximum Input Maximum 24 Vac Output					Output	
Service Box Type	Input Voltage	Line Frequency	Transformer	Service Outlets	Total ¹	Class ²
115V 175VA	115 Vac	50/60 Hz	1.8A	2A2	175 VA	60 VA
230V 175VA	230 Vac	50/60 Hz	0.9A	N/A	175 VA	60 VA

1)

Total 24 Vac Output Power is distributed to both Class 1 Power Limited Terminations for use inside the enclosure only and a Class 2 Termination which may be used outside the enclosure.

²⁾ Service outlets (115 Vac only) are restricted to continuously powered network devices (0.5A) and reserved power for laptop computers (1.5A). Plan Branch circuit for an additional 2A per 115 Vac 24 Vac Service Box.

Multiple Service Boxes on One Power Source

The table *Number of MECs Allowed on a Single Three-Wire Circuit* shows the number of MECs allowed on a single three-wire (ACH, an ACN, and Earth Ground) circuit, if local code permits.

Number of MECs Allowed on a Single Three-Wire Circuit.					
Circuit Breaker Size ¹	Maximum Values for Concentrated Loads		Maximum Values for Evenly Spaced Loads		
	Length ²	MEC	Length ²	MEC	
15 amp (No.14 AWG THHN)	75 ft (22.87 m)	7/10	100 ft (30.48 m)	7/10	
20 amp (No.12 AWG THHN)	115 ft (35.06 m)	7/10	130 ft (40.63 m)	7/10	

¹⁾ Assumes minimum voltage of 102 Vac at circuit breaker and 5 Vac maximum voltage drop (97 Vac at loads). See Class 1 power trunk information in the *Wire Specification Tables* section of Chapter 1.

²⁾ Conduit length from Service Box to Service Box.

115V Version

Standard source power is 115 Vac. The high-voltage supply enters the enclosure from the top through the right-hand side conduit knockout. The source voltage of the MEC must be current limited to 20 amps or less (15 amps or less for Smoke Control), depending on the requirements of any particular installation.

Two pigtails and grounding studs are provided under the wire cover for easy connection by the electrician. The pigtails come from the factory pre-wired to the transformer through a single pole On/Off switch and circuit breaker. The duplex receptacle is not switched. MOVs ($3 \times 150V$) are installed on input power.

Low voltage is routed from the transformer and supplies 24 Vac power at 175VA maximum. (The power source to the Service Box must be current limited to 15 amps or less.) The CTLR, POINT BLOCKS connector is rated at 100 VA. The 24V ACTUATOR connector is rated Class 2 and limited to 60 VA. A MOV (30V) is installed on 24 Vac side of transformer.

<u>A</u>	
	Possible shock hazard!
	The power switch disables power to the control side of the MEC only. Power remains ON at the duplex receptacle (115V version) and in the service box. Power may be present at the field devices. To avoid injury, follow proper safety precautions.

230V Version Service Box

The 230V Service Box is also available for applications where source power is 230 Vac. The high-voltage supply enters the enclosure from the top through the right-hand side conduit knockout. The source voltage of the MEC must be current limited to 10 amps or less, depending on the requirements of any particular installation.

A termination block for power and ground termination is provided on the wire cover for easy connection by the electrician. The termination block comes from the factory prewired to the transformer through a double pole On/Off switch and circuit breaker. MOVs ($3 \times 275V$) are installed on input power.

Low voltage is routed from the transformer and supplies 24 Vac power at 175 VA maximum. The **CTLR**, **POINT BLOCKS** connector is rated at 100 VA. The **24V ACTUATOR** connector is rated Class 2 and limited to 60 VA. A MOV (30V) is installed on the 24 Vac side of the transformer.

Fig. 119: Wiring Diagram for 230V Service Box.

Service Box Earth Grounding Transfer 24 Vac Neutral

The service box has a floating neutral system, which when required must be connected to the building approved earth ground, as follows:

A DANGER

The Transformer Secondary Neutral (N) must be connected to the building approved earth ground whenever transformer primary is greater than 150 Vac.

Modular Building Controller/Remote Building Controller (MBC/RBC)

Wire Type Requirements

MBC/RBC Wire Type Requirements.					
Circuit Type	Class	Wire Type⁴	Maximum Distance ¹	Conduit Sharing ²	
AC Line Power	Power	No. 12 to No. 14 AWG THHN	See NEC*	Check local codes	
Digital Output	1, 2	No. 14 to No. 22 AWG TP not required, check job specifications and local codes	Check local codes	Check local codes	
Digital Input	2	No. 14 to No. 22 AWG TP not required, check job specifications and local codes	750 ft (230 m)	Check local codes	
High Voltage Digital Input	1, 2	No. 14 to No. 22 AWG TP not required, check job specifications and local codes	750 ft (230 m)	Check local codes	
Analog Input 1k Nickel or Platinum	2	No. 20 AWG TP or TSP ³ CM (FT4) or CMP (FT6)	750 ft (230 m)	Check local codes	
Analog Input, Thermistor	2	No. 18 to No. 20 AWG TP or TSP ³ CM (FT4) or CMP (FT6)	750 ft (230 m)	Check local codes	
Analog Input, 0-10V	2	No. 18 to No. 20 AWG TP or TSP ³ CM (FT4) or CMP (FT6)	750 ft (230 m)	Check local codes	
Analog Input, 4-20 mA	2	No. 18 to No. 20 AWG TP or TSP ³ CM (FT4) or CMP (FT6)	750 ft (230 m)	Check local codes	
Analog Output, 0-10V	2	No. 18 to No. 20 AWG TP or TSP ³ CM (FT4) or CMP (FT6)	750 ft (230 m)	Check local codes	
Analog Output, 4-20 mA	2	No. 18 to No. 20 AWG TP or TSP ³ CM (FT4) or CMP (FT6)	750 ft (230 m)	Check local codes	
Analog and Digital on SCS	2	24 UTP ⁴ , solid or stranded	328 ft (100 m)	Check local codes	

* National Electric Code.

¹⁾ Wire length affects point intercept entry. Adjust intercept accordingly.

²⁾ Conduit sharing rules: No Class 2 point wiring can share conduit with any Class 1 wiring except where local codes permit. Both Class 1 and Class 2 wiring can be run in the field panel providing the Class 2 wire is UL-listed 300V 75°C (167°F) or higher, or the Class 2 wire is NEC type CM (FT4)(75°C or higher) or CMP (FT6) (75°C or higher). NEC type CL2 and CL2P is not acceptable unless also UL listed and marked 300V 75°C (167°F) or higher.).

³⁾ Twisted Shielded Pair TSP is not required for general installation, does not affect MBC/RBC specifications, and may be substituted where otherwise specified. TSP should be used in areas of high electrical noise (for example when in proximity to VFDs and 100 kVa or larger motors). Where used, connect the shield drain wire to the grounding system inside enclosure.

⁴⁾ Cable must be part of a Structured Cabling System (SCS).

NOTE:

UL-recognized wire (labeled with a backwards "RU") is not field-installable. Use only UL-listed wire.

Power Source Requirements

Power Source Requirements for MBC/RBC				
Product	Input Voltage	Line Frequency	Maximum Power	
MBC 24/40 – 115V	115 Vac	50/60 Hz	200 VA ⁴	
MBC 24/40 – 230V	230 Vac	50/60 Hz	175 VA	
RBC – 115V	115 Vac	50/60 Hz	150 VA ⁴	
RBC – 230V	230 Vac	50/60 Hz	135 VA	
Power Open Processor	24 Vac ±20%	50/60 Hz	6 VA	
Open Processor	24 Vac ±20%	50/60 Hz	5 VA	
Power Module	24 Vac ±20%	50/60 Hz	5 VA	
PTM6.2P1K	24 Vac ±20%	50/60 Hz	.25 VA	
PTM6.2N100K	24 Vac ±20%	50/60 Hz	.35 VA	
PTM6.2U10	24 Vac ±20%	50/60 Hz	.20 VA	
PTM6.2I420	24 Vac ±20%	50/60 Hz	2.2 VA	
PTM6.2D201	24 Vac ±20%	50/60 Hz	.75 VA	
PTM6.4D20	24 Vac ±20%	50/60 Hz	3 VA	
PTM6.2D250	24 Vac ±20%	50/60 Hz	.75 VA	
PTM6.2C	24 Vac ±20%	50/60 Hz	.75 VA	
PTM6.2Y10 ²	24 Vac ±20%	50/60 Hz	3.2 VA	
PTM6.2Y10S	24 Vac ±20%	50/60 Hz	3.2 VA	
PTM6.2Y10-M ³	24 Vac ±20%	50/60 Hz	3.2 VA	
PTM6.2Y10S-M	24 Vac ±20%	50/60 Hz	3.2 VA	
PTM6.2Y420	24 Vac ±20%	50/60 Hz	3.5 VA	
PTM6.1PSI20-M	24 Vac ±20%	50/60 Hz	2.0 VA	
PTM6.2Q250	24 Vac ±20%	50/60 Hz	2.6 VA	
PTM6.2Q250-M	24 Vac ±20%	50/60 Hz	2.6 VA	

¹⁾ PTM6.2D20 is no longer available.

²⁾ PTM6.2Y10 has been replaced by the PTM6.2Y10S; however, both are still in use.

³⁾ PTM6.2Y10M has been replaced by the PTM6.2Y10S-M; however, both are still in use.

