
s

Preface, Contents

Introduction 1

Description 2

Operation 3

PRODAVE MPI V6.0 Functions 4

Demonstration Programs 5

Appendix A

SIMATIC

PRODAVE MPI V6.0

Manual

Edition 05/2005
A5E00417150-01

Copyright Siemens AG 2005 All rights reserved

The distribution and duplication of this document or the utilization
and transmission of its contents are not permitted without express
written permission. Offenders will be liable for damages. All rights,
including rights created by patent grant or registration of a utility
model or design, are reserved

Siemens AG
Automation and Drives
Postfach 4848, 90327 Nuremberg, Germany

Disclaimer of Liability

We have reviewed the contents of this publication to ensure
consistency with the hardware and software described. Since
variance cannot be precluded entirely, we cannot guarantee full
consistency. However, the information in this publication is
reviewed regularly and any necessary corrections are included
in subsequent editions.

Siemens AG 2005
Technical data subject to change.

Siemens Aktiengesellschaft A5E00417150-01

Safety Guidelines

This manual contains notices you have to observe in order to ensure your personal safety, as well as to

prevent damage to property. The notices referring to your personal safety are highlighted in the manual

by a safety alert symbol, notices referring to property damage only have no safety alert symbol. The

notices shown below are graded according to the degree of danger.

!
Danger
indicates that death or severe personal injury will result if proper precautions are not taken.

!
Warning
indicates that death or severe personal injury may result if proper precautions are not taken.

!
Caution
with a safety alert symbol indicates that minor personal injury can result if proper precautions are not
taken.

 Caution

without a safety alert symbol indicates that property damage can result if proper precautions are not
taken.

 Attention

indicates that an unintended result or situation can occur if the corresponding notice is not taken into
account.

If more than one degree of danger is present, the warning notice representing the highest degree of

danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a

warning relating to property damage.

Qualified Personnel

The device/system may only be set up and used in conjunction with this documentation. Commissioning
and operation of a device/system may only be performed by qualified personnel. Within the context of

the safety notices in this documentation qualified persons are defined as persons who are authorized to

commission, ground and label devices, systems and circuits in accordance with established safety

practices and standards.

Prescribed Usage

Note the following:

!
Warning
This device and its components may only be used for the applications described in the catalog or the
technical description, and only in connection with devices or components from other manufacturers
which have been approved or recommended by Siemens.
Correct, reliable operation of the product requires proper transport, storage, positioning and assembly
as well as careful operation and maintenance.

Trademarks

All names identified by ® are registered trademarks of the Siemens AG.

The remaining trademarks in this publication may be trademarks whose use by third parties for their

own purposes could violate the rights of the owner.

PRODAVE MPI V6.0
A5E00417150-01 iii

Preface

Purpose of the Manual

This manual gives you a complete overview of the PRODAVE MPI V6.0 functions.

This manual is intended for those responsible for configuring, commissioning, and
servicing automation systems.

Required Basic Knowledge

You require a general knowledge in the field of automation engineering to be able
to understand this manual.

In addition, you should know how to use computers or devices with similar
functions (e.g programming devices) under Windows 2000 or XP operating
systems.

Where is this Manual valid?

This manual is valid for the software package PRODAVE MPI V6.0.

Preface

 PRODAVE MPI V6.0
iv A5E00417150-01

Further Support

If you have any technical questions, please get in touch with your Siemens
representative or agent responsible.

You will find your contact person at:

http://www.siemens.com/automation/partner

You will find a guide to the technical documentation offered for the individual
SIMATIC Products and Systems here at:

 http://www.siemens.com/simatic-tech-doku-portal

The online catalog and order system is found under:

http://mall.automation.siemens.com/

Training Centers
Siemens offers a number of training courses to familiarize you with the SIMATIC
S7 automation system. Please contact your regional training center or our central
training center in D 90327 Nuremberg, Germany for details:

Telephone: +49 (911) 895-3200.

Internet: http://www.sitrain.com

 Preface

PRODAVE MPI V6.0
A5E00417150-01 v

Technical Support

You can reach the Technical Support for all A&D products

• Via the Web formula for the Support Request
http://www.siemens.com/automation/support-request

• Phone: + 49 180 5050 222

• Fax: + 49 180 5050 223

Additional information about our Technical Support can be found on the Internet
pages http://www.siemens.com/automation/service

Service & Support on the Internet
In addition to our documentation, we offer our Know-how online on the internet at:

http://www.siemens.com/automation/service&support

where you will find the following:

• The newsletter, which constantly provides you with up-to-date information on your
products.

• The right documents via our Search function in Service & Support.

• A forum, where users and experts from all over the world exchange their experiences.

• Your local representative for Automation & Drives.

• Information on field service, repairs, spare parts and more under "Services".

Preface

 PRODAVE MPI V6.0
vi A5E00417150-01

PRODAVE MPI V6.0
A5E00417150-01 vii

Contents

1 Introduction 1-1

1.1 Basic Functions..1-2
1.1.1 Functions for Data Transfer to S7 300/400...1-2
1.1.2 Functions for Data Transfer to S7 200..1-3
1.2 Functions for Data Handling in PG/PC...1-4

2 Description 2-1

2.1 Operating Principle of PRODAVE...2-1
2.2 Using the Programming Language Adapter..2-1
2.3 Requirements ...2-1
2.4 Connecting the PG/PC to the PLC..2-2
2.4.1 Driver under Windows 95/98/NT...2-2

3 Operation 3-1

3.1 Installing PRODAVE MPI V6.0...3-1
3.1.1 Installing PRODAVE MPI V6.0 under Windows 95/98/NT/ME/2000/XP3-1
3.2 Scope of Supply of PRODAVE MPI V6.0 ..3-2
3.2.1 PRODAVE MPI V6.0 for Windows 95/98/NT/ME/2000/XP...............................3-2
3.2.2 PRODAVE MPI V6.0 Mini for Windows 95/98/NT/ME/2000/XP.......................3-3
3.3 Working with PRODAVE..3-4
3.3.1 Notes on S7-200 ...3-4
3.3.2 Notes on S7-300/400 ..3-4
3.4 Differences between S5 and S7 ..3-5
3.5 Linking to Standard Tools...3-7
3.5.1 PRODAVE under Delphi (32-Bit) Example ...3-7
3.5.2 PRODAVE under Access (32-Bit) Example..3-8
3.5.3 PRODAVE under Visual Basic (32-Bit) Example..3-8

4 PRODAVE MPI V6.0 Functions 4-1

4.1 Basic Functions..4-3
4.1.1 load_tool..4-3
4.1.2 unload_tool..4-5
4.1.3 new_ss ..4-6
4.2 Functions for Data Communication Traffic to the S7 300/400.........................4-7
4.2.1 ag_info...4-7
4.2.2 ag_zustand..4-9
4.2.3 db_buch...4-10
4.2.4 db_read ...4-11
4.2.5 d_field_read ..4-13
4.2.6 e|a|m_field_read..4-14
4.2.7 t|z_field_read...4-16
4.2.8 mix_read..4-17
4.2.9 db_write...4-21
4.2.10 d_field_write ..4-23
4.2.11 a|m_field_write ..4-24
4.2.12 z_field_write ..4-25
4.2.13 mix_write ...4-26
4.2.14 mb_setbit...4-30

Contents

 PRODAVE MPI V6.0
viii A5E00417150-01

4.2.15 mb_resetbit..4-31
4.2.16 mb_bittest..4-32
4.3 Functions for Data Communication Traffic to the S7 200..............................4-33
4.3.1 as200_ag_info...4-33
4.3.2 as200_ag_zustand..4-34
4.3.3 as200_e|a|m|sm|vs_field_read ...4-34
4.3.4 as200_t_field_read..4-37
4.3.5 as200_z_field_read...4-39
4.3.6 as200_mix_read..4-41
4.3.7 as200_a|m|sm|vs_field_write ..4-44
4.3.8 as200_z_field_write ..4-46
4.3.9 as200_mix_write ...4-47
4.3.10 as200_mb_setbit ...4-50
4.3.11 as200_mb_resetbit..4-51
4.3.12 as200_mb_bittest ..4-52
4.4 Comfort Functions ...4-53
4.4.1 error_message ..4-53
4.4.2 kg_to_float...4-55
4.4.3 float_to_kg...4-56
4.4.4 gp_to_float...4-57
4.4.5 float_to_gp...4-58
4.4.6 testbit...4-59
4.4.7 byte_boolean...4-60
4.4.8 boolean_byte...4-61
4.4.9 kf_integer...4-62
4.4.10 swab_buffer...4-63
4.4.11 copy_buffer..4-64
4.4.12 USHORT_2_bcd ...4-65
4.4.13 bcd_2_USHORT ...4-66
4.5 Teleservice Functions..4-67
4.5.1 ts_dial ..4-67
4.5.2 ts_hang_up_dial..4-69
4.5.3 ts_set_ringindicator ...4-70
4.5.4 ts_read_info ..4-72
4.5.5 ts_hang_up_ring ...4-73
4.5.6 ts_get_modem_name ...4-74

5 Demonstration Programs 5-1

5.1 Demonstration Programs for the PC..5-1

A Appendix A-1

A.1 Error Texts ... A-1
A.2 Used Abbreviations... A-4

PRODAVE MPI V6.0
A5E00417150-01 1-1

1 Introduction

Due to their constantly increasing performance and vast availability of PC
applications for the manufacturing process, the Personal Computer is being used
more and more on the factory shop floor in addition to the programming unit. This,
however, poses the problem to you as the user how to combine the variety of
programs for handling of process data (e.g. data bases, statistical evaluation) with
your existing PLC systems. In order to make PLC data available for the PC
application you will need a working and cost effective data link between PLC and
PC.

This is where the software package PRODAVE MPI V6.0 will offer the solution.
PRODAVE MPI V6.0 offers tested functions (tools) in a DLL (Dynamic Link Library)
or LIB (Library) which you can combine for each of your applications. The
combination of the tools is carried out in programming languages for Windows
95/98/ME and Windows NT/2000/XP.

