
Preface, Contents

Installing the CPU 210 1
Installing and Using the
STEP 7-Micro/WIN Version 2.0
Software 2

Getting Started with a Sample
Program 3

Basic Concepts for
Programming the CPU 210 4

Instruction Set 5

Appendix

CPU 210 Data Sheets A

Special Memory (SM) B

Error Handling and Error Codes C

Converting STEP 7-Micro/DOS
Files to STEP 7-Micro/WIN Files D

Execution Times for STL
Instructions E

CPU 210 Order Numbers F

Index

C79000-G7076-C235-01

S7-200
Programmable Controller,
CPU 210

System Manual

SIMATIC

ii
S7-200 Programmable Controller, CPU 210

C79000 G7076 C235 01

This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

!
Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions are
not taken.

!
Warning

indicates that death, severe personal injury or substantial property damage can result if proper precautions are
not taken.

!
Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a particular
part of the documentation.

The device/system may only be set up and operated in conjunction with this manual.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and sys-
tems in accordance with established safety practices and standards.

Note the following:

!
Warning

This device and its components may only be used for the applications described in the catalog or the technical
description, and only in connection with devices or components from other manufacturers which have been
approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed correctly, and
operated and maintained as recommended.

SIMATIC� and SINEC� are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to
trademarks might infringe upon the rights of the trademark owners.

We have checked the contents of this manual for agreement with the
hardware and software described. Since deviations cannot be
precluded entirely, we cannot guarantee full agreement. However,
the data in this manual are reviewed regularly and any necessary
corrections included in subsequent editions. Suggestions for
improvement are welcomed.

Technical data subject to change.
� Siemens SE&A 1997

Disclaimer of LiabilityCopyright � Siemens SE&A 1997 All rights reserved

The reproduction, transmission or use of this document or its
contents is not permitted without express written authority.
Offenders will be liable for damages. All rights, including rights
created by patent grant or registration of a utility model or design, are
reserved.

Siemens Energy & Automation, Inc.
3333 Old Milton Parkway
Alpharetta, GA 30202

Siemens Energy & Automation 6ES7 298-8EA00-8BH0

Safety Guidelines

Qualified Personnel

Correct Usage

Trademarks

iii
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Preface

Purpose

The CPU 210 is an addition to the S7-200 series micro-programmable logic controllers
(Micro PLCs). Its compact design, low cost, and powerful instruction set make the CPU 210
a perfect solution for controlling small applications. The selection of voltage options provides
you with the flexibility you need to solve your automation problems.

The SIMATIC S7-200 CPU 210 Programmable Controller System Manual provides
information about installing and programming the CPU 210 and the program development
station (PDS 210). This manual also includes descriptions and examples for the
programming instructions, typical execution times for the instructions, and the data sheets for
the CPU 210 and related equipment.

Audience

This manual is designed for engineers, programmers, installers, and electricians who have a
general knowledge of programmable logic controllers.

Scope of the Manual

The information contained in this manual pertains in particular to the following products:

� CPU 210 and the PDS 210

� STEP 7-Micro/WIN version 2.0 programming software

How to Use This Manual

If you are a first-time (novice) user of S7-200 Micro PLCs, you should read the entire manual.
If you are an experienced user, refer to the table of contents or index to find specific
information.

The manual is organized in the following topics:

� “Installing the CPU 210” (Chapter 1) provides an overview of some of the features of the
equipment and the procedures, dimensions, and basic guidelines for installing the
CPU 210.

� “Installing and Using the STEP 7-Micro/WIN Version 2.0 Software” (Chapter 2) describes
how to install the programming software. It also provides a basic explanation about the
features of the software.

� “Getting Started with a Sample Program” (Chapter 3) helps you enter a sample program,
using the STEP 7-Micro/WIN software.

� “Basic Concepts for Programming the CPU 210” (Chapter 4) provides information about
how the CPU 210 processes data and executes a program.

� “Instruction Set” (Chapter 5) provides explanations and examples of the programming
instructions used by the CPU 210.

iv
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Additional information (such as the equipment data sheets, error code descriptions and
execution times) are provided in the appendices.

Additional Assistance

For assistance in answering technical questions, for training on this product, or for ordering,
contact your Siemens distributor or sales office.

Preface

v
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Contents

1 Installing the S7-200 CPU 210

1.1 Product Overview 1-2.

Equipment Requirements 1-2.
Features of the CPU 210 1-3.

1.2 Pre-installation Considerations 1-4.

Installation Configuration 1-4.
Clearance Requirements for Installing a CPU 210 1-4.
DIN Rail Requirements 1-5.
Panel-Mounting Dimensions 1-5.

1.3 Installing a CPU 210 1-6.

Mounting a CPU 210 on a Panel 1-6.
Installing a CPU 210 on a DIN Rail 1-6.
Installing a CPU 210 in a Panel Box 1-7.

1.4 Installing the Field Wiring 1-8.

General Guidelines 1-8.
Grounding and Circuit Referencing Guidelines for Using Isolated Circuits 1-9.
Using the Optional Field Wiring Connector 1-10.
Guidelines for AC Installation 1-10.
Guidelines for DC Installation 1-10.

1.5 Using Suppression Circuits 1-12.

Protecting DC Transistors 1-12.
Protecting Relays Controlling DC Power 1-12.

2 Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2.1 Installing the STEP 7-Micro/WIN Version 2.0 Software 2-2.

Pre-installation Instructions 2-2.
Installation Instructions for Windows 3.1 2-2.
Installation Instructions for Windows 95 2-2.
Troubleshooting the Installation 2-2.

2.2 Establishing Communication with the PDS 210 2-3.

Connecting Your Computer to the PDS 210 for PPI Communications 2-3.
Setting Up the Communications Parameters 2-4.

2.3 Configuring the Preferences for STEP 7-Micro/WIN 2-5.

2.4 Creating and Saving a Project 2-6.

Creating a New Project 2-6.
Saving a Project 2-6.

vi
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

2.5 Creating a Program 2-7.

Entering Your Program in Ladder 2-7.
Entering Your Program in Statement List 2-8.
Compiling the Program 2-8.
Viewing a Program in Ladder or Statement List 2-9.

2.6 Downloading A Program 2-10.

Downloading the Program to the PDS 210 2-10.
Copying Your Program to the Memory Cartridge 2-11.
Transporting the Program to the CPU 210 2-11.

2.7 Using Symbolic Addressing 2-13.

Guidelines for Entering Symbolic Addresses 2-13.
Starting the Symbol Table Editor 2-13.
Editing Functions within the Symbol Table 2-14.
Sorting Table Entries 2-14.
Displaying the Symbolic Addresses 2-14.

2.8 Using the Status Chart 2-15.

Reading and Writing Variables with the Status Chart 2-15.
Editing Addresses 2-15.

2.9 Debugging and Monitoring Your Program 2-16.

Using Single/Multiple Scans to Monitor Your Program 2-16.
Displaying the Status of the Program in Ladder Logic 2-16.

2.10 Error Handling for the PDS 210 2-17.

Responding to Fatal Errors 2-17.
Responding to Non-Fatal Errors 2-18.

3 Getting Started with a Sample Program

3.1 Defining the Requirements for the Application Example 3-2.

Defining the Inputs and Outputs for the Application 3-2.
Creating Symbolic Names for the Elements of the Program 3-2.

3.2 Designing the Control Logic 3-4.

Defining the Operation of the Program 3-4.
Designing the Control Logic for Arming and Disarming the System 3-6.
Designing the Control Logic for Turning On the Low-Level Alert Notification 3-7.
Designing the Control Logic for Turning On the Alarm and Modem Dialer 3-8.

3.3 Putting the Control Logic into a Program 3-9.

3.4 Creating a Project with STEP 7-Micro/WIN 3-13.

3.5 Creating a Symbol Table 3-14.

Entering the Symbol Names 3-14.

3.6 Entering the Program 3-15.

Programming with Symbolic Addresses 3-15.
Using the Ladder Editor to Enter the Program 3-15.
Compiling the Program 3-21.
Saving the Sample Program 3-21.

3.7 Creating a Status Chart 3-22.

Building a Status Chart 3-22.

Contents

vii
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

3.8 Downloading and Monitoring the Sample Program 3-23.

Downloading the Project to the PDS 210 3-23.
Using the Ladder Editor to Monitor the Status of the Program 3-23.
Using the Status Chart to Monitor and Modify the Current Values of the Program 3-24

3.9 Modifying the Sample Program 3-25.

Creating the Blink Patterns for the LED 3-25.
Turning the LED On and Off 3-26.

4 Basic Concepts for Programming the CPU 210

4.1 Guidelines for Designing a Micro PLC System 4-2.

Partitioning Your Process or Machine 4-2.
Creating the Functional Specifications 4-2.
Designing the Safety Circuits 4-3.
Specifying the Operator Stations 4-3.
Creating the PLC Configuration Drawings 4-3.
Creating a List of Symbolic Names 4-3.

4.2 Concepts for Creating a Program 4-4.

Relating the Program to Inputs and Outputs 4-4.
Accessing Data in the Memory Areas 4-4.
Organizing the Program 4-5.

4.3 Understanding the Scan Cycle of the CPU 210 4-6.

Understanding the Basic Scan Cycle of the CPU 210 4-6.
Understanding the Basic Scan Cycle of the PDS 210 4-7.
Using the Debug Option to Specify the Number of Scans 4-8.

4.4 Understanding the Programming Languages 4-9.

Understanding the Basic Elements of Ladder 4-9.
Understanding the Statement List Instructions 4-10.

4.5 Understanding the Addresses of the Memory Areas 4-11.

Using the Memory Address to Access Data 4-11.
Addressing the Input Image Register (I) 4-12.
Addressing the Outputs (Q) 4-12.
Addressing the Bit Memory (M) Area 4-12.
Addressing the Special Memory (SM) Bits 4-12.
Addressing the Timer (T) Memory Area 4-13.
Addressing the Counter (C) Memory Area 4-13.
Using Constant Values 4-13.

4.6 Sample Program Using an Interrupt Routine 4-14.

4.7 Using the Analog Adjustment Potentiometer 4-16.

5 Instruction Set

5.1 Valid Ranges for the CPU 210 and PDS 210 5-2.

Valid Operand Ranges 5-2.

5.2 Contact Instructions 5-3.

Standard Contacts 5-3.
Not 5-3.
Positive, Negative Transition 5-3.
Compare Word Integer 5-4.
Contact Examples 5-4.
Output 5-5.
Set, Reset 5-5.

Contents

viii
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Output Example 5-5.

5.4 Timer Instructions 5-6.

On-Delay Timer 5-6.
Understanding How the CPU 210 Updates the Timers 5-6.
Timer Example 5-7.

5.5 Counter Instructions 5-8.

Up/Down Counter 5-8.
Counter Example 5-8.

5.6 Increment and Decrement Instructions 5-9.

Increment Word, Decrement Word 5-9.
Increment, Decrement Example 5-9.

5.7 Move Instruction 5-10.

Move Word 5-10.
Move Examples 5-10.

5.8 Program Control Instructions 5-11.

END 5-11.
Watchdog Reset 5-11.
Considerations for Using the WDR Instruction to Reset the Watchdog Timer 5-11. . . .
END and WDR Example 5-12.
Jump to Label, Label 5-12.
Jump to Label Example 5-12.

5.9 Logic Stack Instructions 5-13.

And Load 5-13.
Or Load 5-13.
Logic Stack Example 5-13.

5.10 Interrupt Instructions 5-14.

Interrupt Routine, Return from Interrupt Routine 5-14.
Enable Interrupt, Disable Interrupt 5-14.
Guidelines and Restrictions for Using the Interrupt Routine 5-15.
Sharing Data Between the Main Program and the Interrupt Routine 5-15.
Interrupt Example 5-16.

A CPU 210 Data Sheets

A.1 General Technical Specifications A-2.

A.2 CPU 210 DC Power Supply, 24 VDC Inputs, 24 VDC Outputs A-4.

A.3 CPU 210 AC Power Supply, 24 VDC Inputs, Relay Outputs A-6.

A.4 CPU 210 AC Power Supply, AC Inputs, Relay Outputs A-8.

A.5 PDS 210 AC Power Supply, DC Inputs, Relay Outputs A-10.

A.6 Memory Cartridge 8K x 8 A-12.

A.7 Memory Cartridge 16K x 8 A-13.

A.8 PC/PPI Cable A-14.

A.9 DC Input Simulator A-15.

Contents

ix
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

B Special Memory (SM)

C Error Handling and Error Codes

D Converting STEP 7-Micro/DOS Files to STEP 7-Micro/WIN Files

E Execution Times for STL Instructions

F CPU 210 Order Numbers

Index

Contents

x
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Contents

1-1
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Installing the S7-200 CPU 210

The S7-200 CPU 210 is one of the S7-200 series of micro-programmable logic controllers
(Micro PLCs) that can control a variety of automation applications. Figure 1-1 shows an
S7-200 CPU 210. The compact design and low cost of the CPU 210 make a perfect solution
for controlling small applications. In addition, the variety of input and output voltages provides
you with the flexibility you need to solve your automation problems with the maintenance-free
operation of the CPU 210.

The CPU 210 is easy to install. You can use the mounting holes to attach the module to a
panel, or you can use the built-in DIN clips to mount the module onto a DIN rail. The small
size of the CPU 210 allows you to make efficient use of space.

Figure 1-1 S7-200 CPU 210

Chapter Overview

Section Description Page

1.1 Product Overview 1-2

1.2 Pre-installation Considerations 1-4

1.3 Installing a CPU 210 1-6

1.4 Installing the Field Wiring 1-8

1.5 Using Suppression Circuits 1-12

1

1-2
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

1.1 Product Overview

The CPU 210 combines a central processing unit (CPU), power supply, and discrete I/O
points into a compact, stand-alone device.

� The CPU executes the program and stores the data for controlling the automation task or
process.

� The inputs and outputs are the system control points: the inputs monitor the signals from
the field devices (such as sensors and switches), and the outputs control pumps, motors,
or other devices in your process.

� Status lights provide visual information about the CPU mode (RUN) or whether a system
fault (SF) has been detected.

Equipment Requirements

As shown in Figure 1-2, you use the STEP 7-Micro/WIN programming software with a
program development station (the PDS 210) to create and to test your program. The final
program is then loaded onto a memory cartridge, which is then installed in the CPU 210. You
need the following equipment to create programs for the CPU 210:

� Personal computer (PC) running the STEP 7-Micro/WIN programming software. Refer to
Chapter 2 for the requirements for installing the STEP 7-Micro/WIN software.