⁴⁾ Cable must be part of a Structured Cabling System (SCS).

Analog Input Powered Devices

Approved sensors drawing less than 50 mA can be powered by the MBC/RBC analog input (AI) connections. Sensors requiring more power must be powered by an external source. The external source can be connected to the same AC line as the MBC/RBC power supply as long as it is only used to power low voltage devices (less than 30 volts).

Analog Output Powered Devices

No analog output devices can be powered by the MBC/RBC analog outputs.

Class 1/Class 2 Separations

High voltage (and other non-Class 2) Point Termination Modules (PTMs) must be placed in the upper right module slots of the field panel. All other PTMs must be placed on either the left rail of the field panel or below the high voltage modules.

Multiple MBCs/RBCs on One Power Source

The following table shows the number of MBC/RBCs allowed on a single three-wire (ACH, an ACN, and Earth Ground) circuit if local code permits.

Number of N	IBCs/RBCs Allow	ed on a Single Th	ree-Wire Circuit.	
Circuit Breaker Size ¹	Maximum Vales Loads	for Concentrated	Maximum Values Spaced Loads	s for Evenly
	Length ²	MBC/RBC	Length ²	MBC/RBC
15 amp (No.14 AWG THHN)	75 ft (22.87 m)	7/10	100 ft (30.48 m)	7/10
20 amp (No.12 AWG THHN)	115 ft (35.06 m)	7/10	130 ft (40.63 m)	7/10

Assumes minimum voltage of 102 Vac at circuit breaker and 5 Vac maximum voltage drop (97 Vac at loads). See Class 1 power trunk information in the *Wire Specification Tables* section of Chapter 1.

²⁾ Conduit length from MBC/RBC to MBC/RBC.

Metal Oxide Varistors (MOVs)

Line Voltage Receptacle

V150LA20A MOVs are factory-installed on all MBC/RBC service box receptacles.

MBC/RBC Service Box Wiring Diagrams

Fig. 121: 115 Vac MBC/RBC Service Box Wiring Diagram.

Modular Building Controller/Remote Building Controller (MBC/RBC)

Fig. 122: 230 Vac MBC/RBC Service Box Wiring Diagram.

Point Termination Modules

This section contains information on wiring Point Termination Modules (PTMs).

Metal Oxide Varistors (MOVs)

MOVs are not required for any MBC/RBC Point Termination Modules.

Wiring Point Termination Modules

The Table *PTM Wiring Diagram Reference* summarizes PTM applications. Since most PTMs can have multiple uses, the table is divided into applications and a specific wiring diagram is referenced.

To use the information in Table PTM Wiring Diagram Reference:

- **1.** Determine the point type of the application.
- **2.** Determine how that point type is used in relation to the piece of equipment you are controlling.
- 3. Review the table and find the appropriate PTM and corresponding wiring diagram.

Example

A wiring diagram is needed for a 100K ohm thermistor.

- 1. A 100K ohm thermistor is a Logical Analog Input. See the **Point Type** column in Table *PTM Wiring Diagram Reference* and locate the Logical Analog Input section.
- 2. Find the entry in the **Specifics** column that identifies a 100K ohm thermistor.
- **3.** In the **PTM Qty** and **PTM Type** columns, the quantity and type of PTM recommended for use with this application are identified: one half of a 2N100K. In the **Diagram** column, the wiring diagram for the application is identified. See Figure *Connecting an Analog Input (Thermistor)*.

	PTM Wiring Diagram Reference.			
Point Type	Specifics	PTM Qty	РТМ Туре	Diagram
Logical Analog Input 1 – Al	4-20 mA, 3-wire (externally powered)	1/2	21420	Connecting an External Powered 3- Wire Analog Input (4 to 20 mA)
	0-10 Vdc, 3-wire (externally powered)	1/2	2U10	Connecting an External Powered 3- Wire Analog Input (0 to 10 Vdc)
	100K ohm thermistor	1/2	2N100K	Connecting an Analog Input (Thermistor)
	1000 ohm platinum RTD	1/2	2P1K	Connecting an Analog Input (1000 ohm Platinum RTD)
	Connecting to a full-featured sensor			Connecting to a Full- Featured Sensor (P/N 544-780)
Logical Analog Output 1 – AO	0-10 Vdc	1/2	2Y10	Connecting an Analog Output (0 to 10 Vdc)
	4-20 mA	1-1/2 or 1/2	2Y420 or 2Y10-M	Connecting an Analog Output (4 to 20 mA)
Logical Digital Input 1 – DI	Dry contacts, 4 points	1	4D20	Connecting a Digital Input (Dry Contacts)
	Voltage sensing	1	2D250	Connecting a Digital Input (Voltage

Modular Building Controller/Remote Building Controller (MBC/RBC)

	PTM Wiring Diagram Reference.			
Point Type	Specifics	PTM Qty	РТМ Туре	Diagram
				Sensing)
	WARNING:			
	High and low voltage cannot be combined on the same	ne PTM.		
Logical Pulsed Accumulator 1 – DI (Counting)	Pulse accumulating for counting pulses initiated by dry contact.	1	2C	Connecting a Digital Input (Pulse Accumulation)
Logical Digital Output 1 – DO	DO latched or pulsed	1 or 1	2Q250 or 2Q250- M	Connecting a Digital Output (Latched or Pulsed)
	WARNING:			
	High and low voltage cannot be combined on the sam	ne PTM.		
	A 2Q250-M PTM must have 24 Vac voltage fed into t	ne M-Bus.		
	CAUTION:			
	Circuits powering PTM6.2Q50-M point modules must	be limited by a	15-amp (max.) circui	breaker.
Logical FAST/SLOW/ STOP Latched Control 1 – DO (OFF/Fast)	LFSSL (no proof)	1	2Q250	Connecting an LFSSL (No Proof)
1 – DO (OFF/SLOW) 1 – DI (Proof)	LFSSL (proof of contact)	1	2Q250	Connecting
		1/2, or 1/4	2D20, or 4D20	an LFSSL (Proof of Contact)
	LFSSL (proof of voltage)	1	2Q250	Connecting
		1/2	2D250	an LFSSL (Proof of Voltage)
Logical FAST/SLOW/STOP Pulsed Control	LFSSP (no proof)	1-1/2	2Q250	Connecting an LFSSP
1 – DO (FAST)		4.4/0	00050	
1 – DO (SLOW)	LESSP (proof of contact)	1-1/2 1/2 or	2Q250 2D20 or	an LFSSP
		1/4	4D20	(Proof of Contact)
	LFSSP (proof of voltage)	1-1/2 1/2	2Q250 2D250	Connecting an LFSSP (Proof of Voltage)
Logical ON/OFF/AUTO Latched Control 1 – DO (ON/OFF)	LOOAL (no proof)	1	2Q250	Connecting an LOOAL (No Proof)
1 – DO (AUTO) 1 – DI (Proof)	LOOAL (proof of contact)	1	2Q250	Connecting
		1, or 1/2	2D20, or 4D20	an LOOAL (Proof of Contact)
	LOOAL (proof of voltage)	1	2Q250	Connecting
		1/2	2D250	an LOOAL (Proof of Voltage)

Appendix A – Discontinued Products

Modular Building Controller/Remote Building Controller (MBC/RBC)

	PTM Wiring Diagram Reference.			
Point Type	Specifics	PTM Qty	РТМ Туре	Diagram
Logical ON/OFF/AUTO Pulsed Control 1 – DO (ON)	LOOAP (no proof)	1-1/2	2Q250	Connecting an LOOAP (No Proof)
1 – DO (OFF) 1 – DO (AUTO) 1 – DI (Proof)	LOOAP (proof of contact)	1-1/2 1/2, or 1/4	2Q250 2D20, or 4D20	Connecting an LOOAP (Proof of Contact)
	LOOAP (proof of voltage)	1-1/2 1/2	2Q250 2D250	Connecting an LOOAP (Proof of Voltage)
Logical Two-State Latched 1 – DO (ON/OFF) 1 – DI (Proof)	L2SL (no proof)	1/2, or 1/2	2Q250, or 2Q250-M	Connecting an L2SL (No Proof)
	L2SL (proof of contact)	1/2, or 1/2 1/2, or 1/4	2Q250, or 2Q250-M 2D20, or 4D20	Connecting an L2SL (Proof of Contact)
	L2SL (proof of voltage)	1/2, or 1/2 1/2	2Q250, or 2Q250-M 2D250	Connecting an L2SL (Proof of Voltage)
	WARNING: High and low voltage cannot be combined on the sar A 2Q250-M PTM must have 24 Vac voltage fed into t CAUTION:	ne PTM. he M-Bus.	15 ama (may) airaui	hraakar
Logical Two-State Pulsed 1 – DO (ON) 1 – DO (OFF)	L2SP (no proof)	1	2Q250	Connecting an L2SP (No Proof)
יט (איססד)	L2SP (proof of contact)	1 1/2, or 1/4	2Q250 2D20, or 4D20	Connecting an L2SP (Proof of Contact)
	L2SP (proof of voltage)	1 1/2	2Q250 2D250	Connecting an L2SP (Proof of Voltage)

Point Termination Module Wiring Diagrams

All transformer or isolated power supply secondary neutrals requiring connection to earth ground must be directly connected to an approved building earth ground terminal located at the point termination module where the signal is terminated. This is represented in the following diagrams by "E" at the earth ground symbol.

Fig. 123: Connecting an External Powered 3-Wire Analog Input (4 to 20 mA).