Via these combined functions the process data traffic between PLC and PG/PC is
established by PRODAVE MPI V6.0 using the MPI interface of the PLC. The data
now available can be translated into a format suitable for PCs and can be
processed by your own application or any standard application. This will enable
you to create a data link between PLC and PG/PC without having detailed
knowledge, and all your development activities can be concentrated on specific
processing of your data.

PRODAVE MPI V6.0 enables you to not only evaluate and monitor but to influence
your process as well inasmuch that you can have several functions available to you
to enable you to write data to the PLC from the PG/PC.

As an introduction to PRODAVE MPI V6.0 and to enable you to familiarize yourself
with it, we supply several demonstration programs as examples. These functions
are fully operational and are available in source code (see chapter "Demonstration
Programs").

PRODAVE MPI V6.0 runs under Windows 95/98/NT/ME/2000/XP on PG 7xx and
on Pcs which are compatible to Industrial Standard in conjunction with MPI
interfaces (CP5511, CP5611) or PC/MPI cables.

The PRODAVE functions can be divided into 3 basic types:

Introduction

 PRODAVE MPI V6.0
1-2 A5E00417150-01

1.1 Basic Functions

• initialize and de-initialize system (load_tool, unload_tool)

• activate connection (new_ss)

1.1.1 Functions for Data Transfer to S7 300/400

• read output bytes from PLC (a_field_read)

• write output bytes (a_field_write)

• read input bytes from PLC (e_field_read)

• read data bytes from a block DB (d_field_read)

• write data bytes to a block DB (d_field_write)

• read flag bytes from PLC (m_field_read)

• write to flag bytes in PLC (m_field_write)

• status test of a flag (mb_bittest)

• set and reset flag (mb_setbit, mb_resetbit)

• read timer words from PLC (t_field_read)

• read counter words from PLC (z_field_read)

• overwrite counter words in PLC (z_field_write)

• read mixed data (mix_read)

• write mixed data (mix_write)

 Introduction

PRODAVE MPI V6.0
A5E00417150-01 1-3

1.1.2 Functions for Data Transfer to S7 200

• read output bytes from PLC (as200_a_field_read)

• write output bytes (as200_a_field_write)

• read input bytes from PLC (as200_e_field_read)

• read data bytes from variable memory (as200_vs_field_read)

• write data bytes to variable memory (as200_vs_field_write)

• read flag bytes from PLC (as200_m_field_read)

• write to flag bytes in PLC (as200_m_field_write)

• read special flag bytes from PLC (as200_sm_field_read)

• write to special flag bytes in PLC (as200_sm_field_write)

• status test of a flag (as200_mb_bittest)

• set and reset flag (as200_mb_setbit, as200_mb_resetbit)

• read timer words from PLC (as200_t_field_read)

• read counter words from PLC (as200_z_field_read)

• overwrite counter words in PLC (as200_z_field_write)

• read mixed data (as200_mix_read)

• write mixed data (as200_mix_write)

Introduction

 PRODAVE MPI V6.0
1-4 A5E00417150-01

1.2 Functions for Data Handling in PG/PC

• error text output relating to the error number (error_message)

• format conversion of S7 data (gp_to_float, float_to_gp)

• format conversion of S5 data (kg_to_float, float_to_kg).

• byte conversion of a byte to eight logical values and vice versa (boolean_byte,
byte_boolean).

1.3 TeleService Functions

The TeleService functions are an expansion of the PRODAVE functionality which
enables the user to establish a connection of and to an S7 controller via the public
telephone network. Pre-requisite is the installation of the SIMATIC TeleService
(=optional software package to STEP 7) for the linking of SIMATIC S7 controllers
(PLCs) via the public telephone network.

• Dial a station and / or a TS adapter (ts_dial)

• Close a TeleService connection (ts_hang_up_dial)

• Initialize the system for call recognition (ts_set_ringindicator)

• Read information on alarm triggering station (ts_read_info)

• Close a TeleService connection (ts_hang_up_ring)

PRODAVE MPI V6.0
A5E00417150-01 2-1

2 Description

2.1 Operating Principle of PRODAVE

Using the programming package PRODAVE MPI V6.0 you can read data from a
programmable logic controller (PLC) and write data to a PLC under Windows
95/98/NT/2000/XP via several CPUs from the S7-series.

PRODAVE MPI V6.0 consists basically of two parts:

• driver for Windows 95/98/ME and Windows NT/2000/XP
and

• programming language adapter

PRODAVE MPI V6.0 offers the adapter for Windows 95/98/NT/ME/2000/XP in the
form of a 32-Bit-DLL (Dynamic Link Library) created in VC++ Version 6.0.

If you want to read data from the PLC or write data to the PLC using a
programming language, you will only require the adapter and its functions.

2.2 Using the Programming Language Adapter

A detailed description of the available functions for the various programming
languages of this manual can be found in chapter "PRODAVE MPI V6.0
Functions".

2.3 Requirements

PRODAVE MPI V6.0 operates with the following PLC types: S7-200, S7-300, S7-
400, M7 and C7 from the S7 series.

Software Requirement:

Operating system Windows 95/98/ME or Windows NT V4.x/2000/XP.

Hardware Requirement:

PRODAVE MPI V6.0
PRODAVE MPI V6.0 Mini
Simatic PG or AT compatible industrial PC with 64MB main memory and MPI-ISA
interface, CP5511, CP5611, CP 5512 or PC Adapter.

Description

 PRODAVE MPI V6.0
2-2 A5E00417150-01

2.4 Connecting the PG/PC to the PLC

2.4.1 Driver under Windows 95/98/NT

You can connect the PG/PC to the PLC using the following components:

• CP 5611 PCI Card

• CP 5511/CP 5512 PCMCIA Card

• MPI-ISA Card or MPI-ISA on Board (Simatic PG, PC RI45,25,FI25)

• COM 1/2 via PC Adapter

PC S7-300/400/M7/C7

MPI-ISA MPI interface CP5511/5512/5611 S7-200 PPI interface

Installation and set-up of the required hardware is carried out via the STEP 7 tool
Setting the PG/PC interface, which is available in the control panel after
successful installation.

PRODAVE MPI V6.0
A5E00417150-01 3-1

3 Operation

3.1 Installing PRODAVE MPI V6.0

3.1.1 Installing PRODAVE MPI V6.0 under Windows
95/98/NT/ME/2000/XP

The installation of PRODAVE MPI V6.0 is carried out via a Windows installation
program (SETUP.EXE), which must be activated by the file manager under
Windows. After starting SETUP.EXE a destination path is offered for the
installation which may be changed by new input or via BROWSE. After specifying
the destination path the following installation components are offered:

• PRODAVE MPI V6.0 for Windows 95/98/NT/ME/2000/XPPRODAVE DLL and
demonstration program for Windows95/98/NT/ME/2000/XP. STEP7 Driver for
Windows 95/98/NT/ME/2000/XP

• Documentation.

Setup automatically generates an icon at the control panel to set up the used
interface under Windows 95/98/ME/NT/2000/XP.

The drivers to be used can be loaded, assigned parameters and linked into the
system by means of the STEP 7 tool Setting the PG/PC-interface
(S7EPATSX.EXE). After correct installation the drivers are automatically activated
every time Windows 95/98/NT/ME/2000/XP is started.

Operation

 PRODAVE MPI V6.0
3-2 A5E00417150-01

3.2 Scope of Supply of PRODAVE MPI V6.0

3.2.1 PRODAVE MPI V6.0 for Windows 95/98/NT/ME/2000/XP

The following PRODAVE components are available after a successful installation:

SIEMENS\PRODAVE_S7\INCLUDE\

W95_S7 .H = Headerfile für PRODAVE-DLL

KOMFORT .H = header file for enhanced DLL

W95_S7 .DEF = definition file for PRODAVE-DLL

KOMFORT .DEF = definition file for enhanced DLL

SIEMENS\PRODAVE_S7\LIB\

W95_S7 .LIB = import library for PRODAVE-DLL

KOMFORT .LIB = import library for enhanced DLL

SIEMENS\PRODAVE_S7\SAMPLE_VC\

DEMO .EXE = demonstration program

DEMO .DSP = Visual C project file

DEMO .C = source code demonstration program

ICON1 .ICO = 32 x 32 icon

DEMO .RC = resource code demonstration program

ERROR .DAT = file with German error texts

RESOURCE.H = header file demonstration program

SIEMENS\PRODAVE_S7\SAMPLE_VB\

VBDEMO .VBP = Visual Basic project file

ERROR .DAT = error text file

VBDEMO .EXE = demonstration program

VBDEMO .BAS = Function declarations for VB

VBDEMO .FRM = Forms

DBBUCH_FRM .FRM

ERROR .FRM FLAG .FRM

INFO .FRM

LOAD .FRM

READ_FRM .FRM

STATUS .FRM

TS_FRM .FRM

TSINFO_FRM .

FRM WRITE_FRM .FRM

\WINDOWS\SYSTEM32\

 Operation

PRODAVE MPI V6.0
A5E00417150-01 3-3

W95_S7 .DLL = PRODAVE DLL

KOMFORT .DLL = enhanced DLL

3.2.2 PRODAVE MPI V6.0 Mini for Windows 95/98/NT/ME/2000/XP

The following PRODAVE components are available after a successful installation:

SIEMENS\PRODAVE_S7_MINI\INCLUDE\

W95_S7M .H = header file for PRODAVE-DLL

KOMFORT .H = header file for enhanced DLL

W95_S7M .DEF = definition file for PRODAVE-DLL

KOMFORT .DEF = definition file for enhanced DLL

SIEMENS\PRODAVE_S7_MINI\LIB\

W95_S7M .LIB = import library for PRODAVE-DLL

KOMFORT .LIB = import library for enhanced DLL

SIEMENS\PRODAVE_S7_MINI\SAMPLE_VC_MINI\

DEMO .EXE = demonstration program

DEMO .DSP = Visual C project file

DEMO .C = source code demonstration program

ICON1 .ICO = 32 x 32 icon

DEMO .RC = resource code demonstration program

ERROR .DAT = file with German error texts

RESOURCE.H = header file demonstration program

SIEMENS\PRODAVE_S7_MINI\SAMPLE_VB_MINI\

VBDEMO .VBP = visual basic project file

ERROR .DAT = error text file

VBDEMO .EXE = demonstration program

VBDEMO .BAS = Function declarations for VB

VBDEMO .FRM = Forms

ERROR .FRM

INFO .FRM
LOAD .FRM
READ_FRM .FRM
STATUS .FRM
WRITE_FRM .FRM

\WINDOWS\SYSTEM32

W95_S7M .DLL = PRODAVE-DLL

KOMFORT .DLL = enhanced DLL

Operation

 PRODAVE MPI V6.0
3-4 A5E00417150-01

3.3 Working with PRODAVE

The user program is written in a programming language and the function calls are
used in the form listed in chapter "PRODAVE MPI V6.0 Functions".