� Program development station (PDS 210).

� PC/PPI communications cable.

� Memory cartridge for transferring the program to the CPU 210.

Refer to the data sheets in Appendix A for order numbers and other specifications of this
equipment.

Program Development Station
(PDS 210)

PC/PPI Communications Cable

Computer

Components for developing a program for the CPU 210

STEP 7-Micro/WIN

CPU 210
Memory cartridge
transfers the program
to the CPU 210

Figure 1-2 Components of a CPU 210 Micro PLC System

Installing the S7-200 CPU 210

1-3
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Features of the CPU 210

The CPU 210 is an integral part of the S7-200 family of Micro PLCs. Table 1-1 provides a
summary of the major features of the CPU 210.

Table 1-1 Features of the CPU 210

Feature CPU 210

Physical Size (length x width x depth) 90 x 80 x 62 mm

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory cartridge for downloading the program ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Yes

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Memory

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Program size

Storage type

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

256 words

EEPROM

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

y
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Internal memory ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
48 bits (3 words)

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Inputs/Outputs (I/O)

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Local inputs

Local outputs

Expansion I/O

DC Input delay filter

AC Input delay filter

Sink/Source Inputs (DC)

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4 digital inputs

4 digital outputs

No

15 ms

55 ms

Yes

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Boolean execution speed ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
95 µs/instruction

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Instructions (36 total)

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

On-Delay Timers

Resolution
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4

100 ms

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Instructions (36 total)
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Up/Down Counters

Current value saved on power down
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4

YesÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Jump / Label
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Analog adjustment potentiometers ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
1

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Additional Features ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Hardware Input Interrupts

Interrupt response
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1

20 �s on, 40 �s off

Installing the S7-200 CPU 210

1-4
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

1.2 Pre-installation Considerations

Installation Configuration

As shown in Figure 1-3, you can install a CPU 210 either on a panel or on a DIN rail. You can
mount the CPU 210 either horizontally or vertically.

CPU 210

Mounting on a Panel Mounting on a DIN Rail

CPU 210

Mounting in a Panel Box

CPU 210

Figure 1-3 Mounting Configurations

Clearance Requirements for Installing a CPU 210

Use the following guidelines as you plan your installation:

� The CPU 210 is designed for natural convection cooling. You must provide a clearance
of at least 25 mm (1 inch), both above and below the units, for proper cooling. See
Figure 1-4. Continuous operation of all electronic products at maximum ambient
temperature and load will reduce their life.

� If you are installing a CPU 210 on a panel, you must allow 75 mm (2.9 inches) for the
minimum panel depth. See Figure 1-4.

� Be sure to allow enough space in your mounting design to accommodate the I/O wiring
connections.

ÂÂÂÂ
ÂÂÂÂ
ÂÂÂÂ
ÂÂÂÂ
ÂÂÂÂ
ÂÂÂÂ

75 mm
(2.9 in.)

CPU 210

Front of the
enclosure

Mounting
surface

25 mm
(1 in.)

25 mm
(1 in.)

Clearance for cooling

Front View Side View

CPU 210

Figure 1-4 Clearance Requirements for Installing a CPU 210

Installing the S7-200 CPU 210

1-5
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

DIN Rail Requirements

The CPU 210 can be installed on a standard DIN rail (DIN EN 50 022). Figure 1-5 shows the
dimensions for this DIN rail.

35 mm
(1.38 in.)

1.0 mm
(0.039 in.)

7.5 mm
(0.29 in.)

Figure 1-5 DIN Rail Dimensions

Panel-Mounting Dimensions

The CPU 210 and the PDS 210 include mounting holes to facilitate installation on panels.
Figure 1-6 provides the mounting dimensions.

6.4 mm
(0.25 in.)

77.3 mm
(3.04 in.)

CPU 210
Mounting Holes
(M4 or no. 8)

80 mm
(3.15 in.)

67.3 mm
(2.65 in.)

90 mm
(3.54 in.)

6.4 mm
(0.25 in.)

184.3 mm
(7.25 in.)

Program Development Station
(PDS 210) Mounting Holes

(M4 or no. 8)

197 mm
(7.76 in.)

6.4 mm
(0.25 in.)

80 mm
(3.15 in.)

67.3 mm
(2.65 in.)

Figure 1-6 Mounting Dimensions for the CPU 210 and PDS 210

Installing the S7-200 CPU 210

1-6
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

1.3 Installing a CPU 210

Warning
Failure to disable all power to the CPU 210 and related equipment during installation or
removal procedures may result in death or serious personal injury, and/or damage to
equipment.

Disable all power to the CPU 210 and related equipment before installation or removal.

Always follow appropriate safety precautions and ensure that power to the CPU 210 is
disabled before installation.

Mounting a CPU 210 on a Panel

To install a CPU 210 on a panel, follow these steps:

1. Locate, drill, and tap the mounting holes for DIN M4 or American Standard number 8
screws. Refer to Section 1.2 for mounting dimensions and other considerations.

2. Secure the CPU 210 onto the panel, using DIN M4 or American Standard number 8
screws.

Installing a CPU 210 on a DIN Rail

To install a CPU 210 on a DIN rail (as shown in Figure 1-7), follow these steps:

1. Secure the DIN rail every 75 mm (approximately 3 inches) to the mounting panel.

2. Snap open the DIN clip (located on the bottom of the CPU 210) and hook the back of the
module onto the DIN rail.

3. Snap the DIN clip closed, carefully checking to ensure that the DIN clip fastened the
module securely onto the rail.

Note
Modules in an environment with high vibration potential or modules that have been
installed in a vertical position may require DIN Rail Stops.

CPU 210

DIN Clip

Fasten DIN rail every 75 mm
(approximately 3 inches)

Figure 1-7 Installing a CPU 210 on a DIN Rail

Installing the S7-200 CPU 210

!

1-7
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Installing a CPU 210 in a Panel Box

To install a CPU 210 in a panel box, follow these steps:

1. Open one of the I/O access covers on the CPU 210. As shown in Figure 1-8, remove the
access cover by gently pressing against the access cover until the hinges spring free.
Repeat this procedure for the other access cover.

Open the access cover. Gently press against the
access cover until the
access cover snaps off.

Access covers

CPU 210
(Side View)

CPU 210
(Side View)

CPU 210
(Side View)

CPU 210
(Side View)

Figure 1-8 Removing the Access Covers from the CPU 210

2. Snap open the DIN clip (located on the bottom of the module).

3. Open the panel box and hook the back of the module onto the DIN rail. See Figure 1-9.

4. Snap the DIN clip closed, carefully checking to ensure that the DIN clip fastened the
module securely onto the rail.

CPU 210

DIN Clip

DIN rail

Figure 1-9 Installing the CPU 210 in a Panel Box

Installing the S7-200 CPU 210

1-8
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

1.4 Installing the Field Wiring

Warning
Failure to disable all power to the CPU 210 and related equipment during installation or
removal procedures may result in death or serious personal injury, and/or damage to
equipment.

Disable all power to the CPU 210 and related equipment before installing or removing field
wiring.

Always follow appropriate safety precautions and ensure that power to the CPU 210 is
disabled before installing field wiring.

General Guidelines

The following items are general guidelines for designing the installation and wiring of your
S7-200 CPU 210:

� Ensure that you follow all applicable electrical codes when wiring the CPU 210. Install
and operate all equipment according to all applicable national and local standards.
Contact your local authorities to determine which codes and standards apply to your
specific case.

� Always use the proper wire size that will carry the required current. The CPU 210 accepts
wire sizes from 1.50 to 0.50 mm2 (14 to 22 AWG).

� Ensure that you do not over-tighten the connector screws. The maximum torque is
0.56 N-m (5 inches-pounds).

� Always use the shortest wire possible (maximum 500 meters shielded, 300 meters
unshielded). Wiring should be run in pairs, with a neutral or common wire paired with a
hot or signal-carrying wire.

� Separate AC wiring and high-energy, rapidly switched DC wiring from low-energy signal
wiring.

� Properly identify and route the wiring to the CPU 210, using strain relief for the wiring as
required. For more information about identifying the terminals, see the data sheets in
Appendix A.

� Install appropriate surge suppression devices for wiring that is subject to lightning surges.

� External power should not be applied to an output load in parallel with a DC output point.
This may cause reverse current through the output, unless a diode or other barrier is
provided in the installation.

Warning
Control devices can fail in an unsafe condition, resulting in unexpected operation of
controlled equipment.

Such unexpected action could result in death or serious personal injury, and/or equipment
damage.

Consider using an emergency stop function, electromechanical overrides, or other
redundant safeguards that are independent of the programmable controller.

Installing the S7-200 CPU 210

!

!

1-9
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Grounding and Circuit Referencing Guidelines for Using Isolated Circuits

The following items are grounding and circuit guidelines for using isolated circuits:

� You should identify the reference point (0 voltage reference) for each circuit in the
installation, and the points at which circuits with possible different references can connect
together. Such connections can result in unwanted current flows that can cause logic
errors or damage circuits. A common cause of different reference potentials is grounds
which are physically separated by long distances. When devices with widely separated
grounds are connected with a sensor cable, unexpected currents can flow through the
circuit created by the cable and the ground. Even over short distances, load currents of
heavy machinery can cause differences in ground potential or directly induce unwanted
currents by electromagnetic induction. Power supplies that are improperly referenced
with respect to each other can cause damaging currents to flow between their associated
circuits.

� The CPU 210 includes isolation boundaries at certain points to help prevent unwanted
current flows in your installation. When you plan your installation, you should consider
where these isolation boundaries are, and where they are not provided. You should also
consider the isolation boundaries in associated power supplies and other equipment, and
where all associated power supplies have their reference points.

� You should choose your ground reference points and use the isolation boundaries
provided to interrupt unneeded circuit loops that could allow unwanted currents to flow.
Remember to consider temporary connections which may introduce a new circuit
reference, such as the connection of a programming device to the CPU.

� When locating grounds, you must also consider safety grounding requirements and the
proper operation of protective interrupting devices.

The following descriptions are an introduction to general isolation characteristics of the
CPU 210, but some features may be different on specific products. Consult the data sheet in
Appendix A for your product for specifications of which circuits include isolation boundaries
and the ratings of the boundaries. Isolation boundaries rated less than 1500 VAC are
designed as functional isolation only and should not be depended on as safety boundaries.

� CPU logic reference is the same as DC Sensor Supply M.

� CPU logic reference is the same as the input power supply M on a CPU with DC power
supply.

� CPU logic is isolated from ground to 100 VDC.

� DC digital inputs and outputs are isolated from CPU logic to 500 VAC.

� Relay outputs and AC inputs are isolated from CPU logic to 1500 VAC.

� Relay output groups are isolated from each other by 1500 VAC.

� AC power supply Line and Neutral are isolated from ground, the CPU logic, and all I/O to
1500 VAC.

Installing the S7-200 CPU 210

1-10
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Using the Optional Field Wiring Connector

The optional field wiring fan-out connector (Figure 1-10) allows for field wiring connections to
remain fixed when you remove and re-install the CPU 210. Refer to Appendix F for the order
number.

Field Wiring

Fan-out Connector

M L+ 0.0 0.1 0.2 0.3
DC
OUTPUTS ↓ M L+ 24V DC

Figure 1-10 Optional Field Wiring Connector

Guidelines for AC Installation

The following items are general wiring guidelines for AC installations. Refer to Figure 1-11.

� Provide a single disconnect switch (A) that removes power from the CPU, all input
circuits, and all output (load) circuits.

� Provide overcurrent devices (B) to protect the CPU power supply, the output points, and
the input points. You can also fuse each output point individually for greater protection.
External overcurrent protection for input points is not required when you use the 24 VDC
sensor supply (C) from the CPU 210. This sensor supply is short-circuit protected.

� Connect all CPU 210 ground terminals to the closest available earth ground (D) to
provide the highest level of noise immunity. It is recommended that all ground terminals
be connected to a single electrical point. Use 14 AWG or 1.5 mm2 wire for this
connection.

If required, you can use a DC Sensor Supply from the CPU 210 to supply power for the
inputs (E). Refer to the guidelines for DC installation, especially in regard to connecting and
external power supply in parallel with the power supply of the CPU 210.

Guidelines for DC Installation

The following items are general wiring guidelines for isolated DC installations. Refer to
Figure 1-11.

� Provide a single disconnect switch (1) that removes power from the CPU, all input
circuits, and all output (load) circuits.

� Provide overcurrent devices to protect the CPU power supply (2), the output points (3),
and the input points (4). You can also fuse each output point individually for greater
protection. External overcurrent protection for input points is not required when you use
the 24 VDC sensor supply from the CPU 210. This sensor supply is internally current
limited.

� Ensure that the DC power supply has sufficient surge capacity to maintain voltage during
sudden load changes. External capacitance (5) may be required.

Installing the S7-200 CPU 210

1-11
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

� Install or equip ungrounded DC power supplies with a resistor and a capacitor in parallel
(6) from the power source common to protective earth ground. The resistor provides a
leakage path to prevent static charge accumulations, and the capacitor provides a drain
for high frequency noise. Typical values are 1M Ω and 4700 pf. You can also create a
grounded DC system by connecting the DC power supply to ground (7).

� Connect all CPU 210 ground terminals to the closest available earth ground (8) to
provide the highest level of noise immunity. It is recommended that all ground terminals
be connected to a single electrical point. Use 14 AWG or 1.5 mm2 wire for this
connection.

� Always supply 24 VDC circuits from a source that provides safe electrical separation from
120/230 VAC power and similar hazards. Refer to the following documents for standard
definitions of “safe separation”: PELV (protected extra low voltage) according to
EN60204-1, and Class 2 or Limited Voltage/Current Circuit according to UL 508.

Warning
Connecting an external 24 VDC power supply in parallel with the DC sensor supply of the
CPU 210 can result in a conflict between the two supplies as each seeks to establish its
own preferred output voltage level. The result of this conflict can be shortened lifetime or
immediate failure of one or both power supplies, with consequent unpredictable operation
of the PLC system. Unpredictable operation could result in death or serious injury to
personnel, and/or damage to equipment and property.

The CPU 210 DC Sensor Supply and any external power supply should provide power to
different points, with at most one connection between the two supplies.