Fig. 124: Connecting an External Powered 3-Wire Analog Input (0 to 10 Vdc).

Fig. 125: Connecting an Analog Input (Thermistor).

Fig. 126: Connecting an Analog Input (1000 ohm Platinum RTD).

Full-Featured Sensor

Fig. 127: Connecting to a Full-Featured Sensor (P/N 544-780).

Analog Output

WARNING

Some I/O module terminal blocks are labeled with a 24 Vac power requirement designation.

The 24 Vac supply is not intended for use to power external devices (for example transducers). If this 24 Vac is used to power external devices, the operational capabilities of other modules in the MBC/RBC can be affected.

Fig. 128: Connecting an Analog Output (0 to 10 Vdc).

Fig. 129: Connecting an Analog Output (4 to 20 mA).

Fig. 130: Connecting a Digital Input (Dry Contacts).

- 1. A single common may be used for all digital inputs on the same point termination module.
- 2. Excitation equals 22 Vdc at 8 mA. Pulse rate equals 25 Hz.
- 3. Dry contact only. Does not require gold contacts.
- 4. Solid state device must be rated for 30V minimum, with RDS on less than 200 ohms and RDS off greater than 50K ohms.

WARNING

High and low voltage cannot be combined on the same PTM.

Fig. 131: Connecting a Digital Input (Voltage Sensing).

Fig. 132: Connecting a Digital Input (Pulse Accumulating).

Digital Output

|--|

High and low voltage cannot be combined on the same PTM.
A 2Q250-M PTM must have 24 Vac voltage fed into the M-Bus.
Circuits powering a PTM6.2Q250-M must be limited by a 15-amp (max.) circuit breaker.

Fig. 133: Connecting a Digital Output (Latched or Pulsed).

LFSSL (Logical FAST/SLOW/STOP Latched)

Fig. 134: Connecting an LFSSL (No Proof).

Fig. 135: Connecting an LFSSL (Proof of Contact).

Fig. 136: Connecting an LFSSL (Proof of Voltage).

LFSSP (Logical FAST/SLOW/STOP Pulsed)

For points defined as LFSSP, DO NOT use the PTM6.2Q250-M.

Fig. 137: Connecting an LFSSP (No Proof).

Fig. 138: Connecting an LFSSP (Proof of Contact).

Fig. 139: Connecting an LFSSP (Proof of Voltage).

LOOAL (Logical ON/OFF/AUTO Latched)

Fig. 140: Connecting an LOOAL (No Proof).

Fig. 141: Connecting an LOOAL (Proof of Contact).

Fig. 142: Connecting an LOOAL (Proof of Voltage).

LOOAP (Logical ON/OFF/AUTO Pulsed)

Fig. 143: Connecting an LOOAP (No Proof).

Fig. 145: Connecting an LOOAP (Proof of Voltage).

L2SL (Logical Two State Latched)

Fig. 146: Connecting an L2SL (No Proof).

Fig. 148: Connecting an L2SL (Proof of Voltage).

L2SP (Logical Two State Pulsed)

For points defined as L2SP, DO NOT use the PTM6.2Q250-M.High and low voltage cannot be combined on the same PTM.

Fig. 149: Connecting an L2SP (No Proof).

Fig. 150: Connecting an L2SP (Proof of Contact).

Fig. 151: Connecting an L2SP (Proof of Voltage).

FLN Controller

Wire Type Requirements

FLN Controller Wire Type Requirements.					
Circuit Type Class Wire Type Distance Conduit Sharing ¹					
AC Line Power	Power	No. 12 to No. 14 THHN	See NEC	Check local codes	

¹⁾ Conduit sharing rules: No Class 2 point wiring can share conduit with any Class 1 wiring except as noted for Digital Inputs where local codes permit.

1)

i

UL-recognized wire (labeled with a backwards "RU") is not field-installable. Use only UL-listed wire.

Power Source Requirements

Power Source Requirements for FLN Controller.						
Product Input Voltage Line Frequency Maximum Power						
FLN Controller – 115V	115 Vac	50/60 Hz	12 VA ¹			
FLN Controller – 230V	230 Vac	50/60 Hz	12 VA ¹			

Service outlets are restricted to continuously power network devices only.

Point Wiring Restrictions

Wire specified in the *BLN, FLN (P1), and Point Expansion Trunk* table in Chapter 1 can be used at any trunk speed.

Metal Oxide Varistors (MOVs)

Line Voltage Receptacle

MOVs are factory-installed on all FLN Controller receptacles.

Stand-alone Control Unit (SCU)

NOTE:

The SCU is no longer available for new sales. Information in this section is for reference only.

Wire Type Requirements

SCU Wire Type Requirements.					
Circuit Type	Class	Wire Type	Distance	Conduit Sharing ¹	
AC Line Power	Power	No.12 to No.14 THHN	See NEC	Check local codes	
Digital Output	1, 2	Check local codes	Check local codes	Check local codes	
Digital Input	2	No.18 to No.22 TP 2 CL2, CL2P, CM (FT4), or CMP (FT6)	750 ft (230 m)	Class 1 and 2 (Check local codes)	
Analog Input (4 to 10 mA, Thermistor, Voltage)	2	No.18 to No.22 TP 2 CL2, CL2P, CM (FT4), or CMP (FT6)	750 ft (230 m)	Class 2 only	
Analog Output (4 to 10 mA or Voltage)	2	No.18 to No.22 TP 2 CL2, CL2P, CM (FT4), or CMP (FT6)	750 ft (230 m)	Class 2 only	

¹⁾ Conduit sharing rules: No Class 2 point wiring can share conduit with any Class 1 wiring except as noted for Digital Inputs and where local codes permit.

²⁾ Twisted pair, non-jacketed, rated 75°C and 300V cable can be used in place of CL2, CL2P, CM (FT4), or CMP (FT6) cable when contained in conduit per local codes. Both CM and CMP must be rated 75°C or higher. See the F*ield Purchasing Guide* for wire.

NOTE:

UL-recognized wire (labeled with a backwards "RU") is not field-installable. Use only UL-listed wire.

i

Power Source Requirements

Power Source Requirements.					
Product Input Voltage Line Maximum Frequency Power					
SCU – 115V	115 Vac	50/60 Hz	135 VA ¹		
SCU – 230V	230 Vac	50/60 Hz	135 VA ¹		

Service outlets are restricted to only continuously power network devices.

Analog Input Powered Devices

1)

Approved sensors drawing less than 50 mA can be powered by the SCU analog input (AI) connections. Sensors requiring more power must be powered by an external source. The external source can be connected to the same AC line as the SCU power supply as long as it is only used to power low voltage devices (less than 30 volts).

Analog Output Powered Devices

No analog output devices can be powered by the SCU analog outputs.

Point Wiring Restrictions

SCU specifications are the same as MBC/RBC specifications with the exception that CL2P or CL2 wire can be used because it is separated from Class 1 wiring in the field panel by physical barriers.

For No.18 to No.22 AWG used at 4800 bps and lower, BLN and FLN wiring specifications allow a minimum of six twists per foot. At 9600 bps and higher, use wire specifications provided in Table *BLN, FLN (P1), and Point Expansion Trunk* in Chapter 1. Wire specified in this table can be used at any trunk speed.

Digital Output (DO) Wiring—SCU Specific

UL and CSA listing requires the following:

- The DO wiring shield must be installed in the field panels for which they are supplied.
- The DO wiring must enter the SCUs as shown.

Fig. 152: DO Wiring Entry Locations for the SCU.

Multiple SCUs on One Power Source

Table *Number of SCUs Allowed on a Single Three-Wire Circuit* shows the number of SCUs allowed on a single three-wire (ACH, an ACN, and earth ground) circuit if local code permits.

Number of SCUs Allowed on a Single Three-Wire Circuit.						
Circuit Breaker Size ¹	Maximum Vales Loads	for Concentrated	ncentrated Maximum Values for Evenly Spaced Loads			
	Length ²	SCU	Length ²	SCU		
15 amp (No.14 AWG THHN)	75 ft (22.87 m)	7/10	100 ft (30.48 m)	7/10		
20 amp (No.12 AWG THHN)	115 ft (35.06 m)	7/10	130 ft (40.63 m)	7/10		

¹⁾ Assumes minimum voltage of 102 Vac at circuit breaker and 5 Vac maximum voltage drop (97 Vac at loads). See Class 1 power trunk information in the *Wire Specification Tables* section of Chapter 1.

²⁾ Conduit length from MBC/MEC/RBC/SCU to MBC/MEC/RBC/SCU.

Metal Oxide Varistors (MOVs)

For SCUs, MOVs must be used across the DO terminals when connected to loads in all cabinets. MOVs are factory-installed on all DOs in SCUs. See the Controlling Transients [\rightarrow 23] section in Chapter 1 for MOV part numbers.

When installing MOVs across the DO relay contacts on termination boards, keeping MOV leads as short as possible makes the MOV more effective at reducing spikes from field wiring or controlled devices. Remove and reinstall any MOVs with leads longer than 1 to 1-1/2 inches (25.4 mm to 38.1 mm).

Line Voltage Receptacle

MOVs are factory installed in the line voltage receptacle of Rev. 8 and later SCU enclosures.

Fig. 153: SCU Receptacle with MOVs.

Digital Outputs

SCUs with Rev. 7 or earlier termination boards do not contain factory-installed MOVs. These must be field installed.