3.3.1 Notes on S7-200

When creating a data link to S7-200 it is not allowed to have more than one
connection configured in the load_tool function.

The connection is initialized by means of the load_tool function. This is followed
by the user specific part, where you may only call the as200_...... functions from
the adapter (see also section "Basic Functions for Data Transfer to S7-200"). When
you want to end your program, it is required to de-initialize the connections by
means of the unload_tool function.

3.3.2 Notes on S7-300/400

The obligatory start of each user program is the initialization of the connections by
calling the function load_tool. This is followed by the user specific part, where you
can call any amount of PRODAVE functions (with the exception of the as200_....
functions) from the adapter. When you want to end your program, it is required to
de-initialize the connections by means of the unload_tool function.

When developing your program, the following points should be noted to
avoid data loss or a system crash:

• Prior to leaving the program, the connections must be de-initialized by calling
the adapter function unload_tool!

• When reading data from the PLC, the fields into which data is to be transferred,
must be big enough to receive this data as the adapter does not carry out a
field check!

• The error text file must be located in the same directory as the developed
program as otherwise the adapter will not be able to read the error texts!

• In order to avoid a repeated "check if it exists" of the error text file, you can call
the function error_message at the start of the program to enable you to output
an appropriate message in the event of an error. The error text file is loaded
when calling this function for the first time.

 Operation

PRODAVE MPI V6.0
A5E00417150-01 3-5

3.4 Differences between S5 and S7

The main difference between S5-PLCs and S7-PLCs is the management of data
blocks. S5 data blocks are processed word by word, whereas the S7 data blocks
are processed byte by byte.

 S5
bit 15 .. bit 0

 S7
bit 7 ..0 bit 7 ..0

DW 0

DW 1

DW 2

DW 3

...

DW 0 DW 1

DW 2 DW 3

DW 4 DW 5

DW 6 DW 7

... ...

= DW 0

= DW 2

= DW 4

= DW 6

...

When using the d_field_read function, the data block is accessed byte by byte
such as, for instance, applies to the flag area.

When you read 3 data words using the db_read function, the PLC transfers DBW0
- DBW5. I.e. three 16bit words are available for processing in the PG/PC, which the
PLC addresses via DBW0, DBW2 and DBW4, by the PG/PC, however, they are
addressed via DW0, DW1 and DW2.

In order to avoid confusion in the data management, we recommend to have the
PLC process the data block symbolically via type allocation in the following form:

Operation

 PRODAVE MPI V6.0
3-6 A5E00417150-01

Type Declaration in Symbol List:

Block: DB10 DB_10

Address Variable File Type Start Value Comment

STRUCT

DW ARRAY[0 .. 255]

WORD

 END STRUCT

Example for accessing the variable in the PLC:

L "DB_10".DW[2]

T MW10

or

L MW10

T "DB_10".DW[2]

 Operation

PRODAVE MPI V6.0
A5E00417150-01 3-7

3.5 Linking to Standard Tools

3.5.1 PRODAVE under Delphi (32-Bit) Example

To enable you to use the PRODAVE functions under Delphi, they must be declared
as follows:

function Load_tool (no:Byte;

name: {pointer} PChar;
adr:{pointer} PChar): longint;

stdcall;
external ´w95_s7.dll´ name ´load_tool´;

function DB_read (dbno: longint;

dwno: longint;
var amount: longint;
var buffer): longint

stdcall;
external ´ w95_s7.dll´ name ´db_read´;

function Unload_tool: longint;
stdcall;
external ´ w95_s7.dll´ name ´unload_tool´;

Example:

var

plc_adr_table : array [0..15] of byte;
name:array[0..255] of char;
res ,amount: longint;
buffer : array[0..255] of word;

plc_adr_table[0] := 2; {address}
plc_adr_table[1] := 0; {segment id}
plc_adr_table[2] := 2; {slot no}
plc_adr_table[3] := 0; {rack no}
plc_adr_table[4] := 0;
strcopy(name,'S7ONLINE');
res := Load_tool(1,addr(name),addr(plc_adr_table[0]));
res := DB_read(10,0,amount,buffer);
res := Unload_tool;

Operation

 PRODAVE MPI V6.0
3-8 A5E00417150-01

3.5.2 PRODAVE under Access (32-Bit) Example

To enable you to use the PRODAVE functions under Access, they must be
declared as follows:

Declare Function load_tool Lib " w95_s7" (ByVal no As Byte, ByVal name As
String, ByVal adr As String) As Long

Declare Function db_read Lib " w95_s7" (ByVal dbno As Long, ByVal dwno As
Long, amount As Long, buffer As Integer) As Long

Declare Function unload_tool Lib " w95_s7" () As Long

Example:

Dim dbno As Long, dwno As Long, amount As Long Dim buffer(50) As Integer Dim
plc_adr_table As String

res = load_tool 1, "S7ONLINE", plc_adr_table res = db_read dbno, dwno, amount,
buffer(0) res = unload_tool

3.5.3 PRODAVE under Visual Basic (32-Bit) Example

To enable you to use the PRODAVE functions under Visual Basic, they must be
declared as follows:

Declare Function load_tool Lib " w95_s7.dll" (ByVal nr As Byte, ByVal dev As
String, adr As plcadrtype) As Long

Declare Function db_read Lib " w95_s7.dll" (ByVal dbno As Long, ByVal dwno As
Long, amount As Long, buffer%) As Long

Declare Function unload_tool Lib " w95_s7.dll" () As Long

Example:

Dim dbno As Long, dwno As Long, amount As Long Dim buffer(50) As Integer

Type plcadrtype adr As Byte SEGMENTID As Byte SLOTNO As Byte RACKNO As
Byte

End Type

Dim plcadr (5) As plcadrtype

plcadr(0).adr = 2 plcadr(0).SEGMENTID = 0 plcadr(0).SLOTNO = 2
plcadr(0).RACKNO = 0 plcadr(1).adr = 0

res = load_tool (1, "S7ONLINE", plcadr) res = db_read (dbno, dwno, amount,
buffer(0)) res = unload_tool()

PRODAVE MPI V6.0
A5E00417150-01 4-1

4 PRODAVE MPI V6.0 Functions

PRODAVE MPI
V6.0

PRODAVE MPI
Mini V6.0

New Function Name in
V6.0

Version

up to V5.6 up to V5.6

W95_S7. DLL W95_S7M.DLL Library

KOMFORT.DLL KOMFORT.DLL

W95_S7. H W95_S7M.H Header

KOMFORT.H KOMFORT.H

Basic Functions

load_tool: MPI/Profibus x x LoadConnection_ex6

unload_tool: MPI/Profibus or ISO
protocol

x x UnloadConnection_ex6

new_ss: MPI/Profibus or ISO protocol x x SetActiveConnection_ex6

Functions for data communication traffic to the S7 300/400

ag_info x x as_info_ex6

ag_zustand x as_zustand_ex6

db_buch x db_buch_ex6

db_read x x db_read_ex6

d_field_read x

e_field_read x

a_field_read x

m_field_read x

t_field_read x

z_field_read x

mix_read x

field_read_ex6

db_write x x db_write_ex6

d_field_write x

a_field_write x

m_field_write x

z_field_write x

mix_write x

field_write_ex6

mb_setbit x

mb_resetbit x

mb_setbit_ex6

mb_bittest x mb_bittest_ex6

Functions for data communication traffic to the S7 200

as200_ag_info x x as200_as_info_ex6

as200_ag_zustand x as200_as_zustand_ex6

as200_e_field_read x

as200_a_field_read x

as200_field_read_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-2 A5E00417150-01

as200_m_field_read x

as200_sm_field_read x

as200_vs_field_read x x

as200_t_field_read x

as200_z_field_read x

as200_mix_read x

as200_a_field_write x

as200_m_field_write x

as200_sm_field_write x

as200_vs_field_write x x

as200_z_field_write x

as200_mix_write x

as200_field_write_ex6

as200_mb_setbit x

as200_mb_resetbit x

as200_mb_setbit_ex6

as200_mb_bittest x as200_mb_bittest_ex6

Comfort Functions

error_message x x GetErrorMessage_ex6

kg_to_float x x kg_2_float_ex6

float_to_kg x x float_2_kg_ex6

gp_to_float x x gp_2_float_ex6

float_to_gp x x float_2_gp_ex6

testbit x x testbit_ex6

byte_boolean x x byte_2_bool_ex6

boolean_byte x x bool_2_byte_ex6

kf_integer x x kf_2_integer_ex6

swab_buffer *2 x x swab_buffer_ex6

copy_buffer *2 x x copy_buffer_ex6

USHORT_2_bcd *2 x x ushort_2_bcd_ex6

bcd_2_USHORT *2 x x bcd_2_ushort_ex6

Teleservice Functions

ts_dial x ts_dial_ex6

ts_hang_up_dial x ts_hang_up_dial_ex6

ts_set_ringindicator x ts_set_ringindicator_ex6

ts_read_info x ts_read_info_ex6

ts_hang_up_ring x ts_hang_up_ring_ex6

ts_get_modem_name *2 x ts_get_modem_name_ex6

*2 These functions are not described in the PRODAVE S7 V5.6 documentation !

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-3

4.1 Basic Functions

4.1.1 load_tool

This function initializes the adapter, checks if the driver is loaded, initializes the
configured addresses and switches the selected interface to active.

With load_tool the transport connection is established via MPI/PB addresses.

int load_tool (char chConNo, char* pstrAccessPoint, char* pConTable);

Parameters

chConNo

[in] Number of the connection

pstrAccessPoint

[in] Access point (zero-terminated) of the used driver, e.g. "S7ONLINE" for the MPI
driver or 0 (default).

pConTable

[in] pointer to address list of connected users. ‘cAdr ==0’ is taken as the end mark
of the list.