L1
N
PE

(1)

DO
DI

P/S
CPU 210
DC/DC/DC

(5)

(6)

(2)

(3)

(4)

(7)

L+ M24 VDC

AC

DC
(8)

Floating (6) or Grounded (7)

L1
N
PE

(A)

(D)

DO

DI

P/S

M L+

(C)

CPU 210
AC/DC/Rly

(E)

Fuse

(B)

(B)

120/230 VAC Using a Single Overcurrent
Switch to Protect the CPU and Load Wiring

Isolated DC System Installation

Figure 1-11 Wiring Guidelines for AC and DC Installation

Installing the S7-200 CPU 210

!

1-12
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

1.5 Using Suppression Circuits

Install or equip inductive loads with suppression circuits that limit voltage rise on loss of
power. Use the following guidelines to design adequate suppression. The effectiveness of a
given design is dependent on the application, and you must verify it for a particular use. Be
sure all components are rated for use in the application.

Protecting DC Transistors

The DC transistor outputs of the CPU 210 contain zener diodes that are adequate for many
installations. Use external suppression diodes for either large or frequently switched
inductive loads to prevent overpowering the internal diodes. Figure 1-12 shows typical
applications for DC transistor outputs.

+VDC (1) IN4001 diode or
equivalent

(1)

Inductor

(1) IN4001 diode or
equivalent

(2) 8.2 V zener, 5 W

+VDC (1) (2)

Inductor

Zener Diode
Suppression

Diode
Suppression

Figure 1-12 Diode Suppression and Zener Diode Suppression

Protecting Relays Controlling DC Power

Resistor/capacitor networks, as shown in Figure 1-13, can be used for low voltage (30 V) DC
relay applications. Connect the network across the load. You can also use diode
suppression, as shown in Figure 1-12, for DC relay applications. A threshold voltage of up to
36 V is allowed if you use a reverse zener diode.

+VDC

where minimum R = 12ΩR C

IL
Inductor

R�
VDC

IL

where K is 0.5 to 1 µ F/A

C� ILK

Figure 1-13 Resistor/Capacitor Network on Relay-Driven DC Load

Installing the S7-200 CPU 210

2-1
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Installing and Using the STEP 7-Micro/WIN
Version 2.0 Software

This manual describes Version 2.0 of STEP 7-Micro/WIN. Previous versions of the software
may operate differently.

STEP 7-Micro/WIN is a Windows-based software application used for programming the
S7-200 Micro PLC (programmable logic controller). The STEP 7-Micro/WIN programming
software package provides a set of tools required to program the S7-210 in either statement
list (STL) or ladder logic (LAD) programming language.

In order to use STEP 7-Micro/WIN, you must have the following equipment:

� Recommended: a personal computer (PC) with an 80486 or greater processor and
8 Mbyte of RAM or a Siemens programming device (such as a PG 740); minimum
computer requirement: 80386 with 8 Mbyte of RAM

� A PC/PPI cable connected to your communications port (COM)

� A program development station (PDS 210)

� VGA monitor, or any monitor supported by Microsoft Windows

� At least 35 Mbyte of free hard disk space (recommended)

� Microsoft Windows 3.1, Windows for Workgroups 3.11, Windows 95, or Windows NT 3.51
or greater

� Optional but recommended: any mouse supported by Microsoft Windows

STEP 7-Micro/WIN provides extensive online help. Use the Help menu command or press
F1 to obtain the most current information.

Chapter Overview

Section Description Page

2.1 Installing the STEP 7-Micro/WIN Version 2.0 Software 2-2

2.2 Establishing Communication with the PDS 210 2-3

2.3 Configuring the Preferences for STEP 7-Micro/WIN 2-5

2.4 Creating and Saving a Project 2-6

2.5 Creating a Program 2-7

2.6 Downloading a Program 2-10

2.7 Using Symbolic Addressing 2-13

2.8 Using the Status Chart 2-15

2.9 Debugging and Monitoring Your Program 2-16

2.10 Error Handling for the PDS 210 2-17

2

2-2
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

2.1 Installing the STEP 7-Micro/WIN Version 2.0 Software

Pre-installation Instructions

Before running the setup procedure, do the following:

� If a previous version of STEP 7-Micro/WIN is installed, back up all application programs
to diskette.

� Make sure all applications are closed, including the Microsoft Office toolbar.

Installation may require that you restart your computer.

Installation Instructions for Windows 3.1

If you have Windows 3.1 (Windows for Workgroups 3.11 or Windows NT) on your machine,
use the following procedure to install the STEP 7-Micro/WIN software:

1. Start by inserting Disk 1 in the disk drive of your computer (usually designated drive A: or
drive B:).

2. From the Program Manager, select the menu command File � Run...

3. In the Run dialog box, type a:\setup and click on the “OK” button. This starts the setup
procedure.

4. Follow the online setup procedure to complete the installation.

Installation Instructions for Windows 95

If you have Windows 95 on your machine, you can use the following procedure to install the
STEP 7-Micro/WIN software:

1. Start by inserting Disk 1 in the disk drive of your computer (usually designated drive A: or
drive B:).

2. Click once on the Start button to open the Windows 95 menu.

3. Click on the Run... menu item.

4. In the Run dialog box, type a:\setup and click on the “OK” button. This starts the setup
procedure.

5. Follow the online setup procedure to complete the installation.

Troubleshooting the Installation

The following situations can cause the installation to fail:

� Not enough memory: you need to have at least 35 Mbyte of free space on your hard disk.

� Bad diskette: verify that the diskette is bad, then call your salesman or distributor.

� Operator error: start over and read the instructions carefully.

� Failure to close any open applications, including the Microsoft Office toolbar.

Note
Review the READMEx.TXT file included on your diskettes for the most recent information
about STEP 7-Micro/WIN. (In the x position, the letter A = German, B = English,
C = French, D = Spanish, E = Italian.)

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-3
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

2.2 Establishing Communication with the PDS 210

Connecting Your Computer to the PDS 210 for PPI Communications

Figure 2-1 shows a typical configuration for connecting your personal computer to your
PDS 210 with the PC/PPI cable. To establish proper communications between the
components, follow these steps:

1. Set the dipswitches on the PC/PPI cable for the baud rate of 9600 baud.

2. Connect the RS-232 end of the PC/PPI cable labeled PC to the communications port of
your computer, either COM1 or COM2, and tighten the connecting screws.

3. Connect the other end (RS-485) of the PC/PPI cable to the communications port of the
PDS 210, and tighten the connecting screws.

RS-232

Program development station
(PDS 210)

PC/PPI cable

Computer
Dipswitch Settings:
0 1 0 0 = 9600 baud

RS-485

Figure 2-1 Communicating with a PDS 210 in PPI Mode

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-4
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Setting Up the Communications Parameters

Figure 2-2 shows the Setup Communications dialog box. The first two port options are for PC
communication ports. The address for the PDS 210 is 2 and cannot be changed. To set up
the communication parameters, follow these steps:

1. Select the menu command Setup � Communications...

2. Verify that the information in the dialog box is correct for your configuration. Remember
that the CPU address for the PDS 210 is always 2, and that the baud rate is always
9600.

3. Confirm your selections by clicking the “OK” button.

✂

Project Edit View CPU Debug Tools Setup Window HelpSetup

Preferences...

Communications...

Communications

Cancel

Find

OK

2

0

CPU Address:

Micro/WIN Address:

COM1

COM2

Port

MPI Card

9,600

Baud Rate:

31

Highest Master Address:

10

IRQ Number For MPI Card::

39

Target Token Rotation Time::

Figure 2-2 Setting Up Communications with the PDS 210

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-5
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

2.3 Configuring the Preferences for STEP 7-Micro/WIN

Before creating a new project, specify the preferences for your programming environment. To
select your preferences, follow these steps:

1. Select the menu command Setup � Preferences... as shown in Figure 2-3.

2. Select your programming preferences in the dialog box that appears.

3. Confirm your choices by clicking the “OK” button.

✂

Preferences

Cancel

OK

English

STL Editor

Ladder Editor

Default Editor

International

SIMATIC

Mnemonic Set

Program Editor

Initial Window States

Language

Data Block Editor

Maximize All

Symbol Table

Status Chart

Project Edit View CPU Debug Tools Setup Window HelpSetup

Preferences...

Communications...

Normalized

Minimized Minimized

Minimized

Options for an Uploaded Data Block

Data Format

Retain Format and Comments

Data Size
Hexadecimal Byte

Figure 2-3 Selecting Your Programming Preferences

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-6
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

2.4 Creating and Saving a Project

Before you create a program, you must create or open a project. When you create a new
project, STEP 7-Micro/WIN opens the following editors:

� Ladder Editor or Statement List Editor (depending on your selected preference)

� Data Block Editor (not applicable for the PDS 210)

� Status Chart

� Symbol Table

Creating a New Project

The Project menu command allows you to create a new project, as shown in Figure 2-4.
Select the menu command Project � New.... The CPU Type dialog box is displayed. If you
select the CPU type from the drop-down list box, the software displays only those options
which are available for your CPU. If you select “None,” no CPU-specific restrictions are
placed on your program. When you download the program, the CPU notifies you if you have
used options that are not available. For example, if your program uses an instruction that is
not supported by your CPU, the program is rejected.

Note
STEP 7-Micro/WIN does not range-check parameters. For example, you can enter MW999
as a parameter to a ladder instruction even though it is an invalid parameter. This error
would be identified when you attempt to download the program.

✂

Project View CPU Setup HelpProject

LAD STL SYM STATDB1

New... Ctrl+N

Open... Ctrl+O

1 c:\microwin\project1.prj

2 c:\microwin\project2.prj

3 c:\microwin\project3.prj

Exit

CPU Type

CancelOK

Select or read the CPU type from your PLC if you would like the software to
limit the available options to only those supported by a specific CPU.

Read CPU Type

Communications...

PDS 210CPU Type:

Figure 2-4 Creating a New Project

Saving a Project

You can save a copy of the active project to a different name or location by selecting the
menu command Project � Save As... You can save all of the components of your project by
selecting the menu command Project � Save All or by clicking the Save button:

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-7
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

2.5 Creating a Program

STEP 7-Micro/WIN allows you to create the user program (OB1) with either the Ladder Editor
or the Statement List Editor.

Entering Your Program in Ladder

The Ladder Editor window allows you to write a program using graphical symbols. See
Figure 2-5. The toolbar includes some of the more common ladder elements used to enter
your program. The first (left) drop-down list box contains instruction categories. You can
access these categories by clicking or pressing F2. After a category is selected, the second
drop-down list contains the instructions specific to that category. To display a list of all
instructions in alphabetic order, press F9 or select the All Instructions category.

Each network allows two types of comments:

� Single-line network title comments are always visible in the ladder display. You can
access the network editor by double-clicking anywhere in the network title region.

� Multi-line network comments are only visible through a dialog box, but can be printed (if
that option has been selected through the Page Setup dialog). You can access the
network comment editor by double-clicking anywhere in the network title region.

To start entering your program, follow these steps:

1. To enter a program title, select the menu command Edit � Program Title .

2. To enter ladder elements, select the type of element you want by clicking the
corresponding icon button or selecting from the instruction list.

3. Type the address or parameter in each text field and press ENTER.

To change or replace one of the elements, move the cursor to that element and select the
new element. You can also cut, copy, or paste elements at the cursor location.

Ladder Editor - project1.ob1

Contacts Normally Open

NETWORK TITLE (single line)

Press ENTER or
double-click to
place element.

I0.0

Network 1

F4 F5 F8F7F6 F10
F3F2

Double click here to
access the network title
and comment editor.

Figure 2-5 Ladder Editor Window

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-8
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Entering Your Program in Statement List

The Statement List (STL) Editor is a free-form text editor which allows a certain degree of
flexibility in the way you choose to enter program instructions. Figure 2-6 shows an example
of a statement list program.

You can cut, copy, and paste in the STL Editor. STEP 7-Micro/WIN also includes
search-and-replace functions.

// Program for a Home Security System

NETWORK 1 //Sound the alarm!
LD I0.3 // If (the panic alarm has been turned on)
LDW>= T0, +600 // or (if the alert timer is >= 60 seconds
A I0.2 // and the system is armed)
OLD // then
S M0.1, 1 // set the high-level alarm bit
S Q0.3, 1 // set the modem dialer bit
R M0.2, 1 // reset the low-level alarm bit

Network 2 //Evaluate the system status.
LDN I0.0 // If zone 1 is open
ON I0.1 // or if Zone 2 is open

STL Editor - project1.ob1STL

To allow viewing the
program in STL or Ladder,
divide segments of code
with keyword NETWORK.

Figure 2-6 STL Editor Window with Sample Program

To enter an STL program, follow these guidelines:

� Start each comment with a double slash (//). Each additional comment line must also
begin with a double slash.

� End each line with a carriage return.

� Separate each instruction from its address or parameter with a space or tab.

� Do not use a space between the operand type and the address (for example, enter I0.0 ,
not I 0.0).

� Separate each operand within an instruction with a comma, space, or tab.

� Use quotation marks when entering symbol names. For example, if your symbol table
contains the symbol name Start1 for the address I0.0 , enter the instruction as follows:

LD “Start1”

To be able to view an STL program in ladder, you must divide segments of code into
separate networks by entering the keyword NETWORK. (Network numbers are generated
automatically after you compile or upload the program.)

Compiling the Program

After completing a network or series of networks, you can check the syntax of your code by
selecting the menu command CPU � Compile or by clicking the Compile button:

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-9
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Viewing a Program in Ladder or Statement List

You can view a program in either ladder or STL by selecting the menu command View � STL
or View � Ladder , as shown in Figure 2-7.

When you change the view from STL to ladder and back again to STL, you may notice
changes in the presentation of the STL program, such as:

� Instructions and addresses are changed from lower case to upper case.

� Spaces between instructions and addresses are replaced with tabs.

You can accomplish the same formatting of the STL instructions by selecting the menu
command CPU � Compile while the STL Editor is active.

Note
Certain combinations of statement list instructions cannot successfully be converted to
ladder view. In that case, the message “Illegal Network” marks the section of code that
cannot be represented in ladder. You can view the STL instructions for the “illegal” network
by clicking on the network title. Use the STL Editor to modify an illegal network so that it
can be viewed in ladder.