SCUs with Revisions 8 through 16 termination boards have one MOV installed across the NO contacts. One additional MOV is required when using the normally closed (NC) contacts.

SCUs with Rev. 17 or later termination boards have two MOVs installed per point. No additional MOVs are required.

NORMALLY OPEN.

NORMALLY CLOSED.

NORMALLY OPEN AND NORMALLY CLOSED.

Fig. 154: Field Installed MOVs.

Network Devices

i

NOTE:

The TI and IPMDA are no longer available for new sales. Information in this section is for reference only.

Power Source Requirements.					
Product Input Voltage Line Frequency Maximum Power					
ТІ	115/230 Vac	50/60 Hz	10 VA		
IPMDA	115/230 Vac	50/60 Hz	25 VA		

Multi-Point Unit/Digital Point Unit (MPU/DPU)

NOTE:

The DPU and MPU are no longer available for new sales. Information in this section is for reference only.

MPU and DPU Wire Type Requirements.					
Circuit Type	Class	Wire Type (AWG)	Distance	Conduit Sharing ¹	
AC line power (to field panel)	Power	No.12 to No.14, No.12 THHN	Check local codes	Check local codes	
Digital Output	1	Check local codes	Check local codes	Check local codes	
Digital Output	2	Check local codes	Check local codes	Check local codes	
Digital Input (MPU and DPU)	2	No.18 to No.22 TP	750 ft (230 m)	Class 1 and 2 (check local codes)	
Analog Input (MPU) Thermistors	2	No.18 to No.22 TP	100 ft (30.5 m)	Class 1 and 2 (check local codes)	
MPU Power Trunk	2	No.14 THHN OR No.14 TP	180 ft (55 m) ²	Class 1 and 2 (check local codes)	

Wire Type Requirements

¹⁾ Conduit sharing rules were determined through EMI and shared conduit testing. These rules indicate wiring methods that have no adverse affect on the proper operation of the equipment, but do not necessarily indicate compliance with local codes.

²⁾ Distances depend on transformer location. Install 100 VA transformers near the most convenient line voltage sources to minimize line voltage wiring costs. Use one 100 VA transformer for every eight MPUs. (180 ft using 14 AWG wires is worst case).

Power Source Requirements

The MPU can be powered in two ways:

- Individual transformer using a transformer rated for Class 2 service.
- Power trunk. For more information, see the section Power Trunk Guidelines [→ 64].

The phase of all devices on a power trunk must be identical.

Phase differences can destroy equipment. Any relays, EPs, or contactors sharing power must be clamped with MOVs at their locations.

MPU/DPU Power Source Requirements.						
Product Input Voltage Line Frequency Maximum Power						
MPU	24 Vac	50/60 Hz	30 VA			
DPU – 115V	115 Vac	50/60 Hz	50 VA ¹			
DPU – 230V	230 Vac	50/60 Hz	50 VA ¹			

¹⁾ Service outlets are restricted to only continuously power network devices.

MPU Grounding

MPUs connected to a power trunk with the optional ground wire should have the ground wire connected to the field panel ground lug in each field panel.

Fig. 155: AC Earth Ground for MPU Connected to a Power Trunk.

Metal Oxide Varistors (MOVs)

Metal Oxide Varistors (MOVs) must be used across the DO terminals when connected to loads. MOVs are factory-installed in all FLN products.

When installing MOVs across the DO relay contacts on termination boards, keeping the MOV leads as short as possible makes the MOV more effective at reducing spikes from field wiring or controlled devices. Remove and reinstall any MOVs with leads longer than 1 in. (2.5 cm). See the section Controlling Transients [\rightarrow 23] for MOV part numbers.

Line Voltage Receptacle

MOVs are factory-installed in the line voltage receptacle of Rev. 6 and later MPU enclosures and Rev. 8 and later DPU enclosures.

Fig. 156: MPU/DPU Receptacle with MOVs.

Digital Outputs

MPUs and DPUs shipped before March 1, 1989 contain one factory-installed snubber on each DO point on the termination board. The snubber can be placed across the normally open (NO) or normally closed (NC) terminals by means of a jumper. A second MOV must be field installed when both the NO and NC terminals of a DO point are being used.

No additional MOVs are required on DO points on MPUs or DPUs shipped after March 1, 1989.

Fig. 157: Field Installed MOVs.

Digital Output (DO) Wiring

Table *MPU and DPU Wire Type Requirements* provides DO wire run lengths for points wired to equipment controllers.

UL and CSA listing requires the following:

- The DO wiring shield must be installed in the cabinets for which they are supplied.
- DO wiring must enter the MPUs and DPUs as shown.

Fig. 158: DO Entry Locations for MPU and DPU.

Terminal Equipment Controller—Pneumatic Output, Low Voltage

NOTE:

The Pneumatic TEC is no longer available for new sales. Information in this section is for reference only.

When placing the low voltage, (24 Vac Class 2), pneumatic output Terminal Equipment Controllers on a power trunk, use the nameplate power rating for calculating the maximum number of devices that can be placed on a Class 2 power trunk. The nameplate power rating takes into account a controller power factor of less than unity.

Terminal Equipment Controllers—Pneumatic Output

Do not control more than the nameplate rated loads for the DOs of the pneumatic output controllers. The controller UL and CSA listing is based on the nameplate power rating.

The separate FAN output (Form A dry contact) on the Unit Vent Controllers is rated at 1/3 H.P. at 115 or at 230 Vac. The digital output, which is part of the large wiring harness, switches the incoming power to the controller. This cable can contain up to 230 Vac depending on controller input voltage. The 115 and 230 Vac controllers use a molded cord for this output. Exceeding the nameplate power on this output can damage the controller circuit board.

Pneumatic Output Controller

The power source for the high voltage Unit Vent Controller should be obtained after the fuse in the unit ventilator. By obtaining the power for the controller after the fuse, you can ensure that the controller is powered down whenever the fuse opens or is removed.

TEC Power Source Requirements.					
Product	Input Voltage	Line Frequency	Maximum Power		
Terminal Equipment Controller— Pneumatic Output, Low Voltage	24 Vac	50/60 Hz	12 VA + damper output		
Terminal Equipment Controller— Pneumatic Output, High Voltage	115 Vac	50/60 Hz	7 VA + damper output		
Terminal Equipment Controller— Pneumatic Output, High Voltage	230 Vac	50/60 Hz	7 VA + damper output		

1)

Service outlets are restricted to only continuously power network devices.

Pneumatic Output Wire Type Requirements.					
Circuit Type	Class	Wire Type (AWG)	Distance ²	Conduit Sharing ¹	
Input Power (Low voltage controllers)	2	Check local codes	Check local codes	Check local codes	
Input Power (Unit Vent Controller—115/230V)	1	Check local codes	Check local codes	Check local codes	
Damper Output	2	Check local codes	Check local codes	Check local codes	

Pneumatic Output Wire Type Requirements.					
Circuit Type	Class	Wire Type (AWG)	Distance ²	Conduit Sharing ¹	
(Low voltage controllers)					
Damper Output (Unit Vent Controller—115/230V)	1	Check local codes	Check local codes	Check local codes	
Digital Inputs	2	No. 18 to No. 22 TP	100 ft (30 m)	Class 1 and 2 Check local codes	
Analog Inputs	2	No. 18 to No. 22 TP	100 ft (30 m)	Class 1 and 2 Check local codes	
Room Temperature Sensor	2	Pre-terminated 3 TP No. 24	100 ft (30 m)	Class 2	

¹⁾ Conduit sharing rules were determined through EMI and shared conduit testing. These rules indicate wiring methods that have no adverse affect on the proper operation of the equipment, but do not necessarily indicate compliance with local codes.

²⁾ Check local codes concerning wire gauge and distance to extend the 3-foot pre-determined "Fan Output" cable. The 3-foot cable is No. 18 AWG.

LonMark® Terminal Equipment Controller (LTEC)

Wire Type Requirements

NOTE:

*

i

Follow local codes regarding wire gauge and length.

LonWorks® FLN Wire Type Requirements.				
Wire Type Maximum Total Wire Maximum Node-to-Node Length* Length				
22 AWG 1 pair, stranded, unshielded or shielded, Level IV per NEMA standards	1640 ft (500 m)	1312 ft (400 m)		

Maximum trunk length can be extended by 1640 ft (500 m) with a two-port repeater or by two additional 1640 ft (500 m) segments with a three-port repeater.

LTEC Recommended Wire Gauges.				
Connection Type Class Recommendation				
24 Vac input	2	3 wire, 16 AWG to 12 AWG cable		
Network connection	2	22 AWG TP, Level IV ¹		
LTEC Room Temperature Sensor	2	Pre-terminated1, plenum-rated, 3-pair cable ²		
Application Inputs	2	20–22 AWG TP		
Analog outputs	2 20–22 AWG TP			
Digital outputs	2	16–20 AWG per local code and current/length voltage drop requirements		

¹⁾ Level IV cable per NEMA standards (not equivalent to EIA/TIA Level 4 cable).

²⁾ Available in fixed lengths of 25, 50, and 100 feet (7.6, 15.2, and 30.5 m).