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-4 A5E00417150-01

Call Example

A maximum of 32 connections can be established using the AS300/400.

Only one connection can be established using the AS200.

Structure of the address lists:

#pragma pack(1)

typedef struct {

unsigned char cAdr; // station address

unsigned char cSegmentId; // segment ID

unsigned char cSlotNo; // slot number

unsigned char cRackNo; // rack number

} adr_table_type;

#pragma pack(1)

Each user is specified with the entry in the address list:

cAdr Station address of the user, default: 2

cSegmentId Segment ID of the user, default: 0 (reserved for later
expansions)

cSlotNo Slot number of the user, default: 1

cRackNo Rack number of the user, default: 0

Requirements

 V5.6 load_tool,
load_tool_ex

V6.0 LoadConnection_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

unload_tool, new_ss, LoadConnection_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-5

4.1.2 unload_tool

This function deinitializes the connections and the adapter and must be called prior
to leaving the application.

unload_tool deinitializes connections which were initialized with load_tool.

int unload_tool (void);

Parameters

None

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

Requirements

 V5.6 unload_tool V6.0
UnloadConnection_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

load_tool, new_ss, UnloadConnection_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-6 A5E00417150-01

4.1.3 new_ss

The function new_ss activates the connection of the PG/PC, which is to be used
for the data exchange.

The description of the connections and/or parties is transferred with the load_tool
function.

int new_ss (char chConNo);

Parameters

chConNo

[in] Number of the connection to be activated.

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

Requirements

 V5.6 new_ss V6.0
SetActiveConnection_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

load_tool, unload_tool, SetActiveConnection_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-7

4.2 Functions for Data Communication Traffic to the S7
300/400

4.2.1 ag_info

The function ag_info reads the PLC software version and the PG interface version
as well as the MLFB number of the PLC and stores them in a transfer buffer of the
PG/PC as an ASCII string zero-terminated.

int ag_info (void * Buffer);

Parameters

Buffer

[out] Transfer buffer with the PLC information to be supplied

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned short * wBuffer = (unsigned short
*)Buffer;

// Word by word access

The versions must be interpreted as integer values, the MLFB numbers as ASCII values.

wBuffer[0] Integer value PLC version

wBuffer[2] Integer value PGAS version

Buffer[4] ...Buffer[24] ASCII value MLFB of the connected PLC

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-8 A5E00417150-01

Requirements

 V5.6 ag_info V6.0 as_info_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

ag_zustand, as_info_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-9

4.2.2 ag_zustand

The function ag_zustand reads the PLC status (RUN or STOP) from the PLC and
stores the data in a storage area of the PG/PC.

int ag_zustand (void * Buffer);

Parameters

Buffer

[out] Transfer buffer with the PLC status to be supplied

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned char * cBuffer = (unsigned char *)Buffer; // Byte-by-byte unsigned
 access

cBuffer[0] == 0 PLC is in RUN mode

cBuffer[0] != 0 PLC is in STOP or in STARTUP mode

Requirements

 V5.6 ag_zustand V6.0 as_zustand_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

ag_info, as_zustand_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-10 A5E00417150-01

4.2.3 db_buch

The function db_buch checks which DBs exist in the PLC. For this purpose a
transfer buffer of 512 words must be made available, for each block one word. If
the value in the referenced buffer is = 0 this means that the assigned block DB
does not exist.

int db_buch (void * Buffer);

Parameters

Buffer

[out] transfer buffer with the DB list to be supplied

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned short * wBuffer = (unsigned short *)Buffer; // Word by word
access

wBuffer[0] != 0 DB0 exists

wBuffer[24] == 0 DB24 does not exist

wBuffer[511] != 0 DB511 exists

Requirements

 V5.6 db_buch V6.0 db_buch_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

db_buch_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-11

4.2.4 db_read

The function db_read reads an amount of data words from a data block in the PLC
and transfers them into a transfer buffer of the PG/PC.

With db_read it is possible to read out data words word-by-word (pnAnzahl = 1) or
block-by-block (pnAnzahl > 1).

int db_read (int nBstNo, int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nBstNo

[in] Number of the data block

nStartNo

[in] Start number of the first data word to be read

pnAnzahl

[in/out] Amount of data words to be read

Buffer

[out] Transfer buffer for the data words which were read

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

If the data block does not exist, this is indicated by a return value = error number.

If the data which is being read exceeds the amount available in the data block, the
contents of pnAnzahl is corrected and error message 303 hex is returned.

Call Example

char Buffer[MAX_BUFFER];

unsigned short * wBuffer = (unsigned short *)Buffer; // Word by word
access

Attention: The data words are stored in the "buffer" not in accordance with Intel
notation (low byte - high byte) but in STEP5 notation (high byte - low byte). This is
important if the data is processed further. The functions kf_integer and
swab_buffer can be used to swap bytes.

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-12 A5E00417150-01

Requirements

 V5.6 db_read V6.0 db_read_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

db_write, kf_integer, swab_buffer, db_read_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-13

4.2.5 d_field_read

The function d_field_read reads an amount of data bytes from a data block in the
PLC and transfers them in the transfer buffer of the PG/PC.

int d_field_read (int nBstNo, int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nBstNo

[in] Number of the data block

nStartNo

[in] Start number of the first data byte to be read

pnAnzahl

[in/out] Amount of data bytes to be read

Buffer

[out] Transfer buffer for the data bytes which were read

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned char * cBuffer = (unsigned char *)Buffer; // byte-by-byte unsigned
 access

Requirements

 V5.6 d_field_read V6.0 field_read_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

e|a|m_field_read, t|z_field_read, field_read_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-14 A5E00417150-01

4.2.6 e|a|m_field_read

These functions read an amount of bytes from the PLC and transfer them to a
transfer buffer of the PG/PC.

Wtih e_field_read input bytes can be read.

With a_field_read output bytes can be read.

With m_field_read flag bytes can be read.

int e_field_read (int nStartNo, int * pnAnzahl, void * Buffer);

int a_field_read (int nStartNo, int * pnAnzahl, void * Buffer);

int m_field_read (int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nStartNo

[in] Start number of the first byte to be read

pnAnzahl

[in/out] Amount of bytes to be read

Buffer

[out] Transfer buffer for the bytes which were read

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned char * cBuffer = (unsigned char *)Buffer; // byte-by-byte unsigned
 access

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-15

Requirements

 V5.6 e_field_read, … V6.0 field_read_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

d_field_read, t|z_field_read, field_read_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-16 A5E00417150-01

4.2.7 t|z_field_read

These functions read an amount of words from the PLC and transfer them to a
transfer buffer of the PG/PC.

With t_field_read timer words can be read.

With z_field_read counter words can be read.

int t_field_read (int nStartNo, int * pnAnzahl, void * Buffer);

int z_field_read (int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nStartNo

[in] Start number of the first word to be read

pnAnzahl

[in/out] Amount of words to be read

Buffer

[out] Transfer buffer for the words which were read

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned short * wBuffer = (unsigned short *)Buffer; // Word by word
access

Requirements

 V5.6 t_field_read V6.0 field_read_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

d|e|a|m_field_read, field_read_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-17

4.2.8 mix_read

The function mix_read reads the data configured with "data" from a data block in
the PLC and transfers them to a transfer buffer of the PG/PC.

With mix_read, "Size" can be a byte or a word.

int mix_read (char * pData, void * Buffer);

Parameters

pData

[in] Pointer on a type list. Type element contents == 0 is taken as the end mark of

the list.

Buffer

[out] Transfer buffer for the data bytes/words/ double words which were read

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

This function enables the user to read mixed data. A maximum of 20 list items can
be created. The type list can be accessed via a structure:

#pragma pack(1)

 typedef struct {

 unsigned char Typ;

 unsigned char Size;

 unsigned short nBstNo;

 unsigned short nDatNo;

 } mix_tab_type;

#pragma pack(1)

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-18 A5E00417150-01

Typ

The following data can be read (small or large ASCII characters)

e input bytes

a output bytes

m flag bytes

t timer words

z counter words

d data from DB

Size

The data to be read can have the following data types (small or large ASCII
characters):

b,w byte or word for the input bytes

b,w byte or word for the output bytes

b,w byte or word for the flag bytes

w word for the timer words

w word for the counter words

nBstNo

Number of the data block

nDatNo

Number of the data byte/word/double word to be read

For Typ m, t and z 0 ... 255

For Typ d 0 ... 4090

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-19

"data" must have the following structure:

Size = ’b’ read byte and enter it into the buffer

Size = ’w’ read word and enter it into the buffer

The read values are entered in sequence in the buffer. I.e. the user himself must
carry out structured processing of the field occupied with the read values:

char Buffer[MAX_BUFFER];

unsigned char * cBuffer = (unsigned char *)Buffer; // Byte-by-byte unsigned
 access

unsigned short * wBuffer = (unsigned short *)Buffer; // Word-by-word access

Attention: The data words are stored in the "buffer" not in accordance with Intel
notation (low byte - high byte) but in STEP5 notation (high byte - low byte). This is
important if the data is processed further. The functions kf_integer and
swab_buffer can be used to swap bytes.

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-20 A5E00417150-01

Requirements

 V5.6 mix_read V6.0 field_read_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

mix_write, kf_integer, swab_buffer, field_read_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-21

4.2.9 db_write

The function db_write writes an amount of data words from a transfer buffer of the
PG/PC into a data block of the PLC.

It is possible to read out data words word-by-word (pnAnzahl = 1) or block-by-block
(pnAnzahl > 1) with db_write.

int db_ write (int nBstNo, int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nBstNo

[in] Number of the data block

nStartNo

[in] Start number of the first data word to be written

pnAnzahl

[in/out] Amount of data words to be written

Buffer

[in] Transfer buffer for the data words to be written

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

If the data block does not exist, this is indicated by a return value = error number.

Call Example

char Buffer[MAX_BUFFER];

unsigned short * wBuffer = (unsigned short *)Buffer; // Word by word access

Attention: The data words must be stored in the "buffer" not in accordance with
Intel notation (low byte - high byte) but in STEP5 notation (high byte - low byte)
when writing to a data block. The functions kf_integer and swab_buffer can be
used to swap bytes.