✂

Project Edit View CPU Debug Tools Setup Window Help

STEP 7-Micro/WIN - c:\microwin\project1.prj

View

Ladder Editor - untitled.ob1

Contacts F2 Normally Open

Start/stop switch

“Start1” “E-Stop1” Q0.0

Network 1

✓

✓

✓

STL

Ladder

Data Block

Symbol Table

Status Chart

Cross Reference

Element Usage

Symbolic Addressing Ctrl+Y

Toolbar

Status Bar

Zoom...

F4 F5 F8F7F6
F3

F10
STL Editor - untitled.ob1

NETWORK 1 //Start/stop switch
LD “Start1”
AN “E-Stop1”
= Q0.0

NETWORK 2 //End
MEND

STL

Figure 2-7 Changing the Program View from Ladder to Statement List

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-10
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

2.6 Downloading A Program

After developing and testing your program on the PDS 210, you must transfer the program to
the CPU 210 using the memory cartridge. In the same manner as you could use a diskette to
transfer files from one computer to another, you use a memory cartridge to transfer your
program from the PDS 210 to the CPU 210.

Downloading the Program to the PDS 210

After completing your program, you can download the project to the PDS 210. To download
your program, select the menu command Project � Download... or click the Download
button in the main window.

The Download dialog box that appears allows you to specify the project components you
want to download, as shown in Figure 2-8. Select only “Program Code Block” for the
PDS 210: the data block and the CPU configuration are not used by the CPU 210.

Click on the “OK” button to confirm your choices and to execute the download operation.

✂

Project Edit View CPU Debug Tools Setup Window Help

STEP 7-Micro/WIN - c:\microwin\project1.prj

Download

Cancel

OKAll

Data Block

CPU Configuration

Project
New... Ctrl+N

Open... Ctrl+O

Close

Save All Ctrl+S

Save As...

Import

Export

Upload... Ctrl+U

Download... Ctrl+D

Page Setup...

Print Preview...

Print... Ctrl+P

Print Setup...

Exit

Program Code Block

Figure 2-8 Downloading Project Components to the CPU

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-11
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Copying Your Program to the Memory Cartridge

You can copy your program to the memory cartridge only when the PDS 210 is powered up
and the memory cartridge is installed. (You can install or remove the memory cartridge while
the PDS 210 is powered up.)

Caution
Electrostatic discharge can damage the memory cartridge or the receptacle on the
PDS 210 or CPU 210.

You should make contact with a grounded conductive pad and/or wear a grounded wrist
strap when you handle the cartridge. You should store the cartridge in a conductive
container.

To install the memory cartridge, remove the protective tape from the memory cartridge
receptacle and insert the memory cartridge into the receptacle located under an access
cover of the PDS 210. (The memory cartridge is keyed for proper installation.) After the
memory cartridge is installed, use the following procedure to copy the program:

1. If the program has not already been downloaded to the PDS 210, use the menu
command Project � Download... to download the program. (See Figure 2-8.)

2. Use the menu command CPU � Program Memory Cartridge to copy the program to the
memory cartridge. See Figure 2-9.

3. Remove the memory cartridge from the PDS 210.

✂

Project Edit View CPU Debug Tools Setup Window Help

STEP 7-Micro/WIN - c:\microwin\project1.prj

CPU

Ladder Editor - untitled.ob1

Contacts F2 Normally Open

Start/stop switch

“Zone_1” “Zone_2” Q0.0

Network 1

✓

Run

Stop

Compile

Clear

Information

Configure

Program Memory Cartridge

Time of Day Clock

Compare Project to CPU

Type

Figure 2-9 Copying the Program to the Memory Cartridge

Transferring the Program to the CPU 210

To transfer the program from the memory cartridge to the CPU 210, follow these steps:

1. Turn off the power to the CPU 210.

2. Insert the memory cartridge in the CPU 210. (The memory cartridge is keyed for proper
installation.)

3. Turn on the power to the CPU 210.

4. After the RUN LED turns on, remove the memory cartridge from the CPU 210.

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

!

2-12
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

As shown in Figure 2-10, the CPU 210 performs the following tasks after you turn the power
on when a memory cartridge is installed in the CPU 210:

� The M, T, and Q areas of memory are cleared.

� The current values for the counters (which are stored in the permanent memory) are
cleared. (The current values for the counters are erased only when the memory cartridge
is installed in the CPU 210. If a memory cartridge is not installed, the current values are
retained.)

� The user program is copied from the memory cartridge to the permanent EEPROM
memory.

Always remove the memory cartridge from the CPU 210 after the program has been
installed.

Note
Turning the power on with a blank memory cartridge in the CPU 210 causes an error and
lights the error LED. Any program stored in the permanent EEPROM is not affected or
overwritten. To correct the error condition, remove the memory cartridge and cycle the
power again.

When a valid program is installed, the CPU 210 automatically goes to RUN mode when
power is applied.

As your program runs, the CPU 210 updates the values stored in the RAM memory (the
values stored in M memory, the current values for the four counters, and the current values
for the four timers).

When you turn the power off, the CPU 210 saves the current values of the four counters to
the permanent EEPROM memory. The other values stored in RAM (such as M memory,
current values for the timers, and the copy of the user program) are cleared.

Unless a memory cartridge is installed in the CPU 210, the current values for the counters
are retentive. The current values for the counters are automatically restored to the RAM
memory when you turn power on for the CPU 210 (with no memory cartridge installed).

User Program

EEPROM Memory (Permanent)

RAM Memory

M memory

Current values
of the counters

Current values
of the counters

Counter values

Current values
of the timers

Memory
Cartridge

When the memory cartridge is installed in the CPU 210,
turning on the power copies the user program to the
permanent memory

Figure 2-10 Loading a Program with the Memory Cartridge

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-13
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

2.7 Using Symbolic Addressing

The Symbol Table allows you to give symbolic names to inputs, outputs, and internal
memory locations. See Figure 2-11. You can use the symbols you have assigned to these
addresses in the Ladder Editor, STL Editor, and Status Chart of STEP 7-Micro/WIN.

Guidelines for Entering Symbolic Addresses

The first column of the Symbol Table is used to select a row. The other columns are for the
symbol name, address, and comment. For each row, you assign a symbolic name to the
absolute address of a discrete input, output, memory location, special memory bit, or other
element. A comment for each assigned symbol is optional. Follow these guidelines when
creating a Symbol Table:

� You can enter symbol names and absolute addresses in any order.

� You can use up to 23 characters in the Symbol Name field; however, depending on the
font size of your Windows environment, you may not see the full name displayed in the
Ladder Editor.

� You can define up to 500 symbols.

� The Symbol Table is case-sensitive: for example, “Low_Alert” is considered a different
symbol from “low_alert”.

� All leading and trailing spaces will be removed from the symbol name. All adjacent
internal spaces will be converted to a single underscore. For example, if you type
“Zone 1” and press ENTER, the symbol name appears as: “Zone_1”.

� Duplicate symbol names and/or addresses will be marked by blue italics, will not be
compiled, and cannot be used in the program. Overlapping addresses are not flagged as
duplicates; for example, MW0 and MW1 overlap in memory but are not flagged as
duplicates.

Starting the Symbol Table Editor

The Symbol Table editor appears by default as a minimized window icon at the bottom of the
main window. To access the Symbol Table, double-click the icon, or click the Restore or
Maximize button on the icon (in Windows 95).

Symbol Table - untitled.sym

Zone_1

Zone_2

Armed

Panic_Alarm

LED

I0.0

I0.1

I0.2

I0.3

Q0.0

Alarm

Low_Alert

Q0.1

Q0.2

LED_Bit M0.0

LED_Bit M0.1

Zone 1 (switches A to F)

Enables the security system

Turns on the siren

Zone 2 (switches H to M)

Duplicate symbols
are displayed in
italics.

Symbol Name Address Comment

To clear a cell, press
delete key or spacebar
when cell is selected.

Figure 2-11 Example of a Symbol Table

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-14
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Editing Functions within the Symbol Table

The Symbol Table provides the following editing functions:

� Edit � Cut / Copy / Paste within a cell or from one cell to another.

� Edit � Cut / Copy / Paste one or several adjacent rows.

� Edit � Insert Row(s) above the row containing the cursor. You can also use the INSERT
or INS key for this function.

� Edit � Delete Row(s) for one or several highlighted adjacent rows. You can also use the
DELETE or DEL key for this function.

� To edit any cell containing data, use the arrow keys or mouse to select the cell you want
to edit. If you begin typing, the field clears and the new characters are entered. If you
double-click the mouse or press F2, the field becomes highlighted, and you can use the
arrow keys to move the editing cursor to the place you want to edit.

� Clicking the right mouse button displays a menu of editing functions which are available
with the Symbol Table editor.

Sorting Table Entries

After entering symbol names and their associated absolute addresses, you can sort the
Symbol Table alphabetically by symbol names or numerically by addresses in the following
ways:

� Select the menu command View � Sort Symbol Name to sort the symbol names in
alphabetical order.

� Select the menu command View � Sort Symbol Address to sort the absolute addresses
numerically in the following order for memory types: I, Q, M, C, T, and SM.

Displaying the Symbolic Addresses

After you create the Symbol Table for your program, you can use the menu command View �

Symbolic Addressing to enable or disable the use of symbolic addressing with the Program
Editor (ladder or STL) and the Status Chart. See Figure 2-12.

✂

Project Edit View CPU Debug Tools Setup Window Help

STEP 7-Micro/WIN - c:\microwin\project1.prj

View

Ladder Editor - untitled.ob1

Contacts F2 Normally Open

Start/stop switch

“Start1” “E-Stop1” Q0.0

Network 1

✓

✓

✓

STL

Ladder

Data Block

Symbol Table

Status Chart

Cross Reference

Element Usage

Symbolic Addressing

Toolbar

Status Bar

Zoom...

Figure 2-12 Displaying the Symbolic Addresses

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-15
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

2.8 Using the Status Chart

The Status Chart editor appears by default as a minimized window icon at the bottom of the
main window. To access the Status Chart, double-click the icon, or click the Restore or
Maximize button on the icon (in Windows 95).

You can use the Status Chart to read or write variables in your program. You cannot force
values in the PDS 210.

Reading and Writing Variables with the Status Chart

Figure 2-13 shows an example of a Status Chart. To read or write variables using the Status
Chart, follow these steps:

1. In the first cell in the Address column, enter the address or the symbol name of an
element from your program that you want to read or write, and press ENTER. Repeat this
step for all additional elements you want in the chart.

2. If the element is a bit (I, Q, or M, for example), the format is set as bit in the Format
column. If the element is a word, select the cell in the Format column and double-click or
press the SPACEBAR to cycle through the valid formats.

3. To view the current PLC value of the elements in your chart, click the Single Read
button or the Continuous Read button on the Status Chart.

You can click the Stop Read button to stop the updating of status.

4. To change a value, enter the new value in the Change Value to column and click the
Write button to write the value to the PDS 210.

Status Chart

Address Format
I0.0 Bit 2#0
I0.1 Bit 2#0

Q0.1 Bit 2#1

Change Value to

Q0.2 Bit 2#0
T0 Integer +84
MW0 Integer 4400

1
Current PLC Value

To change a value,
enter new value here
and click the Write
button.

Press the spacebar or
double-click in the cell
to select valid format.

Figure 2-13 Example of a Status Chart

Editing Addresses

To edit an address cell, use the arrow keys or mouse to select the cell you want to edit.

� If you begin typing, the field clears and the new characters are entered.

� If you double-click the mouse or press F2, the field becomes highlighted and you can use
the arrow keys to move the editing cursor to the place you want to edit.

� Clicking the right mouse button displays a menu of editing functions which are available
with the Status Chart editor.

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-16
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

2.9 Debugging and Monitoring Your Program

Using Single/Multiple Scans to Monitor Your Program

You can specify that the PDS 210 execute your program for a limited number of scans (from
1 scan to 65,535 scans). By selecting the number of scans for the PDS 210 to run, you can
monitor the program as it changes the process variables. Use the menu command
Debug � Execute Scans... to specify the number of scans to be executed. Figure 2-14
shows the dialog box for entering the number of scans for the CPU to execute.

Execute Scan

OK

Cancel

1Execute program scan(s)

Figure 2-14 Executing Your Program for a Specific Number of Scans

Displaying the Status of the Program in Ladder Logic

As shown in Figure 2-15, the program editor of STEP 7-Micro/WIN allows you to monitor the
status of the online program. (The program must be displaying ladder logic.) This allows you
to monitor the status of the instructions in the program as they are executed by the CPU.

✂

Project Edit View CPU Debug Tools Setup Window Help

STEP 7-Micro/WIN - c:\microwin\house.prj

Contacts Normally Open F4 F5 F8F7F6 F10F3F2

Debug

Execute Scans...

Ladder Status On

T0

>=I

+600

I0.3

I0.2

M0.1

S

1

Q0.3

S

1

M0.2

R

Sound the alarm!Network 1

Figure 2-15 Displaying the Status of a Program in Ladder Logic

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-17
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

2.10 Error Handling for the PDS 210

The PDS 210 classifies errors as either fatal errors or non-fatal errors. You can use
STEP 7-Micro/WIN to view the error codes that were generated by the error. Figure 2-16
shows the dialog box that displays the error code and the description of the error. Refer to
Appendix C for a complete listing of the error codes.

CPU Information

General Information

Close

Error Status Module Configuration

Module Errors
Module 0:

Module 1:

Module 2:

Module 3:

Not present

Not present

Not present

Not present

Module 4:

Module 5:

Module 6:

Not present

Not present

Not present

CPU Errors
Fatal:

NON-Fatal:

0

83

No fatal errors present.

Missing main end statement.

Use the description and the code
for troubleshooting the possible
cause of the error.

DP Status

NON-Fatal: 11

Figure 2-16 CPU Information Dialog: Error Status Tab

Responding to Fatal Errors

Fatal errors cause the PDS 210 to stop the execution of your program. Depending upon the
severity of the fatal error, it can render the PDS 210 incapable of performing any or all
functions. The objective for handling fatal errors is to bring the PDS 210 to a safe state from
which the PDS 210 can respond to interrogations about the existing error conditions. When a
fatal error is detected by the PDS 210, the PDS 210 changes to the STOP mode, turns on
the System Fault LED and the STOP LED, and turns off the outputs. The PDS 210 remains
in this condition until the fatal error condition is corrected.