LTEC Inputs and Outputs.			
Specification Details			
Application inputs	100K Ω thermistor/0 to 10 Vdc, 4 to 20 mA, or dry contact		
Room sensor input	10K Ω thermistor		
Digital outputs Triac (max. 500 mA at 24 Vac)			
Analog outputs	0 to 10 Vdc (max. 12.5 mA)		

LTEC Room Temperature Sensor Specifications.			
Specification	Details		
Resistance value (sensor)	10K Ω thermistor @ 77°F (25°C)		
Output signals			
Room temperature	Changing resistance		
• Set point • Changing resistance			
Occupancy (bypass button) Digital			
Installation	100 ft (30.5 m) maximum cable length		
	3 pr. 24 AWG, NEC Class 2		

Power Source Requirements

Transformer Requirements and Recommended Voltages

The base rating of the controller and the sum of the sensor, actuators, and relays connected dictates the VA rating.

~• `	The LTEC Digital Outputs (DOs) control 24 Vac only. The maximum rating is 12 VA for each DO. Use an interposing 24 Vac relay for any of the following:
	 VA requirements higher than the maximum 110 to 220 Vac or higher Control load requires DC power Separate transformers used to power the load Need for dry contacts

\wedge	
<u>··</u>	The neutral side of the 24 Vac power transformer for the TEC must be tied to earth at the source of the 24 Vac and only at this point.

LTEC Power Source Requirements.			
Product Input Voltage Line Frequency Maximum Power			
LTEC	24 Vac	50/60 Hz	5 VA plus loads

Load Limits

Allowable loads for the LTEC are 24 Vac devices (actuators, interposing relays, motor contactor control coils, solenoids, lamps or indicators) rated at 12 VA or less for each termination set. If the load exceeds 12 VA @ 24 Vac, an interposing relay must be used.

Power for the loads is obtained from the same terminals that supply power to the LTEC. If fusing is required, 3/4 amp slow blow fuses are recommended per digital output. The entire LTEC and its loads must be powered from a 24 Vac line fused at 4 amps (100 VA) or less.

NOTE:

The LTEC uses triacs to control digital output loads. The triacs are rated at 500 mA at 24 Vac for a power rating of 12 VA for each termination set.

LTEC Wiring Diagrams

Each application set has a default input/output-wiring configuration shown in the wiring diagrams. All input and output physical connections are pre-configured per application. See the installation instructions for application-specific wiring diagrams.

The wiring diagrams are shown using the full point controllers (shaded terminals). Reduced point controllers should be used when the additional input/output points are not required.

Points shown as optional on the wiring diagrams are pre-configured I/O points. In some instances, some configuration parameters will need to be modified to use these points.

- ¹⁾ Resistor, 499 Ω 1%, part number (587-152) for AI 5 current input (0-20 mA).
- ²⁾ See *LTEC Internal Jumper Location* figure for physical location of internal jumpers and external terminal block connections.
- ³⁾ The location of physical inputs must match a specific application wiring diagram; see *Installation Instructions*.

Fig. 160: LTEC Internal Jumper Location.

LTEC Network Wiring

The LTEC can be wired using a free topology configuration. The LTEC communicates on the LonTalk network at 78K bps.

Terminals 1 and 2 on J2 are reserved for the network connection.

NOTE:

i

The connection is not polarity sensitive.

LTEC Power Wiring

The following terminations are reserved for the power connection to the LTEC:

- N (Neutral)
- H (Hot)
- E (Earth)

100K Ohm Thermistor Input

100K Ω thermistor inputs can be wired to the LTEC inputs AI 1/DI 1 or AI 2/DI 2 on terminal block J6.

i

NOTE:

The following figure illustrates a 100K Ω thermistor input connecting to input terminals J6-2 and J6-3, which correspond to termination set Al 1/DI 1.

Fig. 163: 100K Ω Thermistor Input Connection to the LTEC.

100K Ω Thermistor Input Wiring Details.				
Termination Set	Terminal Numbers Internal Jumper			
	Signal Common + –			
AI 1/DI 1	J6-2	J6-3	N/A	
AI 2/DI 2	J6-5	J6-6	N/A	

Digital Input

AI 1/DI 1, AI 2/DI 2, or AI 5/DI 5

Digital inputs can be wired to the LTEC inputs AI 1/DI 1, AI 2/DI 2, or AI 5/DI 5 on terminal block J4 or J6 (Figure 132). An external jumper provides a 5 Vdc source to be used for sensing dry contacts.

AI 3/DI 3 or AI 4/DI 4

Digital inputs can be wired to the LTEC inputs AI 3/DI 3 or AI 4/DI 4 on terminal block J6 (Figure 133). For these inputs, use the internal jumper blocks, J12 and J13 respectively, and configure them as shown in Table *Digital Input Wiring Details*.

NOTE:

Figure 132 illustrates a digital input connecting to input terminals J6-2 and J6-3, which correspond to termination set AI 1/DI 1. Figure 133 illustrates a digital input connecting to input terminals J4-1 and J4-2, which correspond to termination set AI 3/DI 3.

Digital Input Wiring Details.				
Termination	Terminal Numbers			Internal Jumper
Set	DI (Voltage Source) +5	Signal +	Common –	
AI 1/DI 1	J6-1	J6-2	J6-3	N/A
AI 2/DI 2	J6-4	J6-5	J6-6	N/A
AI 3/DI 3	N/A	J4-1	J4-2	J12 6 • • 5 4 • • 3 1 1
AI 4/DI 4	N/A	J4-3	J4-4	
AI 5/DI 5*	J4-5	J4-6	J4-7	N/A

Available on full point controller only.

AI 1/DI 1, AI 2/DI 2, or AI 5/DI 5

Digital inputs can be wired to the LTEC inputs AI 1/DI 1. AI 2/DI 2. or AI 5/DI 5 on terminal block J4 or J6. An external jumper provides a 5 Vdc source to be used for sensing dry contacts.

AI 3/DI 3 or AI 4/DI 4

Digital inputs can be wired to the LTEC inputs AI 3/DI 3 or AI 4/DI 4 on terminal block J6 (Figure Digital Input Connection to LTEC Inputs AI 3/DI 3 or AI 4/DI 4). For these inputs, use the internal jumper blocks, J12 and J13 respectively, and configure them as shown in Table Digital Input Wiring Details.

Digital Input Connection to LTEC Inputs AI 1/DI 1, Digital Input Connection to LTEC Inputs AI 3/DI 3 AI 2/DI 2, or AI 5/DI 5.

or AI 4/DI 4.

NOTE:

Figure *Digital Input Connection to LTEC Inputs AI 1/DI 1, AI 2/DI 2, or AI 5/DI 5* illustrates a digital input connecting to input terminals J6-2 and J6-3, which correspond to termination set AI 1/DI 1. Figure *Digital Input Connection to LTEC Inputs AI 3/DI 3 or AI 4/DI 4* illustrates a digital input connecting to input terminals J4-1 and J4-2, which correspond to termination set AI 3/DI 3.

Digital Input Wiring Details.				
Termination	Terminal Number			Internal Jumper
Set	DI (Voltage Source) +5	Signal +	Common –	
AI1/DI1	J6-1	J6-2	J6-3	N/A
AI2/DI2	J6-4	J6-5	J6-6	N/A
AI3/DI3	N/A	J4-1	J4-2	J12 6 • • 5 4 • • 3 2 • • 1
AI4/DI4	N/A	J4-3	J4-4	J13 6 • • 5 4 • • 3 2 • • 1
AI5/DI5*	J4-5	J4-6	J4-7	N/A

*Available on full point controller only.

Analog Input (Voltage)

Analog inputs (voltage) can be wired to the LTEC inputs AI 3/DI 3 through AI 5/DI 5 on terminal block J4 (Figure 134). For AI 5/DI 5, connect directly to J4-6 and J4-7; no jumpers are required (Figure 135).

NOTE:

Figure 134 illustrates an analog input (voltage) connecting to input terminals J4-1 and J4-2, which correspond to termination set AI 3/DI 3.

Terminal Equipment Controller—Pneumatic Output, Low Voltage

Analog Input (Voltage) Wiring Details.				
Termination Set	Terminal Numbers		Internal Jumper	
	Signal +	Common –		
AI 3/DI 3	J4-1	J4-2	J12	
			6 • • 5	
AI 4/DI4	J4-3	J4-4	J13	
			6 • • 5	
			4 • • 3	
AI 5/DI 5*	J4-6	J4-7	N/A	

Available on full point controller only.

Analog Input (Current)

Analog inputs (4-20 mA current) can be wired to the LTEC inputs AI 3/DI 3 through AI 5/DI 5 on terminal block J4. For AI 3/DI 3 and AI 4/DI 4, use the internal jumper block for current input as shown in Figure 136. For AI 5/DI 5, use an external resistor as shown in Figure 137.

NOTE:

Figure 136 illustrates an analog input (current) connecting to input terminals J4-1 and J4-2, which correspond to termination set AI 3/DI 3.

Terminal Equipment Controller—Pneumatic Output, Low Voltage

Analog Input (Current) Wiring Details.				
Termination Set	Terminal Numb	ers	Internal Jumper	
	Signal +	Common –		
AI 3/DI 3	J4-1	J4-2	J12	
			6 • • 5	
			4 • • 3	
AI 4/DI 4	J4-3	J4-4	J13	
			6 • • 5	
			4 • • 3	
AI 5/DI 5*	J4-6	J4-7	N/A1	

¹⁾ Use external 499 Ω 1% resistor across terminal 6-7.

Available on full point controller only.

Digital Output—ON/OFF

ON/OFF digital outputs can be wired to the LTEC outputs DO1 through DO 8 on terminal block J3.

i

NOTE:

.