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-22 A5E00417150-01

Requirements

 V5.6 db_write V6.0 db_write_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

db_read, kf_integer, swab_buffer, db_write_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-23

4.2.10 d_field_write

The function d_field_write writes an amount of data bytes from a transfer buffer of
the PG/PC into a data block of the PLC.

int d_field_write (int nBstNo, int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nBstNo

[in] Number of the data block

nStartNo

[in] Start number of the first data byte to be written

pnAnzahl

[in/out] Amount of data bytes to be written

Buffer

[in] Transfer buffer for the data bytes to be written

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned char * cBuffer = (unsigned char *)Buffer; // byte-by-byte unsigned
 access

Requirements

 V5.6 d_field_write V6.0 field_write_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

e|a|m_field_write, z_field_write, field_write_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-24 A5E00417150-01

4.2.11 a|m_field_write

The functions write an amount of bytes from a transfer buffer of the PG/PC into the
PLC.

With a_field_write output bytes can be written.

With m_field_write flag bytes can be written.

int a_field_ write (int nStartNo, int * pnAnzahl, void * Buffer);

int m_field_ write (int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nStartNo

[in] Start number of the first byte to be written

pnAnzahl

[in/out] Amount of bytes to be written

Buffer

[out] Transfer buffer for the bytes which were written

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned char * cBuffer = (unsigned char *)Buffer; // byte-by-byte unsigned
 access

Requirements

 V5.6 a_field_write, … V6.0 field_write_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

d_field_write, z_field_write, field_write_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-25

4.2.12 z_field_write

The function z_field_write writes an amount of counter words from a transfer
buffer of the PG/PC into the PLC.

int z_field_ write (int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nStartNo

[in] Start number of the first counter word to be written

pnAnzahl

[in/out] Amount of counter words to be written

Buffer

[out] Transfer buffer for the counter words to be written

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned short * wBuffer = (unsigned short *)Buffer; // Word-by-word access

Requirements

 V5.6 z_field_write V6.0 field_write_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

d|a|m_field_write, field_write_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-26 A5E00417150-01

4.2.13 mix_write

The function mix_write writes the data configured with "data" from a transfer buffer
of the PG/PC into a data block of the PLC.

With mix_write, "Size" can be a byte or a word.

int mix_ write (char * pData, void * Buffer);

Parameters

pData

[in] Pointer on a type list. Type element contents == 0 is taken as the end mark of

the list.

Buffer

[out] Transfer buffer for the data bytes/words/ double words to be written

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

This function enables the user to write mixed data. A maximum of 20 list entries
can be created. The type list can be accessed via a structure:

#pragma pack(1)

typedef struct {

unsigned char Typ;

unsigned char Size;

unsigned short nBstNo;

unsigned short nDatNo;

 } mix_tab_type;

#pragma pack(1)

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-27

Typ

The following data can be written (small or large ASCII characters):

e/E input bytes

a/A output bytes

m/M flag bytes

t/T timer words

z/Z counter words

d/D Daten in DB

Size

The data to be written can have the following data types (small or large ASCII
characters):

b,w byte or word for the input bytes

b,w byte or word for the output bytes

b,w byte or word for the flag bytes

w word for the timer words

w word for the counter words

nBstNo

Number of the data block

nDatNo

Number of the data byte/word/double word to be written

For Typ m, t and z 0 ... 255

For Typ d 0 ... 4090

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-28 A5E00417150-01

"data" must have the following structure:

Size = ’b’ Enter byte in buffer

Size = ’w’ Enter word in buffer

The values to be written have to be entered in sequence in the buffer:

char Buffer[MAX_BUFFER];

unsigned char * cBuffer = (unsigned char *)Buffer; // Byte-by-byte unsigned
 access

unsigned short * wBuffer = (unsigned short *)Buffer; // Word-by-word access

unsigned long * dwBuffer = (unsigned long *)Buffer; // Double word-by-word
access

Attention: The data words must be stored in the "buffer" not in accordance with
Intel notation (low byte - high byte) but in STEP5 notation (high byte - low byte)
when writing to a data block. The functions kf_integer and swab_buffer can be
used to swap bytes.

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-29

Requirements

 V5.6 mix_write V6.0 field_write_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

mix_read, kf_integer, swab_buffer, field_write_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-30 A5E00417150-01

4.2.14 mb_setbit

Fhe function mb_setbit sets a flag in the PLC to 1. It is not checked whether the
flag bit exists in the used PLC.

int mb_setbit (int nMbNo, int nBitNo);

Parameters

nMbNo

[in] number of the flag byte

nBitNo

[in] bit number in the flag byte

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

Requirements

 V5.6 mb_setbit V6.0 mb_setbit_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

mb_resetbit, mb_bittest, mb_setbit_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-31

4.2.15 mb_resetbit

The function mb_resetbit sets a flag in the PLC to 0. It is not checked whether the
flag bit exists in the used PLC.

int mb_resetbit (int nMbNo, int nBitNo);

Parameters

nMbNo

[in] number of the flag byte

nBitNo

[in] bit number in the flag byte

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

Requirements

 V5.6 mb_resetbit V6.0 mb_setbit_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

mb_setbit, mb_bittest, mb_setbit_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-32 A5E00417150-01

4.2.16 mb_bittest

The function mb_bittest checks a bit in a specified flag byte and supplies the
status of the specified bit in *bitwert.

int mb_bittest (int nMbNo, int nBitNo, char * bitwert);

Parameters

nMbNo

[in] Number of the flag byte

nBitNo

[in] Bit number in the flag byte

bitwert

[out] Transfer buffer with the tested bit value

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

Requirements

 V5.6 mb_bittest V6.0 mb_bittest_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

mb_setbit, mb_resetbit, mb_bittest_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-33

4.3 Functions for Data Communication Traffic to the S7 200

4.3.1 as200_ag_info

The function as200_ag_info reads the PLC software version and the PG interface
version as well as the PLC type of the PLC and stores them in a transfer buffer of
the PG/PC as an ASCII string zero-terminated.

int as200_ag_info (void * Buffer);

Parameters

Buffer

[out] Transfer buffer with the PLC information to be supplied

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned short * wBuffer = (unsigned short *)Buffer; // Word by word access

The versions must be interpreted as integer values, the MLFB numbers as ASCII
values.

wBuffer[0] Integer value PLC version

wBuffer[2] Integer value PGAS version

Buffer[4] ...Buffer[24] ASCII value PLC type of the connected PLC

Requirements

 V5.6 as200_ag_info V6.0 as200_as_info_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

as200_ag_zustand, as200_as_info_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-34 A5E00417150-01

4.3.2 as200_ag_zustand

The function as200_ag_zustand reads the PLC status (RUN or STOP) from the
PLC and stores the data in a storage area of the PG/PC.

int as200_ag_zustand (void * Buffer);

Parameters

Buffer

[out] Transfer buffer with the PLC status to be supplied

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned char * cBuffer = (unsigned char *)Buffer; // byte-by-byte unsigned
 access

cBuffer[0] == 0 PLC is in RUN mode

cBuffer[0] != 0 PLC is in STOP or in STARTUP mode

Requirements

 V5.6 as200_ag_zustand V6.0
as200_as_zustand_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

as200_ag_info, as200_as_zustand_ex6

4.3.3 as200_e|a|m|sm|vs_field_read

These functions read an amount of bytes from the PLC and transfer them to a
transfer buffer of the PG/PC.

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-35

With as200_e_field_read input bytes can be read.

With as200_a_field_read output bytes can be read.

With as200_m_field_read flag bytes can be read.

With as200_sm_field_read special flag bytes can be read.

With as200_vs_field_read variable memory bytes can be read.

int as200_e_field_read (int nStartNo, int * pnAnzahl, void * Buffer);

int as200_a_field_read (int nStartNo, int * pnAnzahl, void * Buffer);

int as200_m_field_read (int nStartNo, int * pnAnzahl, void * Buffer);

int as200_sm_field_read (int nStartNo, int * pnAnzahl, void * Buffer);

int as200_vs_field_read (int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nStartNo

[in] Start number of the first byte to be read

pnAnzahl

[in/out] Amount of bytes to be read

Buffer

[out] Transfer buffer for the bytes which were read

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned char * cBuffer = (unsigned char *)Buffer; // byte-by-byte unsigned
 access

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-36 A5E00417150-01

Requirements

 V5.6 as200_e_field_read,
…

V6.0 as200_field_read_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

as200_t|z_field_read, as200_mix_read, as200_field_read_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-37

4.3.4 as200_t_field_read

The function as200_t_field_read reads an amount of timer values from PLC and
transfers them to a transfer buffer of the PG/PC.

int as200_t_field_read (int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nStartNo

[in] Start number of the first timer value to be read

pnAnzahl

[in/out] Amount of timer values to be read

Buffer

[out] Transfer buffer for the timer values which were read

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

5 bytes are received per timer value, and only 2 bytes contain the requested value.

In the following example the timer values 0 and 1 are read:

char Buffer[MAX_BUFFER];

unsigned short T0, T1; // Timer word

int error;

error = as200_t_field_read((int)0, (int)2, Buffer);

T0 = (unsigned short)Buffer[4] | (unsigned
short)Buffer[3] << 8;

T1 = (unsigned short)Buffer[9] | (unsigned
short)Buffer[8] << 8;

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-38 A5E00417150-01

Requirements

 V5.6 as200_t_field_read V6.0 as200_field_read_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

as200_e|a|m|sm|vs_field_read, as200_z_field_read, as200_mix_read,
as200_field_read_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-39

4.3.5 as200_z_field_read

The function as200_z_field_read reads an amount of counter values from PLC
and transfers them to a transfer buffer of the PG/PC.

int z_field_read (int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nStartNo

[in] Start number of the first counter value to be read

pnAnzahl

[in/out] Amount of counter values to be read

Buffer

[out] Transfer buffer for the counter values which were read

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

3 bytes are received per counter value, and only 2 bytes contain the requested
value.