Once you have made the changes to correct the fatal error condition, you must restart the
PDS 210. You can restart the PDS 210 by cycling power. Restarting the PDS 210 clears the
fatal error condition and performs power-up diagnostic testing to verify that the fatal error has
been corrected. If another fatal error condition is found, the PDS 210 again sets the fault LED
indicating that an error still exists. Otherwise, the PDS 210 begins normal operation.

There are several possible error conditions that can render the PDS 210 incapable of
communication. In these cases, you cannot view the error code from the PDS 210. These
errors indicate hardware failures that require the PDS 210 module to be repaired; these
conditions cannot be fixed by changes to the program or clearing the PDS 210 memory.

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

2-18
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Responding to Non-Fatal Errors

Non-fatal errors can degrade some aspect of the PDS 210 performance, but they do not
render the PDS 210 incapable of executing your program or from updating the I/O. As shown
in Figure 2-16, you can use STEP 7-Micro/WIN to view the error codes that were generated
by the non-fatal error. For the PDS 210, there are two basic categories of non-fatal errors:

� Run-time errors. All non-fatal errors detected in RUN mode are reflected in special
memory (SM) bits. Your program can monitor and evaluate these bits. Refer to
Appendix B for more information about the SM bits used for reporting non-fatal run-time
errors.

� Program-compile errors. The PDS 210 compiles the program as it downloads. If the
PDS 210 detects that the program violates a compilation rule, the download is aborted
and an error code is generated. (A program that was already downloaded to the PDS 210
would still exist in the EEPROM and would not be lost.) After you correct your program,
you can download it again.

The PDS 210 does not change to STOP mode when it detects a non-fatal error.

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

3-1
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Getting Started with a Sample Program

You can enter the program for the sample application on a computer running
STEP 7-Micro/WIN. To download the program, you must have the equipment shown in
Figure 3-1. The size of the sample program is 155 bytes.

Input Simulator for the PDS 210

Program Development Station
(PDS 210)

PC/PPI Communications Cable

Computer

STEP 7-Micro/WIN

Figure 3-1 Requirements to Run the Sample Program

Chapter Overview

Section Description Page

3.1 Defining the Requirements for the Application Example 3-2

3.2 Designing the Control Logic 3-4

3.3 Putting the Control Logic into a Program 3-9

3.4 Creating a Project with STEP 7-Micro/WIN 3-13

3.5 Creating a Symbol Table 3-14

3.6 Creating the Program 3-15

3.7 Creating a Status Chart 3-22

3.8 Downloading and Monitoring the Sample Program 3-23

3.9 Modifying the Sample Program 3-25

3

3-2
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

3.1 Defining the Requirements for the Application Example

Defining the Inputs and Outputs for the Application

This chapter describes a sample program for a home security system. As shown in
Figure 3-2, the program monitors two zones. Any breach of security results in an alarm being
sounded. The sample program uses the following inputs:

� Input 1 (I0.0) monitors zone 1 (entrance, living room, kitchen, and bedroom 3).

� Input 2 (I0.1) monitors zone 2 (bedroom 1, bedroom 2, bathroom, and rear entrance).

� Input 3 (I0.2) provides the arm/disarm switch for the security system.

� Input 4 (I0.3) provides a “panic button” to immediately turn on the alarm siren.

In addition to the inputs, the program uses the following outputs.

� Output 1 (Q0.0) controls the LED on the security system.

� Output 2 (Q0.1) turns on the siren to sound an alarm.

� Output 3 (Q0.2) turns on a low-level notification alert to signify that the alarm will be
turned on in a predetermined number of seconds.

� Output 4 (Q0.3) turns on an external interface relay (perhaps to an automatic dialing
machine).

Figure 3-3 shows a wiring diagram for the home security application.

Creating Symbolic Names for the Elements of the Program

Symbolic names help to document or define the specific memory locations or I/O used by
your program. Table 3-1 lists the symbolic names used by the program for the sample
application. The sample program also uses SM0.5 to generate an on/off (blinking) pattern for
the LED.

Table 3-1 Symbolic Names for the Application Example

Element Address Symbolic Name Description

I

I0.0 Zone_1 Normally Closed input for Zone 1

Inputs
I0.1 Zone_2 Normally Closed input for Zone 2

Inputs
I0.2 Armed Armed = closed, and disarmed = open

I0.3 Panic_Alarm Normally Open input for panic alarm

O

Q0.0 LED System LED (on if armed, or flashing if disarmed and
zone 1 or zone 2 open)

Outputs Q0.1 Alarm High-level alarm (siren)p

Q0.2 Low_Alert Low-level alert to disarm system

Q0.3 Modem Relay to start the modem dialer unit

Internal
M0.0 LED_Bit Stores the status for the LED

Internal
Memory

M0.1 Alarm_Bit Stores the status for the alarm
Memory

M0.2 Low_Bit Stores the status for the low-level alert

Timers
T0 Alert_Timer Provides a delay before the alarm turns on

Timers
T2 Exit_Timer Delay time after arming the system

Getting Started with a Sample Program

3-3
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Kitchen
Bath

Bedroom 3
Bedroom 2

Bedroom 1

Living Room

Front
Entrance

Rear
Entrance

D

C

B A

E

F I
H

J

K

L

M
Zone 1 Zone 2

Figure 3-2 Sample Application for a Home Security System

Modem Dialer
Relay

Q0.0

Q0.2

I0.0

I0.1

I0.2

I0.3

1M

ABCDEF
Zone 1

“Panic” Alarm

Arm/Disarm System

System LED

High-level Alarm

Low-level Alert

Inputs Outputs

HIJKLM
Zone 2

Q0.1

2L

Q0.3

1L

Figure 3-3 Wiring Diagram for the Sample Home Security Application

Getting Started with a Sample Program

3-4
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

3.2 Designing the Control Logic

Creating a program is more involved than just entering the instructions into a file. Individual
elements or tasks make up the control logic contained within the program. These elements
relate to the various instructions, which are then arranged into networks.

This section provides an insight into how the sample program was structured.

Defining the Operation of the Program

Before entering the instructions into a program, you must plan the tasks that the program is
to perform. For the home security system described in Section 3.1, the program must
evaluate the status of the four inputs and respond by turning on or off the four outputs. As
shown in Figure 3-4, the control logic of the program must perform the following tasks:

� If the system is not armed, the program flashes the LED (Q0.0) on and off when either
Zone 1 (I0.0) or Zone 2 (I0.1) is open.

� When the system is armed (by turning the key to the “on” or “arm” position, which turns
on I0.2), the program must start a delay timer which allows 90 seconds for the owner to
exit the house. During this delay time, the program does not respond when either zone
(I0.0 or I0.1) opens.

� If the system has been armed and the delay time for exiting the house has been
achieved, the program evaluates the status of both zones. If either zone (I0.0 or I0.1)
opens, the program starts a notification sequence that turns on the low-level alert buzzer
(Q0.2) and starts a timer. This allows a reminder (and time) for the owner to disarm the
system after returning home.

� Once the notification sequence has started, the program has two possible actions:

– If the system is disarmed (by turning the key to the “off” or “disarm” position, which
turns off I0.2), the program turns off the outputs (Q0.0 and Q0.2) and resets the
timers.

– If the system has not been disarmed within 60 seconds, the program turns on the
alarm and the modem dialer (Q0.1 and Q0.3).

� If the panic alarm (I0.3) is turned on, the program turns on the alarm and the modem
dialer (Q0.1 and Q0.3). The program performs this task regardless of the state of the
arm/disarm switch (I0.2) and does not perform the notification sequence that provides a
delay time for disarming the system.

� If the system is disarmed (by turning the key to the “off” or “disarm” position, which turns
off I0.2) after the alarm (Q0.1) has been turned on, the program turns off the outputs
(Q0.1 and Q0.3) and resets the timers.

Each of these tasks can be expressed as a sequence of instructions: the conditions of the
logic determine the action to be taken.

Because the CPU 210 provides immediate outputs, the program uses the internal memory
bits (M memory) to store the interim states of the logic relating to the physical outputs. After
evaluating the control logic, the program uses the states of these memory bits to turn the
outputs on or off.

Getting Started with a Sample Program

3-5
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Zone 1 Zone 2 Armed Panic Alarm

If not armed and either
Zone 1 or Zone 2 is open,
flash the LED on and off.

When armed turns on,
start the exit timer and
turn on the LED.

If the system is armed and the exit timer is >= 90 seconds,
and if either Zone 1 or Zone 2 is open, then start the alert
timer and turn on the low-level alert notification.

If not disarmed and the alert timer is >=
60 seconds, then sound the alarm, start the
modem dialer, and turn off the low-level alert.

Turn on the alarm and start
the modem dialer.

On and
Off On

On

Off

On

On

If disarmed, then turn off the outputs
and stop the alert timer.

Off

Figure 3-4 Basic Tasks for the Home Security Application Program

Getting Started with a Sample Program

3-6
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Designing the Control Logic for Arming and Disarming the System

Figures 3-5 and 3-6 shows the control logic for arming and disarming the security system.

� As shown in Figure 3-5, arming the security system activates (enables) the bits of
M memory that control the outputs (alarm siren and modem dialer). The control logic for
arming the system also provides a delay between the turning on of the arm/disarm switch
and the activation of the security system. This allows time for the owner to arm the
system and exit the house. (There is a different timer that controls a low-level alert
notification that allows the owner to disarm the system.)

� As shown in Figure 3-6, disarming the security system stops the notification and alarm
sequence.

Before the security system has been armed, the LED flashes on and off if one of the zones is
open. Figure 3-7 shows the control logic for using one of the SM bits (SM0.5) to generate the
on/off pulse for the LED.

LAD STL

Network

Armed

NETWORK
LD I0.2
S M0.0, 1
TON T2, +0

If the system is armed, then set the lamp bit and start the
exit timer.

LED_Bit

S

1

TONIN

PT

Exit_Timer

+0

Figure 3-5 Control Logic for Arming the Security System

LAD STL

Network

Panic_Alarm

/
LED_Bit

R

1

Armed

/

Alarm_Bit

R

1

Low_Bit

R

1

Modem

R

1

NETWORK
LDN I0.2
EU
AN I0.3
R M0.0, 1
R M0.1, 1
R M0.2, 1
R Q0.3, 1

If the system is not armed, and the panic alarm is not on,
then reset the lamp bit, the alarm bit, the low-level alert bit,
and the modem bit.

P

Figure 3-6 Control Logic for Disarming the Security System

Getting Started with a Sample Program

3-7
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

NETWORK
LDN I0.2
LDN I0.0
ON I0.1
ALD
A SM0.5
ED
S M0.0, 1

Network

LAD STL

Network

Zone_1

/
LED_Bit

S

1

Armed

/

Zone_2

/

SM0.5

Use the negative transition of SM0.5 to turn the LED on.

Use the positive transition of SM0.5 to turn the LED off.

N

Zone_1

/
LED_Bit

R

1

Armed

/

Zone_2

/

SM0.5

P

NETWORK
LDN I0.2
LDN I0.0
ON I0.1
ALD
A SM0.5
EU
R M0.0, 1

Figure 3-7 Control Logic for Flashing the LED On and Off

Designing the Control Logic for Turning On the Low-Level Alert Notification

On a breach of security (created when either Zone 1 or Zone 2 opens after the security
system has been armed), the program turns on the low-level alert notification. This allows the
owner a specified time to disarm the system (such as when when re-entering the house). As
shown in Figure 3-8, the program monitors the states of both zones and the arm/disarm
switch. It also allows for the exit time (90 seconds).

After a breach of security has been identified, the program starts the timer for the low-level
alert notification.

NETWORK
LDN I0.0
ON I0.1
A I0.2
AN M0.1
LDW>= T2, +900
= M0.2

Network

LAD STL

Network

Armed Low_BitZone_1

/

Zone_2

/

Alarm_bit

/

TONIN

PT

Alert_Timer

+0

Low_Bit

NETWORK
LD M0.2
TON T0, +0

If the system is armed and the alarm is not already on, then
turn on the low-level alert bit when either Zone 1 or Zone 2
opens.

If the low-level alarm bit is set (on), then start the Alert
timer.

Exit_Timer

>=I

+900

Figure 3-8 Control Logic for Turning On the Low-Level Alert Notification

Getting Started with a Sample Program

3-8
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Designing the Control Logic for Turning On the Alarm and Modem Dialer

Because the outputs turn on immediately, the program uses memory bits (M) for storing the
results of the control logic. See Figure 3-9. At the end of the program, these bits turn on (or
off) the outputs.

NETWORK
LD M0.0
= Q0.0

LAD STL

LED_Bit

Network

LED

If the LED bit is on, turn on the output for the system
LED.

Alarm_Bit

Network

Alarm

Low_Bit

Network

Low_Alert

If the Alarm bit is on, turn on the output for the alarm.

If the low-level alert bit is on, turn on the output for the
low level alert.

NETWORK
LD M0.1
= Q0.1

NETWORK
LD M0.2
= Q0.2

Figure 3-9 Control Logic for Turning On the Outputs

As shown in Figure 3-10, the memory bits for the alarm siren and the modem dialer are
turned on by either of two conditions:

� Someone pushes the “panic button” (regardless of the arm/disarm state of the system
and without providing the low-level alert notification).

� The system has not been disarmed during the 60 seconds that the low-level alert
notification has been on.

Turning on the alarm also resets the low-level alert notification.

NETWORK
LD I0.3
LDW>= T0, +600
A I0.2
OLD
S M0.1, 1
S Q0.3, 1
R M0.2, 1

LAD STL

Alert_Timer

>=I

+600

Panic_Alarm

Network

Armed

Alarm_Bit

S

1

Modem

S

1

Low_Bit

R

1

Figure 3-10 Control Logic for Enabling the Alarm and Modem Bits

Getting Started with a Sample Program

3-9
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

3.3 Putting the Control Logic into a Program

After you have designed the control logic for your application, you arrange the instructions
into a program. You can choose either STL or ladder for your program.

Figure 3-11 provides a listing of the ladder program for the sample program. This program
includes the control logic from Section 3.2. The program ends with the End instruction.

Sound the alarm!

Evaluate the system status.

Start the Alert timer.

If the system is armed, then set the lamp bit and start the exit timer.