Figure *Digital Output (ON/OFF) Connection to the LTEC* illustrates an ON/OFF digital output connecting to output terminals J3-1 and J3-2, which correspond to termination set DO 1.

Digital Output—ON/OFF Wiring Details.			
Termination Set	Terminal Numbers		
	Triac Control Output	24V Sources	
DO 1	J3-1	J3-2	
DO 2	J3-3	J3-4	
DO 3	J3-5	J3-6	
DO 4	J3-7	J3-8	
DO 5	J3-9	J3-10	
DO 6	J3-11	J3-12	
DO 7*	J3-13	J3-14	
DO 8*	J3-15	J3-16	

Available on full point controller only.

3-Position Floating Motor

A 3-position floating motor can be wired to two sets of consecutive terminations on the LTEC outputs DO 1 through DO 8. Use terminal block J3.

NOTE:

Figure 3-Position Floating Motor Connection to the LTEC illustrates a 3-position floating motor connecting to output terminals J3-1, J3-2, J3-3, and J3-4, which correspond to termination set DO 1 and DO 2.

Fig. 165: 3-Position Floating Motor Connection to the LTEC.

[**i**]

NOTE:

The outputs of the 3-position floating motor must be wired across two sets of consecutive terminal blocks (that is, DO 1 to DO 2, DO 2 to DO 3, DO 3 to DO 4, etc.).

i

Digital Output—3 Position Floating Motor Wiring Details.			
Termination Set	Terminal Numbers		
	Triac Control Output	24V Sources	
DO 1	J3-1	J3-2	
DO 2	J3-3	J3-4	
DO 3	J3-5	J3-6	
DO 4	J3-7	J3-8	
DO 5	J3-9	J3-10	
DO 6	J3-11	J3-12	
DO 7*	J3-13	J3-14	
DO 8*	J3-15	J3-16	

Available on full point controller only.

Lighting Contactor—Maintained

A single lighting contactor or interface relay, or a single point that drives multiple lighting contactors can be wired to the LTEC outputs DO 1 through DO 8 on terminal block J3.

NOTE:

Figure *Lighting Contractor–Maintained Connection to the LTEC* illustrates a lighting contactor or interface relay connecting to output terminals J3-15 and J3-16, which correspond to termination set DO 8.

Lighting Contactor—Maintained Wiring Details.			
Termination Set	Terminal Numbers		
	Triac Control Output	24V Sources	
DO 1	J3-1	J3-2	
DO 2	J3-3	J3-4	
DO 3	J3-5	J3-6	
DO 4	J3-7	J3-8	
DO 5	J3-9	J3-10	
DO 6	J3-11	J3-12	
DO 7*	J3-13	J3-14	
DO 8*	J3-15	J3-16	

Available on full point controller only.

Lighting Contactor—Pulsed (Latching)

A pulsed (momentary) lighting contactor can be wired to the LTEC outputs DO 1 through DO 8 on terminal block J3. Pulsed lighting contactors are controlled by two consecutive outputs: one output to pulse and latch the lights on and the other to pulse and latch the lights off. The lighting contactors can connect to any consecutive pair of termination sets between DO 1 and DO 8 (that is, DO 1 to DO 2, DO 2 to DO 3, DO 3 to DO 4, etc.).

i

NOTE:

Figure *Lighting Contractor—Pulsed Connection to the LTEC* illustrates the pulsed lighting contactor connecting to output terminals J3-13, J3-14, J3-15, and J3-16, which correspond to termination sets DO 7 and DO 8.

Terminal Equipment Controller—Pneumatic Output, Low Voltage

Lighting Contactor—Pulsed Wiring Details.			
Termination Set	Terminal Numbers		
	Triac Control Output	24V Sources	
DO 1	J3-1	J3-2	
DO 2	J3-3	J3-4	
DO 3	J3-5	J3-6	
DO 4	J3-7	J3-8	
DO 5	J3-9	J3-10	
DO 6	J3-11	J3-12	
DO 7*	J3-13	J3-14	
DO 8*	J3-15	J3-16	

Available on full point controller only.

Analog Output (0-10 Vdc)

An analog output (0-10 Vdc) can be wired to the LTEC outputs AO 1 or AO 2 on all controllers and to AO 1 through AO 3 on Unit Ventilator Controllers. Use terminal block J7 (Figure *Analog Output (0-10 Vdc) Connection to the LTEC*).

NOTE:

.

Figure Analog Output (0-10 Vdc) Connection to the LTEC illustrates an analog output (0-10 Vdc) connecting to output terminals J7-3 and J7-4, which correspond to termination set AO 2.

Fig. 168: Analog Output (0-10 Vdc) Connection to the LTEC.

Locally-powered Actuator Connections

Local actuators, where the actuator and the LTEC share one transformer, can be wired to LTEC outputs AO 1, AO 2, or AO 3 on terminal block J7 (Figure *Locally-powered Actuator Connection to the LTEC*).

NOTE:

Figure *Locally-powered Actuator Connection to the LTEC* illustrates the actuator connecting to output terminals J7-3 and J7-4, which correspond to termination set AO 2.

Fig. 169: Locally-powered Actuator Connection to the LTEC.

Remotely-powered Actuator Connections

Remote actuators, where the actuator and the LTEC are served by separate transformers, can be wired to LTEC outputs AO 1, AO 2, or AO 3 on terminal block J7 (Figure *Remotely-powered Actuator Connection to the LTEC*).

NOTE:

Figure *Remotely-powered Actuator Connection to the LTEC* illustrates the actuator connecting to output terminals J7-3 and J7-4, which correspond to termination set AO 2.

Fig. 170: Remotely-powered Actuator Connection to the LTEC.

Analog Output (0-10 Vdc) Wiring Details.			
Termination Set	Terminal Numbers		
	Signal Out	Common	
AO 1*	J7-1	J7-2	
AO 2*	J7-3	J7-4	
AO 3* (only available on Unit Ventilator controllers)	J7-5	J7-6	

*Available on full point controller only.

Terminal Control Unit (TCU)

NOTE:

The TCU is no longer available for new sales. Information in this section is for reference only.

TCU Wire Type Requirements. Class Distance² **Circuit Type** Wire Type (AWG) Conduit Sharing¹ AC line power Check local codes Power No. 12 to No. 14. Check local codes (to field panel) No. 12 THHN Digital Output 1 Check local codes Check local codes Check local codes 2 **Digital Output** Check local codes Check local codes Check local codes Line Volt Relay Module; 5-2 No. 22 150 ft (46 m) Class 1 and 2 conductor cable to module 5-conductor cable (check local codes) 2 **Digital Input** No. 22 150 ft (46 m) Class 1 and 2 5-conductor cable (check local codes) Analog Input Thermistors 2 No. 22 100 ft (30.5 m) Class 1 and 2 5-conductor cable (check local codes) 2 Actuator Output No. 22 150 ft (46 m) Class 1 and 2 5-conductor cable (check local codes) 2 Power Trunk No. 14 THHN or 180 ft (55 m)² Class 1 and 2 No. 14 TP (check local codes)

Wire Type Requirements

Conduit sharing rules were determined through EMI and shared conduit testing. These rules indicate wiring methods that have no adverse affect on the proper operation of the equipment, but do not necessarily indicate compliance with local codes.

²⁾ Distances depend on transformer location. Install 100 VA transformers near the most convenient line voltage sources to minimize line voltage wiring costs. Use one 100 VA transformer for every eight MPUs. (180 ft using 14 AWG wires is worst case).

Power Source Requirements

TCUs can be powered in three ways. Correct sizing and fusing must be maintained for each of these powering techniques:

- Individual transformer using a transformer rated for Class 2 service.
- Power trunk. For more information, see the section Power Trunk Guidelines [→ 64].
- Low voltage source of the device the controller is controlling (for example, fan powered boxes, electric room heat, fan coils, and heat pumps).

The phase of all devices on a power trunk must be identical.

Phase differences can destroy equipment. Any relays, EPs, or contactors sharing power must be clamped with MOVs at their locations.

1)

Unitary Controller (UC)

TCU Power Source Requirements.			
Product	Input Voltage	Line Frequency	Maximum Power
TCU	24 Vac	50/60 Hz	14 – 22.7 VA ¹
1) Dependent on application			

Dependent on application.

Digital Output (DO) Wiring

Table MPU and DPU Wire Requirements provides DO wire run lengths for points wired to Terminal Control Units.

UL and CSA listing requires the DO wiring shield be installed in the cabinets for which they are supplied.

Grounding

A ground lug is provided on TCUs, if required due to local codes or for RF grounding reasons.

Metal Oxide Varistors (MOVs)

Metal Oxide Varistors (MOVs) must be used across the DO terminals when connected to loads. MOVs are factory-installed in all FLN products.

When installing MOVs across the DO relay contacts on termination boards, keeping the MOV leads as short as possible makes the MOV more effective at reducing spikes from field wiring or controlled devices. Remove and reinstall any MOVs with leads longer than 1 in. (2.5 cm). See the section Controlling Transients $[\rightarrow 23]$ for MOV part numbers.

Line Voltage Relay Module

Low voltage MOVs can be required if severe noise problems arise. A jumper is provided to allow you to position the snubber across either the normally open (NO) or normally closed (NC) contacts.

Unitary Controller (UC)

NOTE:

The Unitary Controller (UC) is no longer available for new sales. Information in this section is for reference only.