In the following example the counter values 3 and 4 are read:

char Buffer[MAX_BUFFER];

unsigned short Z3, Z4; // counter word

int error;

error = as200_z_field_read((int)3, (int)2, Buffer);

Z3 = (unsigned short)Buffer[2] | (unsigned
short)Buffer[1] << 8;

Z4 = (unsigned short)Buffer[5] | (unsigned
short)Buffer[4] << 8;

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-40 A5E00417150-01

Requirements

 V5.6 as200_z_field_read V6.0 as200_field_read_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

as200_e|a|m|sm|vs_field_read, as200_t_field_read, as200_mix_read,
as200_field_read_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-41

4.3.6 as200_mix_read

The function as200_mix_read reads the data configured with "data" from a data
block in the PLC and transfers them to a transfer buffer of the PG/PC.

int as200_mix_read (char * pData, void * Buffer);

Parameters

pData

[in] Pointer on a type list. Type element contents == 0 is taken as the end mark of

the list.

Buffer

[out] Transfer buffer for the data bytes which were read

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

This function enables the user to read mixed data. A maximum of 20 list entries
can be created. The type list can be accessed via a structure:

#pragma pack(1)

typedef struct {

unsigned char Typ;

unsigned char Size;

unsigned short nBstNo;

unsigned short nDatNo;

 } mix_tab_type;

#pragma pack(1)

Typ

The following data can be read (small or large ASCII characters)

e input bytes

a output bytes

m flag bytes

v variable memory words

s special flag bytes

Size

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-42 A5E00417150-01

For all data to be read the data type must be byte (small or large ASCII
characters):

b Byte for all data

nBstNo

Number of the data block

nDatNo

Number of the data byte to be read

"data" must have the following structure:

Size = ’b’ read byte and enter it into the buffer

The read values are entered in sequence in the buffer. I.e. the user himself must
carry out structured processing of the field occupied with the read values:

char Buffer[MAX_BUFFER];

unsigned char * cBuffer = (unsigned char *)Buffer; // byte-by-byte unsigned
 access

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-43

Attention: The data words are stored in the "buffer" not in accordance with Intel
notation (low byte - high byte) but in STEP5 notation (high byte - low byte). This is
important if the data is processed further. The functions kf_integer and
swab_buffer can be used to swap bytes.

Requirements

 V5.6 as200_mix_read V6.0 as200_field_read_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

as200_mix_write, kf_integer, swab_buffer, as200_field_read_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-44 A5E00417150-01

4.3.7 as200_a|m|sm|vs_field_write

The functions write an amount of bytes from a transfer buffer of the PG/PC into the
PLC.

With as200_a_field_write output bytes can be written.

With as200_m_field_write flag bytes can be written.

With as200_sm_field_write special flag bytes can be written.

With as200_vs_field_write variable memory bytes can be written.

int as200_a_field_write (int nStartNo, int * pnAnzahl, void * Buffer);

int as200_m_field_write (int nStartNo, int * pnAnzahl, void * Buffer);

int as200_sm_field_write (int nStartNo, int * pnAnzahl, void * Buffer);

int as200_vs_field_write (int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nStartNo

[in] Start number of the first byte to be written

pnAnzahl

[in/out] Amount of bytes to be written

Buffer

[out] Transfer buffer for the bytes which were written

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

char Buffer[MAX_BUFFER];

unsigned char * cBuffer = (unsigned char *)Buffer; // byte-by-byte unsigned
 access

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-45

Requirements

 V5.6 as200_e_field_write,
…

V6.0 as200_field_write_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

as200_z_field_write, as200_mix_write, as200_field_write_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-46 A5E00417150-01

4.3.8 as200_z_field_write

The function as200_z_field_write writes an amount of counter values from a
transfer buffer of the PG/PC into the PLC.

int as200_z_field_write (int nStartNo, int * pnAnzahl, void * Buffer);

Parameters

nStartNo

[in] Start number of the first counter value to be written

pnAnzahl

[in/out] Amount of counter values to be written

Buffer

[out] Transfer buffer for the counter values to be written

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

3 bytes are sent per counter value, and only 2 bytes contain the specified value.

Requirements

 V5.6 as200_z_field_write V6.0 as200_field_write

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

as200_a|m|sm|vs_field_write, as200_mix_write, as200_field_write_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-47

4.3.9 as200_mix_write

The function as200_mix_write writes the data configured with "data" from a
transfer buffer of the PG/PC into a data block in the PLC.

int as200_mix_write (char * pData, void * Buffer);

Parameters

pData

[in] Pointer on a type list. Type element contents == 0 is taken as the end mark of

the list.

Buffer

[out] Transfer buffer for the data bytes which were written

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

This function enables the user to write mixed data. A maximum of 20 list entries
can be created. The type list can be accessed via a structure:

#pragma pack(1)

typedef struct {

unsigned char Typ;

unsigned char Size;

unsigned short nBstNo;

unsigned short nDatNo;

 } mix_tab_type;

#pragma pack(1)

Typ

The following data can be written (small or large ASCII characters):

e input bytes

a output bytes

m flag bytes

v variable memory words

s special flag bytes

Size

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-48 A5E00417150-01

For all data to be written the data type must be byte (small or large ASCII
characters):

b Byte for all data

nBstNo

Number of the data block

nDatNo

Number of the data byte to be written

"data" must have the following structure:

Size = ’b’ write byte

The values to be written have to be entered in sequence into the buffer.

char Buffer[MAX_BUFFER];

unsigned char * cBuffer = (unsigned char *)Buffer; // byte-by-byte unsigned
 access

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-49

Attention: The data words are stored in the "buffer" not in accordance with Intel
notation (low byte - high byte) but in STEP5 notation (high byte - low byte). This is
important if the data is processed further. The functions kf_integer and
swab_buffer can be used to swap bytes.

Requirements

 V5.6 as200_mix_write V6.0 as200_field_write_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

as200_mix_read, kf_integer, swab_buffer, as200_field_write_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-50 A5E00417150-01

4.3.10 as200_mb_setbit

Fhe function as200_mb_setbit sets a flag in the PLC to 1. It is not checked
whether the flag bit exists in the used PLC.

int as200_mb_setbit (int nMbNo, int nBitNo);

Parameters

nMbNo

[in] number of the flag byte

nBitNo

[in] bit number in the flag byte

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

Requirements

 V5.6 as200_mb_setbit V6.0 as200_mb_setbit_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

as200_mb_resetbit, as200_mb_bittest, as200_mb_setbit_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-51

4.3.11 as200_mb_resetbit

The function as200_mb_resetbit sets a flag in the PLC to 0. It is not checked
whether the flag bit exists in the used PLC.

int as200_mb_resetbit (int nMbNo, int nBitNo);

Parameters

nMbNo

[in] number of the flag byte

nBitNo

[in] bit number in the flag byte

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

Requirements

 V5.6 as200_mb_resetbit V6.0 as200_mb_setbit_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

as200_mb_setbit, as200_mb_bittest, as200_mb_setbit_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-52 A5E00417150-01

4.3.12 as200_mb_bittest

The function as200_mb_bittest checks a bit in a specified flag byte and supplies
the status of the specified bit in *bitwert.

int as200_mb_bittest (int nMbNo, int nBitNo, char * bitwert);

Parameters

nMbNo

[in] Number of the flag byte

nBitNo

[in] Bit number in the flag byte

bitwert

[out] Transfer buffer with the tested bit value

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

Requirements

 V5.6 as200_mb_bittest V6.0 as200_mb_bittest_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

as200_mb_setbit, as200_mb_resetbit, as200_mb_bittest_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-53

4.4 Comfort Functions

4.4.1 error_message

The function error_message supplies the approprioate error text relating to an
error message in the form of a zero terminated character string.

int error_message (int nErrorNnr, char * Buffer);

Parameters

nErrorNnr

[in] Error number

Buffer

[out] Transfer buffer with the error texts

Return Values

If there were no errors, the function supplies 0 as the return value. If an error
occurred, the function supplies the following values:

• ERROR.DAT file does not exist or cannot be opened

• Error when reading the ERROR.DAT file

• Wrong structure of the ERROR.DAT file

• No error text exists for this error number

• Too many error texts in ERROR.DAT

Call Example

A maximum of 100 error texts can be stored in the ERROR.DAT file.

When transferring error number 0, the file name of the error text file to be loaded
can be transferred in "buffer" (for example, an English or German error text file). If
no valid file name was transferred or a ZERO pointer was transferred, the
ERROR.DAT file is read in the current directory. Therefore it must be ensured that
the ERROR.DAT file exists and is located in the same directory as the program.

The ERROR.DAT file is read when the function is first called and the texts are
stored in a field.

We recommend calling the error_message function shortly after program start by
means of error_no = 0 to load the ERROR.DAT file. This ensures almost constant
processing time for further calls of this function.

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-54 A5E00417150-01

Structure of the error text file

[Error number as ASCII hex]: [error text]

You can find the error texts in the appendix.

Requirements

 V5.6 error_message V6.0 GetErrorMessage_ex6

Windows: 95, ME, NT4, 2000, XP

Header: KOMFORT.H

Library: KOMFORT.DLL

See also:

GetErrorMessage_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-55

4.4.2 kg_to_float

The function kg_to_float converts an S5 floating point value to a value of the float
type (IEEE format).

int kg_to_float (void * kg, void * ieee);

Parameters

kg

[in] S5 floating point value

ieee

[out] Float value

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise 1.

Call Example

None

Requirements

 V5.6 kg_to_float V6.0 kg_2_float_ex6

Windows: 95, ME, NT4, 2000, XP

Header: KOMFORT.H

Library: KOMFORT.DLL

See also:

float_to_kg, kg_2_float_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-56 A5E00417150-01

4.4.3 float_to_kg

The function float_to_kg converts a value of the float type (IEEE format) to an S5
floating point value.

int float_to_kg (void * ieee, void * kg);

Parameters

ieee

[in] Float value

kg

[out] S5 floating point value

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise 1.