T0

>=I

+600

I0.3

I0.2

M0.1

S

1

Q0.3

S

1

M0.2

R

I0.2 M0.2

S

I0.0

/

I0.1

/

M0.1

/

TONIN

PT

T0

+0

M0.2

(Continued)

T2

>=I

+900

TONIN

PT

T2

+0

I0.2 M0.0

S

1

1

1

Network 1

Network 2

Network 3

Network 4

Figure 3-11 Home Security Program Example in Ladder

Getting Started with a Sample Program

3-10
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

M0.0 Q0.0

M0.1 Q0.1

M0.2 Q0.2

Turn on the system LED.

Turn on the alarm siren.

Turn on the low-level alert notification.

End of the Program.

END

I0.0

/
M0.0

R

1

I0.2

/

I0.1

/

SM0.5

N

I0.0

/
M0.0

S

1

I0.2

/

I0.1

/

SM0.5

P

Use the positive transition to turn the LED off.

Use the negative transition to turn the LED on.

Reset everything if the system is disarmed.

I0.3

/
M0.0

R

1

I0.2

/

M0.1

R

1

M0.2

R

1

Q0.3

R

1

Network 5

Network 6

Network 7

Network 8

Network 9

Network 10

Network 11

P

Figure 3-11 Home Security Program Example in Ladder, continued

Getting Started with a Sample Program

3-11
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Table 3-2 provides a listing of the STL program for the sample program. This program
includes the control logic from Section 3.2. The program ends with the End instruction
(MEND).

Table 3-2 Sample Program in Statement List

STL Description

NETWORK 1
LD I0.3
LDW>= T0, +600
A I0.2
OLD
S M0.1, 1
S Q0.3, 1
R M0.2, 1

// if (the panic alarm has been turned on)
// or (if the alert timer is >= 60 seconds
// and the system is armed)
// then
// set High Level Alarm bit
// set Modem Dialer bit
// reset Low Level Alarm bit

NETWORK 2
LDN I0.0
ON I0.1
A I0.2
AN M0.1
AW>= T2, +900
S M0.2, 1

// if zone 1 is open
// or if zone 2 is open
// and the system is armed
// and the high-level alarm bit is not set
// and the exit timer is less than 90 seconds
// then set the low-level alert bit

NETWORK 3
LD M0.2
TON T0, +0

// if the low-level alert bit has been set,
// then start the alert timer

NETWORK 4
LD I0.2
S M0.0, 1
TON T2, +0

// when the system is armed
// set the LED bit
// and start the exit timer

NETWORK 5
LDN I0.2
EU
AN I0.3
R M0.0, 1
R M0.1, 1
R M0.2, 1
R Q0.3, 1

// if the system is not armed
// and the panic alarm is not on
// then
// reset LED bit
// reset High Level Alarm bit
// reset Low Level Alarm bit
// reset Modem Dialer

NETWORK 6
LDN I0.2
LDN I0.0
ON I0.1
ALD
A SM0.5
ED
R M0.0, 1

// if the system is not armed
// and if zone 1 is open
// or zone 2 is open
// and
// using the 1/2 second counter SM bit
// on the negative edge
// reset the LED bit

NETWORK 7
LDN I0.2
LDN I0.0
ON I0.1
ALD
A SM0.5
EU
S M0.0, 1

// if the system is not armed
// and if zone 1 is open
// or zone 2 is open
// and
// using the 1/2 second counter SM bit
// on the positive edge
// set the LED bit

NETWORK 8
LD M0.0
= Q0.0

// if the LED bit has been set
// turn on the LED output

Getting Started with a Sample Program

3-12
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Table 3-2 Sample Program in Statement List, continued

NETWORK 9
LD M0.1
= Q0.1

// if the high-level alarm bit has been set
// turn on the high-level alarm output

NETWORK 10
LD M0.2
= Q0.2

// if the low-level alert bit has been set
// turn on the low-level alert output

NETWORK 11
MEND // end of the main program

Getting Started with a Sample Program

3-13
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

3.4 Creating a Project with STEP 7-Micro/WIN

To create a new project, select the menu command Project � New..., as shown in
Figure 3-12. The CPU Type dialog box is displayed. Select “PDS 210” from the drop-down
list box.

You can name your project at any time; for this example, refer to Figure 3-13 and follow
these steps to name the project:

1. Select the menu command Project � Save As...

2. In the File Name field, type the following: house.prj

3. Click on the “OK” button.
✂

Project View CPU Setup HelpProject

LAD STL SYM STATDB1

New... Ctrl+N

Open... Ctrl+O

1 c:\microwin\project1.prj

2 c:\microwin\project2.prj

3 c:\microwin\project3.prj

Exit

CPU Type

CancelOK

Select or read the CPU type from your PLC if you would like the software to
limit the available options to only those supported by a specific CPU.

Read CPU Type

Communications...

PDS 210CPU Type:

Figure 3-12 Creating a New Project and Selecting the CPU Type

✂

Project Edit View CPU Debug Tools Setup Window HelpProject

New... Ctrl+N

Open... Ctrl+O

Close

Save All Ctrl+S

Save As...

Import

Export

Upload... Ctrl+U

Download... Ctrl+D

Page Setup...

Print Preview...

Print... Ctrl+P

Print Setup...

Exit

Save As Project

Cancel

OKFile name:

Help

Network...

Project

Save file as type:

c:

Drives:

sample.prj c:\
microwin

Folders:

c:\microwin

backup
samples

*.prj

Enter project
name here.

Figure 3-13 Naming the Sample Project

Getting Started with a Sample Program

3-14
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

3.5 Creating a Symbol Table

To make programming easier, you can define symbolic names (or symbols) for memory
addresses. You use the Symbol Table to define the set of symbols used to represent the
absolute addresses in the sample program. To open the Symbol Table editor, double-click
the icon, or click the restore or maximize button on the icon (in Windows 95). You can also
select the menu command View � Symbol Table...

Entering the Symbol Names

Figure 3-14 shows the list of symbol names and the corresponding addresses for the sample
program. To enter the symbol names, follow these steps:

1. Select the first cell in the Symbol Name column, and type the following: Zone_1

2. Press ENTER to move the focus to the first cell in the Address column. Type the address
I0.0 and press ENTER. The focus moves to the cell in the Comment column.
(Comments are optional, but they are a useful way to document the elements in your
program.)

3. Press ENTER to start the next symbol row, and repeat these steps for each of the
remaining symbol names and addresses.

4. Use the menu command Project � Save All to save your Symbol Table.

Symbol Name Address Comment

Zone_1

Zone_2

Armed

Panic_Alarm

LED

I0.0

I0.1

I0.2

I0.3

Q0.0

Alarm

Low_Alert

Q0.1

Q0.2

Modem Q0.3

LED_Bit M0.0

Alarm_Bit M0.1

Zone 1 (switches A to F)

Enables the security system

Turns on the siren via the panic button

Blinks to identify an open zone

Sounds an alarm

For disarming the system before siren

Enables external device (auto-dialer)

Stores the status for the LED

Stores the status for the alarm

Zone 2 (switches H to M)

Low_Bit M0.2

Alert_Timer T0

Stores the status for the alert

Delays the alarm (allow disarm)

Symbol Table - c:\microwin\house.sym

Exit_Timer T2 Time for exiting the house

Figure 3-14 Symbol Table for the Sample Program

Getting Started with a Sample Program

3-15
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

3.6 Entering the Program

You can enter the program in either statement list (STL) or ladder. You can also use either
absolute addressing or symbolic addressing.

To enter the program in STL, you open the STL Editor window and start typing the
instructions. (You use the View � STL menu command to change the editor from ladder to
STL.) Remember to put double slashes (//) before any comments and to end each line by
pressing ENTER.

To enter the program in STL, type the commands (with or without the comments) listed in
Table 3-2. You can cut, copy, and paste in the STL Editor. STEP 7-Micro/WIN also includes
search-and-replace functions.

Programming with Symbolic Addresses

Before you start entering your program, make sure the ladder view is set for symbolic
addressing. Use the menu command View � Symbolic Addressing and look for a check
mark next to the menu item, which indicates that symbolic addressing is enabled.

Note
Symbol names are case-sensitive. The name you enter must match exactly the uppercase
and lowercase characters entered in the symbol table. If there is any mismatch, the cursor
stays on the element and displays the “Add Symbol” dialog. You can then add the new
symbol to the Symbol Table, or cancel and correct the entry.

Using the Ladder Editor to Enter the Program

To access the Ladder Editor, double-click the icon at the bottom of the main window. (You
use the View � Ladder menu command to change the editor from STL to ladder.)
Figure 3-15 shows some of the basic tools you will use in the Ladder Editor.

Refer to Figure 3-11 for the program listing in ladder. Entering the comments is optional.

Contacts Normally Open

NETWORK TITLE (single line)Network 1

F4 F5 F8F7F6 F10
F3F2

Ladder Editor - c:\microwin\house.ob1

Normally open
contact button

Ladder Editor cursor

Normally closed
contact button

Output coil button

Vertical and
horizontal line
buttons

Family
listing

Instruction
listing

Figure 3-15 Some of the Basic Ladder Editor Tools

Getting Started with a Sample Program

3-16
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Refer to Figure 3-16 and follow these steps to enter the first network of the sample program:

1. Click the mouse cursor in the left-most position below the network title. Enter a normally
open contact by clicking the F4 toolbar button or by selecting “Contacts” from the family
listing and then selecting “Normally Open” from the instruction listing. A normally open
contact appears with the name “Zone_1” highlighted above it. (Every time you enter a
contact, the software displays the default address of I0.0 , which in this example is
defined as “Zone_1” in the Symbol Table.)

2. “Panic_Alarm” is the first element required for Network 1. While “Zone_1” is highlighted,
type either the symbol name Panic_Alarm or the absolute address I0.3 (the software
accepts entry of either form).

3. Press ENTER to confirm the first element. The symbol name “Panic_Alarm” is displayed.
The ladder cursor moves to the second column position.

4. Click the F8 toolbar button to insert a horizontal line. (You can also select “Lines” from the
family listing and then select “Horizontal” from the instruction listing.)

To change or replace one of the elements, move the cursor to that element and select the
new element. You can also cut, copy, or paste elements at the cursor location.

Contacts Normally Open

Network 1

F4 F5 F8F7F6 F10F3F2

Sound the alarm!
Click the toolbar
button to place
element.

Contacts Normally Open

Network 1

F4 F5 F8F7F6 F10F3F2

Sound the alarm!

“Zone_1”

Contacts Normally Open

Network 1

F4 F5 F8F7F6 F10
F3F2

Sound the alarm!

“Panic_Alarm”

Click the toolbar button
to insert a horizontal line
segment.

Enter the address:

I0.3
or
Panic_Alarm

Figure 3-16 Entering the First Contact of the First Network

Getting Started with a Sample Program

3-17
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Refer to Figure 3-17 and follow these steps to enter the output coil that ends the first rung of
the first network:

1. Select “Output Coils” from the family listing and select “Set” from the instruction listing.

2. Type either the symbolic name Alarm_Bit or the absolute address M0.1 in the
highlighted area.

3. Pressing ENTER highlights the “number of points” field (located underneath the output
coil). Press ENTER to accept the default value of 1. (The CPU 210 allows only one point
to be set or reset by any one Set or Reset instruction.)

4. Move the cursor to the position below the first contact.

Output Coils Set

Network 1

F4 F5 F8F7F6 F10F3F2

Sound the alarm!

“Panic_Alarm”

Reset

Output
Set

Output Coils Set

Network 1

F4 F5 F8F7F6 F10F3F2

Sound the alarm!

“Panic_Alarm”

S

1

Q0.0

Enter the address:

M0.1
or
Alarm_Bit

Output Coils Set

Network 1

F4 F5 F8F7F6 F10F3F2

Sound the alarm!

“Panic_Alarm”

S

1

“Alarm_Bit”

Position the cursor
below the first contact.

Select “Output Coils”
from the family listing.

Select “Set” from the
instruction listing.

Figure 3-17 Entering the Output Coil

Getting Started with a Sample Program

3-18
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Refer to Figure 3-18 and follow these steps to enter the two contacts on the second rung of
the first network:

1. Select “Contacts” from the family listing and select “>= Integer” from the instruction listing.
This inserts a comparison instruction at the cursor position. This instruction compares the
value of the notification timer (Alert_Timer) with the time value.

2. Type either the symbolic name Alert_Timer or the absolute address T0 in the
highlighted area. Pressing ENTER highlights the second value for the comparison.

3. Type 600 and press ENTER. This instruction becomes true (and turns on) when the timer
is greater than or equal to 600, which equals 60 seconds.

4. Click the F4 toolbar button to create a normally open contact. Type Armed (or I0.2) and
press ENTER.

Contacts >= Integer

Network 1

F4 F5 F8F7F6 F10F3F2

Sound the alarm!

“Panic_Alarm”

== Integer

Normally Open
Normally Closed

Not
<= Integer

Positive Transition
Negative Transition

>= Integer

Select “>= Integer” from the
instruction listing.

Contacts >= Integer

Network 1

F4 F5 F8F7F6 F10
F3F2

Sound the alarm!

“Panic_Alarm”

S

1

“Alarm_Bit”

VW0

>=I

VW0

Contacts Normally Open

Network 1

F4 F5 F8F7F6 F10
F3F2

Sound the alarm!

“Panic_Alarm”

S

1

“Alarm_Bit”

>=I

+600

“Alert_Timer” “Armed”

Enter the address:

T0
or
Alert_Timer Press ENTER and then

enter the time value:

600

Insert a normally open
contact and enter I0.2
(or Armed).

Select “Contacts” from
the family listing.

Figure 3-18 Entering the Comparison Instruction and Next Contact

Getting Started with a Sample Program

3-19
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Refer to Figure 3-19 and follow these steps to enter a vertical line and to copy the output coil
from the first rung:

1. Move the cursor to the horizontal line above the contact for “Armed” (or I0.2). Click the
F7 toolbar button to insert a vertical line that connects the first rung with the second rung.

2. Move the cursor to the output coil on the first rung. Use the menu command Edit � Copy
to copy the output coil to the clipboard.

3. Move the cursor down and use the menu command Edit � Paste to paste the output
coil. Type Modem (or Q0.3) in the highlighted field and press ENTER. Press ENTER
again to accept the default value of 1.

Lines Vertical

Network 1

F4 F5 F8F7F6 F10F3F2

Sound the alarm!

“Panic_Alarm”

S

1

“Alarm_Bit”

>=I

+600

“Alert_Timer” “Armed”
Click the toolbar button
to insert a vertical line.