Unitary Controller Wire Type Requirements.				
Circuit Type	Class	Wire Type (AWG)	Distance	Conduit Sharing ¹
Input Power	2	Check local codes	Check local codes	Check local codes
Analog Input—RTD	2	No. 18 to No. 22TP	750 ft (228 m)	Class 2
Analog Input—0-20 mA or 0-10 Vdc	2	No. 18 to No. 22 TP	750 ft (228 m)	Class 2
Analog Output—0-12 Vdc or 0- 20 mA	2	No. 18 to No. 22 TP	750 ft (228 m)	Check local codes
Digital Input	2	No. 18 to No. 22 TP	750 ft (228 m)	Class 1 and 2 Check local codes
Digital Output	1	No. 18 to No. 22 TP	Check local codes	Check local codes
Digital Output	2	Check local codes	Check local codes	Check local codes

Wire Type Requirements

Conduit sharing rules were determined through EMI and shared conduit testing. These rules indicate wiring methods that have no adverse affect on the proper operation of the equipment, but do not necessarily indicate compliance with local codes.

Power Source Requirements

UCs can be powered in three ways:

- Individual transformer using a transformer rated for Class 2 service.
- Power trunk. For more information, see the section Power Trunk Guidelines [→ 64].
- Low voltage source of a device that the UC is controlling (for example, electricpneumatic transducer, etc.).

1)

1)

The phase of all devices on a power trunk must be identical.

Phase differences can destroy equipment. Any relays, EPs, or contactors sharing power must be clamped with MOVs at their locations.

UC Power Source Requirements.			
Product	Input Voltage	Line Frequency	Maximum Power
Unitary Controller	24 Vac	50/60 Hz	15.0 VA ¹

For standard UC package.

Digital Output (DO) Wiring

Table *Unitary Controller Wire Type Requirements* provides DO wire run lengths for points wired to Unitary Controllers.

UL and CSA listing requires the DO wiring shield be installed in the cabinets for which they are supplied.
Metal Oxide Varistors (MOVs)

Metal Oxide Varistors (MOVs) must be used across the DO terminals when connected to loads. MOVs are factory-installed in all FLN products.

When installing MOVs across the DO relay contacts on termination boards, keeping the MOV leads as short as possible makes the MOV more effective at reducing spikes from field wiring or controlled devices. Remove and reinstall any MOVs with leads longer than 1 in. (2.5 cm). See the section Controlling Transients [\rightarrow 23] for MOV part numbers.

Terminal Equipment Controllers (APOGEE Legacy Controllers)

150 ft (46 m)

150 ft (46 m)

150 ft (46 m)

100 ft (30 m)

100 ft (30 m)

TEC Wire Type Requirements.			
	Class	Wire Type (AWG)	Distance
	2	Check local codes	Check local codes

Wire Type Requirements

Check local codes

Check local codes

No. 18 to No. 22 TP

No. 18 to No. 22 TP

Pre-terminated 3 TP

Conduit sharing rules were determined through EMI and shared conduit testing. These rules indicate wiring methods that have no adverse effect on the proper operation of the equipment, but do not necessarily indicate compliance with local codes.

Power Source Requirements

TECs can be powered in three ways. Correct sizing and fusing must be maintained for each of these powering techniques:

- Individual transformer using a transformer rated for Class 2 service.
- Power trunk. For more information, see the section Power Trunk Guidelines [→ 64].
- Low voltage source of the device the controller is controlling (for example, fan powered boxes, electric room heat, fan coils, and heat pumps).

2

2

2

2

2

Circuit Type

Input Power

Digital Output

Analog Output

Digital Inputs

Analog Inputs

Room Temperature Sensor

Conduit Sharing¹

Class 2

Class 2

Class 2

Class 2

Class 2

Class 2

A CAUTION

The neutral side of the 24 Vac power transformer for the TEC **must** be tied to earth at the source of the 24 Vac and only at this point.

N Variant TEC (Updated Hardware) Power Source Requirements.			
Product	Input Voltage	Line Frequency	Maximum Power ¹
Terminal Equipment Controller—Electronic Output (6 DO Platform)	24 Vac	50/60 Hz	3 VA + 12 VA max per DO
Terminal Equipment Controller—Electronic Output (8 DO Platform)	24 Vac	50/60 Hz	7 VA + 12 VA max per DO

TEC (Legacy Hardware) Power Source Requirements.			
Product	Input Voltage	Line Frequency	Maximum Power ¹
Terminal Equipment Controller—Electronic Output (6 DO Platform)	24 Vac	50/60 Hz	10 VA + 12 VA max per DO
Terminal Equipment Controller—Electronic Output (8 DO Platform)	24 Vac	50/60 Hz	10 VA + 12 VA max per DO

¹⁾ Total VA rating is dependent upon the controlled DO loads (for example, actuators, contactors, etc.).

²⁾ Smoke control listed TECs are limited to 6 VA max per DO.

Terminal Equipment Controllers (TEC) (Legacy Hardware)

6 DO Platform

Fig. 172: 6 DO Controller with Air Velocity Sensor.

POWER

TRUNK

TERMINATIONS

LECO200R6

INPUT/OUTPUT TERMINATIONS

TRANSMIT LED

RECEIVE LED

DO LEDS

FLN TRUNK

TERMINATIONS

BST LED

ROOM TEMPERATURE SENSOR/MMI PORT

8 DO Platform

Fig. 173: 8 DO Controller.

Fig. 174: 8 DO Controller with Air Velocity Sensor.

[**i**]

Wiring DI Common (pin 4) t 10K/100K selectable thermistor - 8 Vdc (pin 2) incorrectly, will cause the actuator to shut down. No damage will occur. When the wiring is corrected, the actuator will resume operation.

Digital Output (DO) Wiring

The Wire Type Requirements [\rightarrow 217] provides DO wire run lengths for points wired to TECs.

UL and CSA listing requires the DO wiring shield be installed in the cabinets for which they are supplied.

i

NOTE:

See the Installation Instructions for point wiring diagrams.

Terminal Equipment Controllers - Pneumatic Output

Do not control more than the nameplate rated loads for the DOs of the pneumatic output controllers. The controller UL and CSA listing is based on the nameplate power rating.

The Terminal Equipment Controller – Pneumatic Output controls 24 Vac loads only. The maximum rating is 12 VA for each DO. For higher VA requirements, 110 or 220 Vac requirements, separate transformers used to power the load, or DC power requirements, use an interposing 220 V 4-relay module (TEC Relay Module P/N 540-147).

Fig. 177: 6 DO Controller with Air Velocity Sensor.

8 DO Platform

Fig. 178: 8 DO Controller.

Glossary

The glossary contains terms and acronyms that are used in this manual.

ACH

Alternating Current Hot.

ACN

Alternating Current Neutral.

AEM/AEM100/AEM200

Devices that allow APOGEE field panel networks to communicate with the Insight workstation across an Ethernet network. The APOGEE Ethernet Microserver (AEM) operates on a 10Base-T connection, but can also be routed across low speed networks (for example, across Frame Relay). The AEM100 supports auto-sensing 10Base-T and 100Base-TX Ethernet communication. The AEM200 adds a second serial port, allowing HMI access without disconnecting from the Insight network.

Alarm Indicating Circuit (AIC)

Used in Protective Signaling Systems (that is, fire alarm systems) to connect to alarm devices (horns, speakers, flashing lights, etc.).

ANSI

American National Standards Institute

Automation Level Network (ALN)

Field panel (Protocol 2, Ethernet, or BACnet/IP) network consisting of PXC Modular Series, PXC Compact Series, MECs, MBCs, RBCs, and FLN Controllers. BACnet/IP ALNs may also contain Insight BACnet/IP-capable workstations and third-party BACnet devices. The Automation Level Network (ALN) and Building Level Network (BLN) are identical.

BACnet

ASHRAE Building Automation and Control Networking protocol that allows computerized equipment performing various functions to exchange information, regardless of the building service the equipment performs.

Class 1 Circuit

Remote control and signaling circuits not exceeding 600 Vac and having no power limitation. Normally used for controlling equipment such as fans or pumps through starters.

Class 2 Circuit

Power limited circuits not exceeding a power level of 100 VA (that is, 24 Vac \times 4 amps = 96 VA).

Class 3 Circuit

Circuits of relatively low power but of higher voltage than Class 2 (such as 120 volts and up to 1 amp). This is not a common application.

Class 2 Power Source, Inherently Limited

An inherently limited Class 2 power source has some form of current-limiting characteristic designed into the product. Sources of this type are often protected by a current-limiting impedance or embedded fusible link, but other methods are also used. As long as the current limiting is an integral part of the power supply, it will fall into this category. Because of this built-in current-limiting characteristic, a circuit powered by this type of source needs no further protection to qualify as a Class 2 circuit.

Class 2 Power Source, Not Inherently Limited

A Class 2 source that is not inherently limited does not have built-in current limiting protection. At the time of installation, a current-limiting device must be installed between the source and the loads. The most common current limiting device for this application is a single fuse or integral transformer circuit breaker, which must be sized so that the power available to the loads does not exceed 100 VA.

EIA

Electronic Industries Association.

Electromagnetic Interference (EMI)

Electrical noise induced in process wiring by electric or magnetic fields created by power wiring, other process wiring, or electrical equipment.

Field Level Network (FLN)

Data communications link that passes information between an FLN device or devices and an Automation Level Network (ALN) device.

IEEE

Institute of Electrical and Electronic Engineers.