Call Example

None

Requirements

 V5.6 float_to_kg V6.0 float_2_kg_ex6

Windows: 95, ME, NT4, 2000, XP

Header: KOMFORT.H

Library: KOMFORT.DLL

See also:

kg_to_float, float_2_kg_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-57

4.4.4 gp_to_float

The function gp_to_float converts an S7 floating point value to a value of the float
type (IEEE format).

void gp_to_float (void * gp, void * ieee);

Parameters

gp

[in] S7 floating point value

ieee

[out] Float value

Return Values

None

Call Example

None

Requirements

 V5.6 gp_to_float V6.0 gp_2_float_ex6

Windows: 95, ME, NT4, 2000, XP

Header: KOMFORT.H

Library: KOMFORT.DLL

See also:

float_to_gp, gp_2_float_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-58 A5E00417150-01

4.4.5 float_to_gp

The function float_to_gp converts a value of the float type (IEEE format) to an S7
floating point value.

void float_to_gp (void * ieee, void * gp);

Parameters

ieee

[in] Float value

gp

[out] S7 floating point value

Return Values

None

Call Example

None

Requirements

 V5.6 float_to_gp V6.0 float_2_gp_ex6

Windows: 95, ME, NT4, 2000, XP

Header: KOMFORT.H

Library: KOMFORT.DLL

See also:

gp_to_float, float_2_gp_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-59

4.4.6 testbit

The function testbit checks whether a specified bit is set in a byte variable. The
byte variable and the bit number are transferred to the function in the form of
parameters.

char testbit (char Wert, char BitNo);

Parameters

Wert

[in] Value of the byte variable

BitNo

[in] Bit to be tested in the byte variable

Return Values

Return value TRUE (or 1): Bit is set (or 1)

Return value FALSE (or 1): Bit is not set (or 0)

Call Example

None

Requirements

 V5.6 testbit V6.0 testbit_ex6

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

See also:

testbit_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-60 A5E00417150-01

4.4.7 byte_boolean

The function byte_boolean converts a byte to eight logical values (PC display).

void byte_boolean (char Wert, char * Buffer);

Parameters

Wert

[in] Byte value

Buffer

[out] Pointer on buffer with eight converted logical values

Return Values

None

Call Example

The transferred pointer should point to a char field with the following structure:

Buffer[0] Buffer[1] Buffer[2] Buffer[3] Buffer[4] Buffer[5] Buffer[6] Buffer[7]

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

Requirements

 V5.6 byte_boolean V6.0 byte_2_bool_ex6

Windows: 95, ME, NT4, 2000, XP

Header: KOMFORT.H

Library: KOMFORT.DLL

See also:

boolean_byte, byte_2_bool_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-61

4.4.8 boolean_byte

The function boolean_byte converts eight logical values (PC display) to a byte.

char boolean_byte (char * Buffer);

Parameters

Buffer

[in] Pointer on buffer with eight logical values

Return Values

Converted byte value

Call Example

The transferred pointer should point to a char field with the following structure:

Buffer[0] Buffer[1] Buffer[2] Buffer[3] Buffer[4] Buffer[5] Buffer[6] Buffer[7]

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

Requirements

 V5.6 boolean_byte V6.0 bool_2_byte_ex6

Windows: 95, ME, NT4, 2000, XP

Header: KOMFORT.H

Library: KOMFORT.DLL

See also:

byte_boolean, bool_2_byte_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-62 A5E00417150-01

4.4.9 kf_integer

The function swaps the high byte and the low byte of a transferred value.

With kf_integer the high and low bytes of a 16-bit value are swapped.

unsigned short kf_integer (unsigned short wWert);

Parameters

wWert

[in] 16bit values

Return Values

kf_integer returns a 16-bit value with swapped bytes.

Call Example

None

Requirements

 V5.6 kf_integer V6.0 kf_2_integer_ex6

Windows: 95, ME, NT4, 2000, XP

Header: KOMFORT.H

Library: KOMFORT.DLL

See also:

swab_buffer, kf_2_integer_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-63

4.4.10 swab_buffer

The function swab_buffer swaps the high byte and the low byte of a transferred
buffer.

void swab_buffer (void * Buffer, int nAnzahl);

Parameters

Buffer

[in/out] Pointer on buffer in which the bytes are swapped

nAnzahl

[in] Amount of bytes to be swapped

Return Values

None

Call Example

Internally, the Standard C function void _swab(char * src, char * dest, int n) is
called.

Requirements

 V5.6 swab_buffer V6.0 swab_buffer_ex6

Windows: 95, ME, NT4, 2000, XP

Header: KOMFORT.H

Library: KOMFORT.DLL

See also:

kf_integer, copy_buffer, swab_buffer_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-64 A5E00417150-01

4.4.11 copy_buffer

The function copy_buffer copies an amount of bytes from one buffer to the other.

void copy_buffer (void * ZielBuffer, void * QuellBuffer, int nAnzahl);

Parameters

ZielBuffer

[in/out] Pointer on buffer in which the bytes are copied

QuellBuffer

[in] Pointer on buffer, from which the bytes are taken

nAnzahl

[in] Amount of bytes to be copied

Return Values

None

Call Example

Internally, the Standard C function void *memcpy(char * dest, char * src, size_t
count) is called.

Requirements

 V5.6 copy_buffer V6.0 copy_buffer_ex6

Windows: 95, ME, NT4, 2000, XP

Header: KOMFORT.H

Library: KOMFORT.DLL

See also:

swab_buffer, copy_buffer_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-65

4.4.12 USHORT_2_bcd

The functions are conversion routines that convert a number of binary values into
BCD values.

USHORT_2_bcd converts 16-bit values (words).

void USHORT_2_bcd (unsigned short * pwWerte, unsigned short wAnzahl,
char InBytechange, char OutBytechange);

Parameters

pwWerte

[in/out] Pointer on 16-bit dual values

wAnzahl

[in] Amount of values

InBytechange

[in] Boolean expression TRUE or FALSE

OutBytechange

[in] Boolean expression TRUE or FALSE

Return Values

If the parameter 'InBytechange' is set (1) then the high and low bytes will be
swapped before the conversion to BCD values. If however, the parameter
‘OutBytechange’ is set, the high and low bytes will be swapped after the
conversion.

If neither of the ByteChange arguments is set, then no high-low conversion will
take place.

After calling the function, pwWerte points to 16-bit BCD values.

Call Example

With this function you can, for example, set counters or provide time functions.

The available value range for 16-bit BCD values is +999 to -999.

Requirements

 V5.6 USHORT_2_bcd V6.0 ushort_2_bcd_ex6

Windows: 95, ME, NT4, 2000, XP

Header: KOMFORT.H

Library: KOMFORT.DLL

See also:

bcd_2_USHORT, ushort_2_bcd_ex6

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-66 A5E00417150-01

4.4.13 bcd_2_USHORT

The functions are conversion routines that convert a number of BCD values into
binary values.

bcd_2_ushort_ex6 converts 16-bit values (words).

void bcd_2_ USHORT (unsigned short * pwWerte, unsigned short wAnzahl,
char InBytechange, char OutBytechange);

Parameters

pwWerte

[in/out] Pointer on 16-bit BCD values

wAnzahl

[in] Amount of values

InBytechange

[in] Boolean expression TRUE or FALSE

OutBytechange

[in] Boolean expression TRUE or FALSE

Return Values

After calling the function, pwWerte points to 16-bit dual values.

Call Example

With this function you can, for example, set counters or provide time functions.

The available value range for 16-bit BCD values is +999 to -999.

Requirements

 V5.6 bcd_2_USHORT V6.0 bcd_2_ushort_ex6

Windows: 95, ME, NT4, 2000, XP

Header: KOMFORT.H

Library: KOMFORT.DLL

See also:

USHORT_2_bcd, bcd_2_ushort_ex6

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-67

4.5 Teleservice Functions

4.5.1 ts_dial

The function ts_dial dials a remote station via the modem and establishes the
connection to the TS-Adapter.

int ts_dial (char * cModemName, char * cStandort, char * cTelNo, char *
cUserName, char * cPassword, HANDLE WindowHandle, unsigned int
Message, WPARAM wParam, char * Res1);

Parameters

cModemName

[in] Name of the modem to be used, can be adjusted in Control Panel / Modems /
Dialing Rules.

cStandort

[in] Name of the modem location, can be adjusted in Control Panel / Modems /
Dialing Rules.

cTelNo

[in] Telephone number, which is dialled by the connected modem.

cUserName

[in] Here you specify the user name configured in the TS-Adapter to be called.

cPassword

[in] Here you specify the password configured in the TS-Adapter to be called.

WindowHandle

[in] Here you can transfer a window handle.

Message

[in] Message which is sent to the window when the connection has been
established or the timeout has elapsed.

wParam

[in] Parameters for the message.

Res1

[in] Reserved for later entries, must be set to NULL now.

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-68 A5E00417150-01

 Note

When function ts_dial is called asynchronously, no error number will be
generated in the event of error. In this case, inform the user and allow him/her to
decide whether the function should be called again or if more detailed error
information is required. For detailed information, please use synchronous call.

Call Example

None

Requirements

 V5.6 ts_dial

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-69

4.5.2 ts_hang_up_dial

The function ts_hang_up_dial interrupts the current connection or an
asynchronous dialling process currently running.

int ts_hang_up_dial (void);

Parameters

None

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

Requirements

 V5.6 ts_hang_up_dial

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-70 A5E00417150-01

4.5.3 ts_set_ringindicator

The function ts_set_ringindicator initializes the sub-ordinate system for receiving
calls, establishing the connection and reporting (ring indication).

int ts_set_ringindicator (char * cModemName, char * cNumberOfRings,
HANDLE WindowHandle, unsigned int Message, WPARAM wParam, char *
Res1);

Parameters

cModemName

[in] Name of the modem to be used for the ring indication, can be selected in
Control Panel / Modem.

cNumberOfRings

[in] Number of rings until the modem replies.

WindowHandle

[in] Here you can transfer a window handle.

Message

[in] Message which is sent to the window when the connection has been
established or the timeout has elapsed.

wParam

[in] Parameters for the message.

Res1

[in] Reserved for later entries, must be set to NULL now.

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-71

Requirements

 V5.6 ts_set_ringindicator

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-72 A5E00417150-01

4.5.4 ts_read_info

The function ts_read_info supplies informationen on the alarm triggering station.

int ts_read_info (void * IventId, unsigned char * MpiAdr);

Parameters

IventId

[in] Pointer to a field 16 bytes long. Here you can enter information on the alarm
triggering station.