Output Coils Set

Network 1

F4 F5 F8F7F6 F10F3F2

Sound the alarm!

“Panic_Alarm”

S

1

“Alarm_Bit”

>=I

+600

“Alert_Timer” “Armed”

Copy the Set instruction
by selecting the
Copy command from
the Edit menu.

Output Coils Set

Network 1

F4 F5 F8F7F6 F10F3F2

Sound the alarm!

“Panic_Alarm”

S

1

“Alarm_Bit”

>=I

+600

“Alert_Timer” “Armed”

Move the cursor vertically and
paste the instruction at the
cursor location. Use the
Paste command from the Edit
menu.

Enter the address (Q0.3 or
Modem) and press ENTER.
Press ENTER again to accept
the value (1).S

1

“Modem”

Position the cursor on
the top rung of the
network.

Figure 3-19 Entering a Vertical Line and Copying the Output Coil

Getting Started with a Sample Program

3-20
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Figure 3-20 shows the remaining steps for finishing the first network. After you have entered
the first network, move the cursor to the second network. Refer to Figure 3-11 and enter the
remaining networks of the sample program.

Lines Vertical

Network 1

F4 F5 F8F7F6 F10F3F2

Sound the alarm!

“Panic_Alarm”

S
1

“Alarm_Bit”

>=I

+600

“Alert_Timer” “Armed”

S
1

“Modem”

Click the toolbar button
to insert a vertical line.

Output Coils Reset

Network 1

F4 F5 F8F7F6 F10
F3F2

“Panic_Alarm”

S

1

“Alarm_Bit”

>=I

+600

“Alert_Timer” “Armed”

S
1

“Modem”

Sound the alarm!

>= Integer

Select “Reset” from the
instruction listing.

Output
Set
Reset

Output Coils Reset

Network 1

F4 F5 F8F7F6 F10
F3F2

“Panic_Alarm”

S
1

“Alarm_Bit”

>=I

+600

“Alert_Timer” “Armed”

S

1

“Modem”

Sound the alarm!

>= Integer

Enter the address (M0.2 or
Low_Bit) and the value (1).

The first network is now
complete.

R

1

“Low_Bit”

Select “Output Coils”
from the family listing.

Position the cursor over
the contact for “Armed”
(or I0.2).

Figure 3-20 Completing the First Network

Getting Started with a Sample Program

3-21
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Compiling the Program

After completing the sample program, check the syntax by selecting the menu command
CPU � Compile or by clicking the Compile button:

If you have entered all the networks correctly as shown in the sample program, you will get a
“Compile Successful” message that also includes information on the number of networks and
the amount of memory used by the program. Otherwise, the Compile message will indicate
which networks contain errors.

Saving the Sample Program

Saving the project saves all the components of your sample project. You save your project
by selecting the menu command Project � Save All or by clicking the Save button:

Getting Started with a Sample Program

3-22
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

3.7 Creating a Status Chart

To monitor the status of selected elements in the sample program, you create a Status Chart
containing the elements you want to monitor while running the program. You can use the
Status Chart to monitor and modify the program as it runs on your PDS 210; however, you
cannot monitor the status of a program running on a CPU 210.

STEP 7-Micro/WIN provides an easy method for creating a Status Chart: simply copy any or
all of the elements in the Symbol Table and paste them into a Status Chart.

Building a Status Chart

To access the Status Chart editor, double-click the icon at the bottom of the main window.
Then enter the elements for the sample program by following these steps:

1. Select the first cell in the Address column, and type the following: Zone_1

Press ENTER to confirm your entry. This element type can only be displayed in bit format
(either 1 or 0) so you cannot change the format type.

2. Select the next row, and repeat these steps for each of the remaining elements, as
shown in Figure 3-21.

You can use the menu command Edit � Insert Row(s) (or the INSERT or INS key) to
insert a blank row above the row containing the cursor.

Timers and counters can be displayed in other formats. With the focus in the Format column
cell, press the SPACEBAR to cycle through the formats that are valid for these element
types. For this example, select Signed for the timers.

Status Chart

Address Format Change Value ToCurrent PLC Value
Bit

Bit

Bit

Bit

Bit

“Zone_1”

Bit

Bit

Bit

Signed

2#0

2#0

2#0

2#0

“Zone_2”

“Armed”

“Panic_Alarm”

“LED”

“Alarm”

“Low_Alert”

“Modem”

“Alert_Timer”

2#0

2#0

2#0

2#0

Signed“Exit_Timer”

Figure 3-21 Status Chart for the Sample Program

Save your Status Chart by selecting the menu command Project � Save All or by clicking
the Save button:

Getting Started with a Sample Program

3-23
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

3.8 Downloading and Monitoring the Sample Program

Once you have downloaded your program to the PDS 210, you can use the Debug features
to monitor or debug the operation of your program.

Downloading the Project to the PDS 210

The PDS 210 must be in STOP mode for you to download a program. To download your
program, select the menu command Project � Download... . An information message tells
you whether or not the download operation was successful.

Note
STEP 7-Micro/WIN does not verify that your program uses memory or I/O addresses that
are valid for the PDS 210 or the CPU 210. If you attempt to download a program that uses
invalid addresses or program instructions that are not supported by the PDS 210, the
PDS 210 rejects the attempt to download the program and displays an error message.

You must ensure that all memory locations, I/O addresses, and instructions used by your
program are valid for the PDS 210 and CPU 210.

Using the Ladder Editor to Monitor the Status of the Program

Ladder status shows the current state of events in your program. Reopen the Ladder Editor
window, if necessary, and select the menu command Debug � Ladder Status On .

If you have an input simulator connected to the input terminals on your CPU, you can turn on
switches to see power flow and logic execution. For example, if you turn on switch I0.2 , the
power flow for Network 1 will be complete when timer T0 is greater than or equal to 600. The
network will look like the one shown in Figure 3-22: M0.1 and Q0.3 are set to 1, and M0.2 is
reset to 0.

✂

Project Edit View CPU Debug Tools Setup Window Help

STEP 7-Micro/WIN - c:\microwin\house.prj

Contacts Normally Open F4 F5 F8F7F6 F10F3F2

Debug

Execute Scans...

Ladder Status On

T0

>=I

+600

I0.3

I0.2

M0.1

S

1

Q0.3

S

1

M0.2

R

Sound the alarm!Network 1

Figure 3-22 Monitoring Status of the First Network

Getting Started with a Sample Program

3-24
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Using the Status Chart to Monitor and Modify the Current Values of the Program

You can use the Status Chart to monitor or modify the current values of any I/O points or
memory locations. Reopen the Status Chart window, if necessary, and select the menu
command Debug � Chart Status On , as shown in Figure 3-23. As you switch inputs on or
off with the CPU in RUN mode, the Status Chart shows the current status of each element.

� To view the current value of the elements in your program, click the Single Read
button or the Continuous Read button in the Status Chart window.

� To stop the reading of status, click the Stop button in the Status Chart window.

✂
Project Edit View CPU Debug Tools Setup Window Help

STEP 7-Micro/WIN - c:\microwin\house.prj

Status Chart

Address Format Change Value ToCurrent PLC Value
Bit

Bit

Bit

Bit

Bit

“Zone_1”

Bit

Bit

Bit

2#0

2#0

2#0

2#0

“Zone_2”

“Armed”

“Panic_Alarm”

“LED”

“Alarm”

“Low_Alert”

“Modem”

2#0

2#0

2#0
2#0

Debug

Execute Scans...

Single Read

Write

Chart Status On

Force Value

Unforce Value

Force Value

Unforce Value

Read All Forced

Unforce All

“Alert_Timer”

“Exit_Timer”

Figure 3-23 Monitoring the Status Chart of the Sample Program

Getting Started with a Sample Program

3-25
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

3.9 Modifying the Sample Program

You can use the following networks of control logic to modify the sample program. These
networks provide the following enhancements to the sample program:

� If Zone 1 is open, the LED flashes one time.

� If Zone 2 is open, the LED flashes two times.

� If both zones are open, the LED flashes three times (one short flash, followed by a pause
and then two short flashes).

The modified program uses the memory addresses shown in Table 3-3. If you used symbolic
addressing with your program, add these symbolic names and addresses to the Symbol
Table.

Table 3-3 Memory Locations Used to Modify the Sample Program

Element Address Symbolic Name Description

Internal
M0.7 Blink_Bit Stores the status for the LED

Internal
Memory

MW1 Step_Counter Tracks the blinking of the LED
Memory

MW3 Blink_Pattern Stores the pattern for flashing the LED on and off

Timers T1 Blink_Timer Increments the step counter

Creating the Blink Patterns for the LED

The program uses different bit patterns as the basis for the logic that turns the LED on and
off. Based on the condition, the program loads a value into the word that stores the blink
pattern. Figure 3-24 shows the networks that move the bit patterns into MW3. Use
STEP 7-Micro/WIN to enter the networks into the program.

NETWORK
LDN I0.0
A I0.1
MOVW +231, MW3

LAD STL

Network 6

I0.1I0.0

/

If Zone 1 is open and Zone 2 is closed, then load the
value 231 (1110011100) in MW3

MOV_W
EN

IN OUT+231 MW3

Network 7

I0.1

/
I0.0 MOV_W

EN

IN OUT+165 MW3

Network 8

I0.1

/
I0.0

/
MOV_W

EN

IN OUT+167 MW3

If Zone 1 is closed and Zone 2 is open, then load the
value 165 (1010010100) in MW3

If both Zone 1 and Zone 2 are open, then load the value
167 (1110010100) in MW3

NETWORK
LD I0.0
AN I0.1
MOVW +165, MW3

NETWORK
LDN I0.0
AN I0.1
MOVW +167, MW3

Figure 3-24 Control Logic for Lamp Operations

Getting Started with a Sample Program

3-26
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Turning the LED On and Off

The program uses a timer (T1) and the pattern stored in MW3 to turn the LED on and off. The
program increments MW1 to count the number of passes through the control logic for flashing
the lights; after 10 passes, the MW1 is reset to 0.

Figure 3-25 shows the control logic for starting the timer. The timer starts when the system is
armed, the light-blink timer bit is not set, and either Zone 1 or Zone 2 opens.

Network 9

LAD STL

TONIN

PT

T1

+0

M0.7
/

NETWORK
LDN M0.7
AN I0.2
LDN I0.0
ON I0.1
TON T1, +0

If the light-blink timer bit is not set, and the system is
armed, start the light-blink timer when either Zone 1 or
Zone 2 becomes open.

I0.2

/
I0.0

/

I0.1

/

Figure 3-25 Control Logic for Starting the Light-Blink Timer

Figure 3-26 shows the control logic for incrementing the count for the number of times that
the light-blink logic has been performed.

LAD STL

Network 10 NETWORK
LDW>= T1, +4
= M0.7
R M0.0, 1
INCW MW1

If the light-blink timer is less than or
equal to 400 ms, then set the light-blink
timer bit, reset the LED bit, and
increment the step counter.

T1

>=I

+4

M0.7

INC_W
EN

IN OUTMW1 MW1

M0.0

R

1

Figure 3-26 Control Logic for Setting the Timer Bit and Incrementing the Counter

Figure 3-27 shows the control logic for turning the LED on and off. Each pass through the
light-blink logic evaluates a different bit of MW3 (M4.0 to M4.7). Based on the pattern loaded
(see Figure 3-24), the LED turns on or off.

Figure 3-28 shows the control logic for resetting the count.

Getting Started with a Sample Program

3-27
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Network 11

LAD STL

NETWORK
LDW= MW1, +1
A M4.0
LDW= MW1, +2
A M4.1
LDW= MW1, +3
A M4.2
LDW= MW1, +6
A M4.5
LDW= MW1, +7
A M4.6
LDW= MW1, +8
A M4.7
OLD
AN I0.2
S M0.0, 1

If the step counter equals a particular
value and the corresponding bit pattern
is on, set the LED bit if the system is
not armed.

M4.0 I0.2

/
M0.0

S

1

MW1

==I

+1

M4.1MW1

==I

+2

M4.2MW1

==I

+3

M4.5MW1

==I

+6

M4.6MW1

==I

+7

M4.7MW1

==I

+8

Figure 3-27 Control Logic for Controlling the Blink Pattern

LAD STL

Network 12 NETWORK
LDW>= MW1, +10
LD I0.0
A I0.1
OLD
MOVW +0, MW1

If the step counter equals 10 and both Zone 1 and
Zone 2 are closed, then reset the step counter to 0.

MW1

>=I

+10

MOV_W
EN

IN OUT+0 MW1

I0.0 I0.1

Figure 3-28 Control Logic for Resetting the Counter

Getting Started with a Sample Program

3-28
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Getting Started with a Sample Program

4-1
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Basic Concepts for Programming the
CPU 210

Before you start to program your application using the CPU 210, you should become familiar
with some of its basic operational features.

Chapter Overview

Section Description Page

4.1 Guidelines for Designing a Micro PLC System 4-2

4.2 Concepts for Creating a Program 4-4

4.3 Understanding the Scan Cycle of the CPU 210 4-6

4.4 Understanding the Programming Languages 4-9

4.5 Understanding the Addresses of the Memory Areas 4-11

4.6 Sample Program Using an Interrupt Routine 4-14

4.7 Using the Analog Adjustment Potentiometer 4-16

4

4-2
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

4.1 Guidelines for Designing a Micro PLC System

There are many methods for designing a Micro PLC system. This section provides some
general guidelines that can apply to many design projects. Of course, you must follow the
directives of your own company’s procedures and of the accepted practices of your own
training and location. Figure 4-1 shows some of the basic steps in the design process.

Partition your process or machine.

Create the functional specifications of the units.

Specify the operator stations.

Create the PLC configuration drawings.

Create a list of symbolic signal-naming conventions (optional).

Design the hard-wired safety circuits.

Figure 4-1 Basic Steps for Planning a PLC System

Partitioning Your Process or Machine

Divide your process or machine into sections that have a level of independence from each
other. These partitions will determine the boundaries between controllers and will influence
the functional description specifications and the assignment of resources.

Creating the Functional Specifications

Write the descriptions of operation for each section of the process or machine. Include the
following topics:

� Input/output (I/O) points

� Functional description of the operation

� Permissives (states that must be achieved before allowing action) for each actuator
(solenoids, motors, drives, etc.)