IEEE Standard 802.3

Explains the basic functioning of the CSMA/CD (Carrier Sense Multiple Access with Collision Detection) packet network with an exclusive focus on the ISO/IEC (International Organization of Standardization and the International Electrotechnical Commission).

Initiating Device Circuit (IDC)

Used in Protective Signaling Systems (that is, fire alarm and security systems) to monitor alarm or supervisory sensing devices (manual stations, smoke detectors, valve tamper switches, etc.).

Interoperability

Process that ensures that multiple nodes (from the same or different manufacturers) can be integrated into a single network (LonWorks ® FLN) without custom development.

Lay

Axial distance required for one cabled conductor to complete one revolution about the axis around which it is cabled (for example, a cable lay of 2 inches (50.8 mm) is equivalent to six twists per foot).

LonMark

The LonMark Interoperability Consortium is an industry group whose purpose is to make recommendations to Echelon Corporation on interoperability issues. Issues include standardization of Network Variable types, Configuration Property Types, and Object Definitions. The logo indicates that the product is LonWorks® interoperable.

LonWorks

An open networking technology platform for interoperable control networks. The generic term for Echelon's line of networking products.

Management Level Network (MLN)

Communications connection between individual Insight workstations in an APOGEE building control system.

National Electrical Code (NEC)

Code of standards issued by the National Fire Protection Association (NFPA) for "...safeguarding of persons and property from hazards arising from the use of electricity."

Node

Single Neuron 3120 or 3150 Chip in a LON® product.

Plenum Cable

Specially jacketed cabling (flame resistant and low smoke properties) for use without conduit in air plenums where local code permits.

PXC Compact

The PXC Compact is a series of high-performance, Direct Digital Control (DDC), programmable controllers. The controllers operate stand-alone or networked to perform complex control, monitoring, and energy management functions without relying on a higher-level processor. The Compact series communicates with an Insight workstation and other APOGEE or pre-APOGEE field panels on a peer-to-peer Automation Level Network (ALN).

PXC Modular

The PXC Modular is a global hardware platform. It has installation flexibility, a capability for large point counts, and supports FLN devices. The Modular series communicates with an Insight workstation and other APOGEE or pre-APOGEE field panels on a peer-to-peer Automation Level Network (ALN), and with TX-I/O modules directly through the TX-I/O self-forming bus.

Signaling Line Circuit (SLC)

Used in a Protective Signaling System (that is, fire or security) to carry multiple signals. Typically, the communication channel (trunk) between a central monitoring station and remote units at an APOGEE Automation System.

Snubber

Series resistor capacitor suppression network designed to control the maximum voltage spike across a circuit.

Structured Cabling

Wiring system conforming to industry standards and practices for use by voice and data communication networks. Refers to cable, both copper and fiber optic, and associated hardware including telecommunications closets.

Sub-system

One or more LON nodes working together and being managed by a single network management tool.

System

One or more independently managed LON sub-systems working together.

THHN

Flame retardant, heat resistant, thermoplastic covered wire.

TIA

Telecommunications Industry Association

TX-I/O

TX-I/O[™] is a line of I/O modules with associated power and communication modules for use within the APOGEE Automation System.

TX-I/O Modules

TX-I/O Modules provide I/O points for the APOGEE Automation System based upon TX-I/O Technology. TX-I/O Technology provides flexibility of point types, tremendous flexibility of signal types and support for manual operation.

Shielded Twisted Pair (STP)

Stranded or solid wire twisted into pairs. Shielding is individually wrapped around each twisted pair or around all twisted pairs contained in the sheath.

Unshielded Twisted Pair (UTP)

Stranded or solid wire twisted into pairs. Multiple twisted pairs may be contained in the same sheath.

Virtual AEM (VAEM)

Firmware emulation of an APOGEE Ethernet Microserver (AEM). See *AEM/AEM100/AEM200* in this Glossary.

Index

1

1.5-pair network cable	. 36, 37
16-point Compact	
supported point types	107

2

24-point Compact	
supported point types	. 108

3

36-point Compact	
supported point types	108
3-wire RS-485 network interface	

Α

ACH	224
ACN	224
AEM—see APOGEE Ethernet Microserver	32
AIC	224
ANSI	224
APOGEE Ethernet Microserver	32
using existing wiring	32

В

BACnet	224
ALN wiring	31
BACnet equipment controllers	
power source requirements	121
BACnet MS/TP network	
Cimetrics router	

С

cable tray and conduit spacing	15
cable tray spacing	15
Cimetrics BACnet router, using	34
circuits	
Class 1	14
Class 2	
Class 3	14
Class 1	
Class 1/Class 2 separations	15
definition	
power limited circuits	
remote control circuits	14
Class 2	

Class 1/Class 2 separations	15
definition	14, 224
power limited circuits	14
wire specifications, power trunk	24
Class 3	
definition	14, 224
power limited circuits	14
communications wiring	
ALN trunk	46
Ethernet	30
FLN trunk (P1)	46
compact series	
analog input powered devices	106
analog output powered devices	106
Metal Oxide Varistors	107
power source requirements	106
supported point types	107
universal I/O	107
wire type requirements	105
conductor	
TCU	214
conduit	
using for equipment grounding	17
conduit fill	
40% fill	20
NEC requirements	20
number of cables per conduit size	20
conduit sharing guidelines	15
conduit spacing	16
non-metallic conduit	16
_	

D	
decision tree	
network wiring requirements	35

Ε

earth ground	
current loops	16
reference	17, 151
EIA	225
electrical noise	22, 34
ЕМІ	225
equipment controllers	
wire type requirements	121

Ethernet

communications wiring	
MLN workstation wiring	
Ethernet TCP/IP	
ALN wiring	
existing wiring, using	

G

general wiring guidelines	22
grounding	16
AI, DI, AO circuits	17
common grounding for communication circuits	18
earth ground current loops	16
earth ground reference 17, 1	51
isolation transformers	17
standby power systems	17
using conduit	17
5	

I

IDC	225
IEEE	225
initiating device circuit	225
installation	
distance from large motors	22
distance from variable speed drives	
interoperability(LON®)	225

L

large motors, definition	
lay	
line voltage MOVs	
LON®	
definition of terms	

Μ

Metal Oxide Varistors

MLN	226
Metal Oxide Varistors (MOVs), part numbers	23
Metal Oxide Varistors (MOVs)	23
installing across DO relay contacts	122
compact series	107

Ν

National Electric Code (NEC)	
Article 250	
Article 725	
Article 760	

network wiring requirements decision tree	35
Network Termniators	23
smoke and flame characteristics	18
conduit sharing	15
conduit fill requirements	20
communications requirements	
Article 800	18

Ρ

parallel wire runs	15
part numbers	
120 ohm resistors	34
3-wire network RS-485 reference terminator	43
Metal Oxide Varistors (MOVs)	23
Multi-Drop Trunk Terminator	49
Patch Cables	57
resistors, LonWorks	63
terminating resistor	63
three-port repeater, LonWorks	.61, 62
two-port repeater, LonWorks	.61, 62
patch cables	57
plenum cable	226
Power Source	
MBC/RBC	169
power source requirements	
BACnet equipment controllers	121
compact series	106
PXC series	90
preferred cable type	30
PX series service box	106
PXC Compact series	
See compact series	104
PXC product family	
Compact series	104

R

radio frequency transmitter limitations	14
regulatory subjects	13
RS-485 MS/TP	
communications wiring	33
RS-485 network	
1.5-pair network cable	36, 37
3-wire device interface	36
RS-485 reference terminator	43

S

55
106
226

l table
3-wire RS-485 network interface terminal wiring 36
BACnet ATEC or N-Variant P1 ATEC (updated
hardware) power source requirements
BACnet PTEC or N-Variant P1 TEC (updated
hardware) power source requirements151
Class 2 power trunk24
conduit fill20
conduit fill—NEC requirements20
distance per 2-wire trunk section46
equipment controller wire type requirements 121
KNX/PL-Link interface power consumption 147
maximum apparent power (VA) for transformer
sizing
MOv information23
MOV information23
MOV part numbers23
network cable sharing and distances from higher power cables
power supply
preferred cable type
recommended 1.5-pair cable types
THHN
third-party hardware13
TIA
transients, controlling23
U UTP227 V

voltage drop, calculating	73
W wire resistance values	73

wire specifications

1.5-pair cable	37
Class 2 power trunk	24
wire type requirements	
compact series	105
wiring	
3-wire RS-485 network interface	33
Actuator Terminal Equipment Controller (ATI BACnet or N-Variant P1	EC) 148
BACnet Programmable Terminal Equipment Controllers (PTEC) and N-Variant P1 TEC	
(updated hardware)	151
BACnet/IP ALN	31
cable tray and conduit spacing	15
Ethernet communications	30
Ethernet connection	137
Ethernet TCP/IP ALN	31
general guidelines	22
KNX PL-Link Connection	146
location restrictions	15
MLN workstation to Ethernet	31
MLN workstation to Ethernet using an AEM.	32
MS/TP connection	134
requirements (equipment controllers)	121
RS-485 MS/TP communications	33
sensor bus communication (SCOM) connect	ion143
third-party hardware	13
using existing	.22, 32
wiring diagrams	
Cimetrics routers on a BACnet MS/TP netwo	rk34

Issued by Siemens Industry, Inc. Smart Infrastructure 1000 Deerfield Pkwy Buffalo Grove IL 60089 +1 847-215-1000