MpiAdr

[in] Pointer to a byte. Here you can enter the MPI address of the alarm triggering
station.

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

Requirements

 V5.6 ts_read_info

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

 PRODAVE MPI V6.0 Functions

PRODAVE MPI V6.0
A5E00417150-01 4-73

4.5.5 ts_hang_up_ring

The function ts_hang_up_ring interrupts the connection established by the TS-
Adapter.

int ts_hang_up_ring (void);

Parameters

None

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

Requirements

 V5.6 ts_hang_up_ring

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

PRODAVE MPI V6.0 Functions

 PRODAVE MPI V6.0
4-74 A5E00417150-01

4.5.6 ts_get_modem_name

The function ts_get_modem_name supplies all modem names known to the
system.

int ts_get_modem_name (int ModemId, char * Buffer, int * BufferLen);

Parameters

ModemId

[in] Modem ID 0 ... n

Buffer

[out] Pointer to buffer for modem name

BufferLen

[in/out] Pointer to the buffer length; after the call it contains the real string length
with the modem name. Attention: BufferLen must be selected large enough for the
expected modem name before the function is called.

Return Values

If there were no errors, the function supplies 0 as the return value, otherwise an
error message which can be evaluated in accordance with the error table (see
error_message).

Call Example

None

Requirements

 V5.6 ts_get_modem_name

Windows: 95, ME, NT4, 2000, XP

Header: W95_S7.H, W95_S7M.H

Library: W95_S7.DLL,
W95_S7M.DLL

PRODAVE MPI V6.0
A5E00417150-01 5-1

5 Demonstration Programs

5.1 Demonstration Programs for the PC

After successful installation demonstration programs for the PC can be found
under the path

• ..\SIEMENS\PRODAVE_S7\..

• ..\SIEMENS\PRODAVE_S7_MINI\..

In accordance with these program examples we show in a clearly visible format
how the PRODAVE functions can be used. To ensure that the examples are not
overloaded we have realized only a few of the functions.

It is important to note that the two programs do not profess to be complete. They
merely serve to provide assistance when programming your application.

The demonstration programs operate on the principle that process data traffic to a
PLC is based on Address = 2 and Slot no = 2!

When connecting an S7-400 with double wide power supply module set Slot no =
3.

Calling the Demonstration Programs for Windows 95/98/NT/ME/2000/XP:

• Insert the appropriate data link cable PLC - PG/PC into the PG interface on the
PLC and into the MPI interface (and/or COM-Port when using the PC adapter
cable) of the PG/PC.

• Configure the used PG/PC interface using the STEP 7 tool (S7EPATSX.EXE).
The access point of the application "S7ONLINE" must be linked to the used
parameter assignment of the module.

• In the event of a data link to S7-200 it is required to dial the relevant parameter
assignment of the module with the suffix (PPI).

• Start Windows 95 again in to ensure the configuration is accepted.

• Start the demonstration program in the PRODAVE program group.

• Select the load_tool menu and specify the parameters (address, slot number,
segment ID and rack number) of the destination system.

Demonstration Programs

 PRODAVE MPI V6.0
5-2 A5E00417150-01

PRODAVE MPI V6.0
A5E00417150-01 A-1

A Appendix

A.1 Error Texts

You may add your own error texts in the ERROR.DAT file to the ones listed below.
See function "error_message".

Error Messages

0000 : ** ERROR.DAT = error text file for PRODAVE MPI **

00CA : no resources available

00CE : module not found

00CF : driver not loaded

00E1 : too many channels open

00E9 : sin_serv.exe not started

00F1 : no global dos storage available

0101 : connection not established / configured

010A : negative acknowledgement received / timeout error

010C : data does not exist or disabled

0201 : incorrect interface specified

0202 : maximum amount of interfaces exceeded

0203 : Toolbox already installed

0204 : Toolbox already installed with other connections

0205 : Toolbox not installed

0206 : handle cannot be set

0207 : data segment cannot be disabled

0209 : incorrect data field

0302 : block too small, DW does not exist

0303 : block limit exceeded, correct amount

0310 : module not found

0311 : hardware error

0312 : incorrect configuration parameters

0313 : incorrect baud rate / interrupt vector

0314 : incorrect HSA

0315 : MPI address error

0316 : HW device already allocated

0317 : interrupt not available

0318 : interrupt occupied

031A : connection error

0320 : hardware error

0330 : version conflict

Appendix

 PRODAVE MPI V6.0
A-2 A5E00417150-01

0331 : COM error

0332 : no response

0333 : COM error

0334 : COM error

0336 : no modem connection established

0337 : job rejected

0381 : device does not exist

0382 : no driver or device found

0384 : no driver or device found

03FF : system fault

4001 : connection not known

4002 : connection not established

4003 : connection is being established

4004 : connection broken down

800 : Toolbox occupied

8001 : not allowed in this operating status

8101 : hardware error

8103 : object access not allowed

8104 : context is not supported

8105 : invalid address

8106 : type (data type) not supported

8107 : type (data type) not consistent

810A : object does not exist

8301 : memory capacity on CPU not sufficient

8404 : grave error

8500 : incorrect PDU size

8702 : address invalid

D201 : syntax error block name

D202 : syntax error function parameter

D203 : syntax error block type

D204 : no linked block in storage medium

D205 : object already exists

D206 : object already exists

D207 : block exists in EPROM

D209 : block does not exist

D20E : no block available

D210 : block number too big

D241 : protection level of function not sufficient

D406 : information not available

EF01 : incorrect ID2

FFFE : unknown error FFFE hex

FFFF : timeout error. Check interface

 Appendix

PRODAVE MPI V6.0
A5E00417150-01 A-3

TeleService Error Messages

0048 : error during connection

4350 : not implemented

4360 : timeout

8001 : no memory

8305 : error during access to Registry

8306 : adapter in direct operation

8FFF : internal error

8305 : error during access to Registry

4501 : incorrect parameter, modem or location error

4502 : no further entries

4503 : modem function not sufficient

4504 : transferred string too long

4510 : adapter in modem operation

4540 : alarm already allocated

4541 : alarm not used

4580 : login error user name

4581 : login error password

A0CE : busy

A0CF : partner not responding

A0D4 : connection not available

A0D5 : no dial tone

Appendix

 PRODAVE MPI V6.0
A-4 A5E00417150-01

A.2 Used Abbreviations

CP Communications Processor

CPU Central-Processing-Unit

DB Data Block

DLL Dynamic Link Library

MPI Multi Point Interface

PC Personal Computer

PG Programming Device

PLC Programmable Logic Controller

PPI Point to Point Interface

PRODAVE Process Data Traffic

	Title
	Preface
	Contents
	1 Introduction
	1.1 Basic Functions
	1.1.1 Functions for Data Transfer to S7 300/ 400
	1.1.2 Functions for Data Transfer to S7 200

	1.2 Functions for Data Handling in PG/PC

	2 Description
	2.1 Operating Principle of PRODAVE
	2.2 Using the Programming Language Adapter
	2.3 Requirements
	2.4 Connecting the PG/PC to the PLC
	2.4.1 Driver under Windows 95/98/ NT

	3 Operation
	3.1 Installing PRODAVE MPI V6.0
	3.1.1 Installing PRODAVE MPI V6.0 under Windows 95/ 98/ NT/ ME/ 2000/ XP

	3.2 Scope of Supply of PRODAVE MPI V6.0
	3.2.1 PRODAVE MPI V6.0 for Windows 95/98/ NT/ME/2000/XP
	3.2.2 PRODAVE MPI V6.0 Mini for Windows 95/ 98/NT/ME/ 2000/ XP

	3.3 Working with PRODAVE
	3.3.1 Notes on S7-200
	3.3.2 Notes on S7-300/400

	3.4 Differences between S5 and S7
	3.5 Linking to Standard Tools
	3.5.1 PRODAVE under Delphi (32-Bit) Example
	3.5.2 PRODAVE under Access (32-Bit) Example
	3.5.3 PRODAVE under Visual Basic (32-Bit) Example

	4 PRODAVE MPI V6.0 Functions
	4.1 Basic Functions
	4.1.1 load_tool
	4.1.2 unload_tool
	4.1.3 new_ss

	4.2 Functions for Data Communication Traffic to the S7 300/ 400
	4.2.1 ag_info
	4.2.2 ag_zustand
	4.2.3 db_buch
	4.2.4 db_read
	4.2.5 d_field_read
	4.2.6 e|a|m_field_read
	4.2.7 t|z_field_read
	4.2.8 mix_read
	4.2.9 db_write
	4.2.10 d_field_write
	4.2.11 a|m_field_ write
	4.2.12 z_field_write
	4.2.13 mix_write
	4.2.14 mb_setbit
	4.2.15 mb_resetbit
	4.2.16 mb_bittest

	4.3 Functions for Data Communication Traffic to the S7 200
	4.3.1 as200_ag_info
	4.3.2 as200_ag_zustand
	4.3.3 as200_e| a|m|sm|vs_field_read
	4.3.4 as200_t_field_read
	4.3.5 as200_z_field_read
	4.3.6 as200_mix_read
	4.3.7 as200_a|m| sm|vs_field_write
	4.3.8 as200_z_field_write
	4.3.9 as200_mix_write
	4.3.10 as200_mb_setbit
	4.3.11 as200_mb_resetbit
	4.3.12 as200_mb_bittest

	4.4 Comfort Functions
	4.4.1 error_message
	4.4.2 kg_to_float
	4.4.3 float_to_kg
	4.4.4 gp_to_float
	4.4.5 float_to_gp
	4.4.6 testbit
	4.4.7 byte_boolean
	4.4.8 boolean_byte
	4.4.9 kf_integer
	4.4.10 swab_buffer
	4.4.11 copy_buffer
	4.4.12 USHORT_2_bcd
	4.4.13 bcd_2_USHORT

	4.5 Teleservice Functions
	4.5.1 ts_dial
	4.5.2 ts_hang_up_dial
	4.5.3 ts_set_ringindicator
	4.5.4 ts_read_info
	4.5.5 ts_hang_up_ring
	4.5.6 ts_get_modem_name

	5 Demonstration Programs
	5.1 Demonstration Programs for the PC

	A Appendix
	A.1 Error Texts
	A.2 Used Abbreviations