� Description of the operator interface

� Interfaces with other sections of the process or machine

Basic Concepts for Programming the CPU 210

4-3
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Designing the Safety Circuits

Identify equipment requiring hard-wired logic for safety. Control devices can fail in an unsafe
manner, producing unexpected startup or change in the operation of machinery. Where
unexpected or incorrect operation of the machinery could result in physical injury to people
or significant property damage, consideration should be given to to the use of
electro-mechanical overrides which operate independently of the CPU 210 to prevent unsafe
operations.

The following tasks should be included in the design of safety circuits:

� Identify improper or unexpected operation of actuators that could be hazardous.

� Identify the conditions that would assure the operation is not hazardous, and determine
how to detect these conditions independently of the CPU 210.

� Identify how the CPU 210 and its I/O will affect the process when power is applied and
removed, and on detected errors. This information should only be used for designing for
the normal and expected off-normal operation, and should not be relied on for safety
purposes.

� Design manual or electro-mechanical safety overrides that will block the hazardous
operation independent of the CPU.

� Provide appropriate status information from the independent circuits to the CPU 210 so
that the program and any operator interfaces have necessary information.

� Identify any other safety-related requirements for safe operation of the process.

Specifying the Operator Stations

Based on the requirements of the functional specifications, create drawings of the operator
station. Include the following items:

� Overview showing the location of each operator station in relation to the process or
machine

� Mechanical layout of the devices (display, switches, lights, etc.) for the operator station

� Electrical drawings with the associated I/O of the CPU 210

Creating the PLC Configuration Drawings

Based on the requirements of the functional specification, create configuration drawings of
the control equipment. Include the following items:

� Overview showing the location of the CPU in relation to the process or machine

� Mechanical layout of the CPU 210 (including cabinets and other equipment)

� Electrical drawings for each CPU 210 (including the device model numbers and I/O
addresses)

Creating a List of Symbolic Names

If you choose to use symbolic names for addressing, create a list of symbolic names for the
absolute addresses. Include not only the physical I/O signals, but also the other elements
that will be used in your program.

Basic Concepts for Programming the CPU 210

4-4
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

4.2 Concepts for Creating a Program

Relating the Program to Inputs and Outputs

Figure 4-2 shows a simple diagram of how an electrical relay diagram relates to the
CPU 210. In this example, the state of the operator panel switch for opening the drain is
added to the states of other inputs. The calculations of these states then determine the state
for the output that goes to the solenoid that closes the drain. The CPU continuously cycles
through the program, reading and writing data.

The execution of the program follows a simplified flow of information: the state of the physical
input is copied to the memory area � the CPU 210 executes the program � whenever the
program modifies an output, the CPU 210 immediately updates the physical output. Each
memory area is assigned a mnemonic identifier (such as “I ” for input) that is used for
accessing the data stored in that area of memory.

S

Drain Solenoid

Operator Station

Input
Area

CPU 210

Input

Output

Opn_Drn_PB

Drain_Sol

Cls_Drn_PB A_Mtr_Fbk Drain_SolE_Stop_On

Figure 4-2 Relating the Program to Inputs and Outputs

Accessing Data in the Memory Areas

All of the memory areas of the CPU 210 have “absolute” addresses. You access a specific
location by entering an address (such as I0.0 for the first input point). An absolute address
for a memory area includes not only the area identifier (such as “M”), but also the size of data
to be accessed: W (word: two bytes). (The CPU 210 provides 3 words or 48 bits for the
M memory area.) The absolute address also includes a numeric value: either the number of
bytes from the beginning of the memory area (offset) or the device number. (This value is
dependent on the area identifier. See Section 4.5.)

Basic Concepts for Programming the CPU 210

4-5
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Organizing the Program

As shown in Figure 4-3, a program for the CPU 210 is structured into the following
organizational elements: the main program and an optional hardware interrupt routine.

� The main program stores the instructions that control your application. The instructions in
the main program are executed sequentially once per scan of the CPU. To terminate the
main program, use an Unconditional End coil in ladder or a main program end instruction
(MEND) in STL.

� The CPU 210 also allows one optional hardware interrupt routine. If you use the interrupt
routine in your program, the CPU executes these instructions on a specific hardware
event (the rising edge when I0.0 turns on). Place the interrupt routine after the end of
the main program (following the Unconditional End (MEND) instruction). Use a Return
From Interrupt (RETI) instruction to terminate the interrupt routine.

Section 4.6 provides an example of a program using an interrupt routine. The interrupt
routine is not executed as part of the normal scan cycle, but is executed when the
interrupt event occurs (which may be at any point in the scan cycle).

For additional information about designing and entering a program, see the sample
application in Chapter 3.

Main Program

.

.

.

MEND

Interrupt Routine (optional)

RETI

Main Program:
Executed once per scan

Interrupt Routine:
Executed on each occurrence of the
interrupt event

User Program

Figure 4-3 Program Structure for the CPU 210

Basic Concepts for Programming the CPU 210

4-6
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

4.3 Understanding the Scan Cycle of the CPU 210

The basic operation of the CPU 210 is very simple:

� The CPU reads the status of the inputs.

� The program that is stored in the CPU uses the inputs to evaluate the control logic. As
the program runs, the CPU writes the data to the outputs.

The CPU 210 continuously executes your program. If your program uses the optional
hardware interrupt routine, the interrupt routine can run anytime after the CPU executes the
Enable Interrupt (ENI) instruction in the main program segment.

Understanding the Basic Scan Cycle of the CPU 210

The CPU 210 executes your program in a continuous, cyclical series of tasks called a scan.
As shown in Figure 4-4, the CPU 210 performs the following tasks during the scan cycle:

1. During the first scan (after power is turned on) only, the CPU 210 clears the outputs (Q),
bit memory (M) area, and the current values for the timers (T). The CPU 210 clears these
elements only during the first scan.

If a memory cartridge is not installed, the CPU 210 restores the current values for the four
counters.

2. The CPU 210 filters the inputs and updates the value of the analog adjustment
potentiometer (stored in SMW2). This delays the scan by approximately 15 ms.

3. The CPU 210 executes the user program. As the program writes values to the outputs,
the CPU 210 immediately updates the outputs.

4. The CPU 210 updates the time base for the 100 ms timers.

The interrupt routine is not executed as part of the normal scan cycle, but is executed when
the interrupt event occurs (which may be at any point in the scan cycle). After the Enable
Interrupt (ENI) instruction in the main program segment has been executed, the CPU 210
executes the interrupt routine on the rising edge of I0.0 . The CPU 210 can run the interrupt
routine any time within the scan cycle.

Clear the outputs.

Clear M memory.

Clear the current values for
the timers.

Read the filtered inputs.

Update the analog
potentiometer value.

Execute the program.

Write the outputs.

Update the time base
for the timers.

First Scan Only

All Scans

After the interrupt routine has been enabled, interrupt events can start
the interrupt routine at any time in the scan,

CPU Tasks

Figure 4-4 Scan Cycle for the CPU 210

Basic Concepts for Programming the CPU 210

4-7
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Understanding the Basic Scan Cycle of the PDS 210

The scan cycle for the PDS 210 is similar to the scan cycle for the CPU 210. Because the
PDS 210 communicates with STEP 7-Micro/WIN, it must process any communication
requests. The PDS 210 also updates the timers before executing the program, which is
different from the CPU 210.

As shown in Figure 4-5, the PDS 210 performs the following tasks during the scan cycle:

1. During the first scan (after power is turned on) only, the PDS 210 clears the outputs (Q),
bit memory (M) area, and the current values for the timers (T). The PDS 210 clears these
elements only during the first scan.

2. The PDS 210 filters the inputs and updates the value of the analog adjustment
potentiometer (stored in SMW2). This delays the scan by approximately 15 ms.

3. The PDS 210 updates the time base for the 100 ms timers. (Notice that the PDS 210
updates the timers before executing the program.)

4. The PDS 210 executes the user program. As the program writes values to the outputs,
the PDS 210 immediately updates the outputs.

5. The PDS 210 processes any communication requests from STEP 7-Micro/WIN.

The interrupt routine is not executed as part of the normal scan cycle, but is executed when
the interrupt event occurs (which may be at any point in the scan cycle). After the Enable
Interrupt (ENI) instruction in the main program segment has been executed, the PDS 210
executes the interrupt routine on the rising edge of I0.0 . The PDS 210 can run the interrupt
routine any time within the scan cycle.

Clear the outputs.

Clear M memory.

Clear the current
values for the timers.

Read the filtered
inputs.

Update the analog
potentiometer value.

Update the time
base for the timers.

First Scan Only

All Scans

After the interrupt routine has been enabled, interrupt events can start the
interrupt routine at any time in the scan,

PDS Tasks

Process any
communication
requests.

Execute the
program.

Write the outputs.

Figure 4-5 Scan Cycle for the PDS 210

Basic Concepts for Programming the CPU 210

4-8
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Using the Debug Option to Specify the Number of Scans

STEP 7-Micro/WIN allows you to debug your program by specifying a number of scans to be
run on the PDS 210 before stopping. (See Section 2.9.) You can specify to run one scan or
several. The PDS 210 executes the first scan as if power were just turned on. At the end of
the specified number of scans, all of the outputs are cleared.

You can only use the debug option with the PDS 210.

As shown in Figure 4-6, the PDS 210 performs the following tasks when debugging a
program:

1. During the first scan only, the PDS 210 clears the outputs (Q), bit memory (M) area, and
the current values for the timers (T).

2. The PDS 210 filters the inputs and updates the value of the analog adjustment
potentiometer (stored in SMW2).

3. The PDS 210 updates the time base for the 100 ms timers.

4. The PDS 210 executes the user program. As the program writes values to the outputs,
the PDS 210 immediately updates the outputs.

5. The PDS 210 processes any communication requests from STEP 7-Micro/WIN.

6. If you specified more than 1 scan, the PDS 210 starts the next scan, starting with Step 2.

7. After the specified number of scans have been run, the PDS 210 clears all outputs and
disables the hardware interrupt.

Clear the outputs.

Clear M memory.

Clear the current
values for the timers.

Read the filtered
inputs.

Update the analog
potentiometer value.

Update the time
base for the
timers.

Single Scan

After the interrupt routine has been enabled, interrupt events can start
the interrupt routine at any time in the scan,

PDS Tasks

Process any
communication
requests.

Execute the
program.

Write the outputs.

Clear the outputs.

Multiple Scans

The PDS 210
executes the
number of
scans specified
by the software

Figure 4-6 Scan Cycle for the Debug Option

Basic Concepts for Programming the CPU 210

4-9
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

4.4 Understanding the Programming Languages

The CPU 210 and STEP 7-Micro/WIN support the following programming languages:

� Statement list (STL) is a set of mnemonic instructions that represent functions of the
CPU.

� Ladder is a graphical language that resembles the electrical relay diagrams for the
equipment.

STEP 7-Micro/WIN also provides two representations for displaying the addresses and the
programming instructions in the program: International and SIMATIC. Both the international
and SIMATIC representations refer to the same CPU 210 instruction set. There is a direct
correspondence between the International and the SIMATIC representation; both
representations have the same functionality.

Understanding the Basic Elements of Ladder

When you write a program in ladder, you create and arrange the graphical components to
form a network of logic. As shown in Figure 4-7, the following types of elements are available
for creating your program:

� Contacts: each of these elements represents a switch through which power can flow
when a switch is closed.

� Coils: each of these elements represents a relay that is energized by power flowing to
that relay.

� Boxes: each of these elements represents a function that is executed when power flows
to the box.

� Networks: this element forms a complete circuit. Power flows from the left power rail
through the closed contacts to energize the coils or boxes.

Output Coils Output F4 F5 F8F7F6 F10F3F2

I0.0 I0.1 Q0.0

Network

Left Power Rail

Network 2

T0I0.0

IN

PT

TON

+0

Box

Network 1

Network

NETWORK TITLE (single line)

Coil

NETWORK TITLE (single line)

Normally Open
Contact

Normally Closed
Contact

Figure 4-7 Basic Elements of Ladder

Basic Concepts for Programming the CPU 210

4-10
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Understanding the Statement List Instructions

Statement list (STL) is a programming language in which each statement in your program
includes an instruction that uses a mnemonic abbreviation to represent a function of the
CPU. You combine these instructions into a program to produce the control logic for your
application. Figure 4-8 shows the basic elements of a statement list program.

STL Editor - project1.ob1

//Conveyor Line Program

NETWORK 1 //Start Motor:
LD “Start1” //When I0.0 is on
AN “E-Stop1” //and I0.1 is not on,
= Q0.0 //then turn on conveyor motor.

NETWORK 2 //End of Program
MEND

STL

Begin each comment with
a double slash (//).

Instruction Operand

Figure 4-8 STL Editor Window with Sample Program

The STL instructions use a logic stack for solving your control logic. As shown in Figure 4-9,
this logic stack is eight bits deep by one bit wide. Most of the STL instructions work either
with the first bit or with the first and the second bits of the logic stack. New values can be
“pushed” (or added) onto the stack; when the top two bits of the stack are combined, the
stack is “popped” (reduced by one bit).

While most STL instructions only read the values in the logic stack, many STL instructions
also modify the values stored in the logic stack. Figure 4-9 shows three examples of how
three instructions use the logic stack.

S0
S1
S2
S3
S4
S5
S6
S7

Stack 0 - First stack level, or top of the stack
Stack 1 - Second stack level
Stack 2 - Third stack level
Stack 3 - Fourth stack level
Stack 4 - Fifth stack level
Stack 5 - Sixth stack level
Stack 6 - Seventh stack level
Stack 7 - Eighth stack level

Bits of the Logic Stack

Load (LD)
Loads a new value (nv) onto the
stack.

Before Load After Load

iv7 is lost.

And (A)
ANDs a new value (nv) with the top
of stack.

S0 = iv0 * nv

Or (O)
ORs a new value (nv) with the top
of stack.

S0 = iv0 + nv

iv0
iv1
iv2
iv3
iv4
iv5
iv6
iv7

nv
iv0
iv1
iv2
iv3
iv4
iv5
iv6

Before And After And

iv0
iv1
iv2
iv3
iv4
iv5
iv6
iv7

S0
iv1
iv2
iv3
iv4
iv5
iv6
iv7

Before Or After Or

iv0
iv1
iv2
iv3
iv4
iv5
iv6
iv7

S0
iv1
iv2
iv3
iv4
iv5
iv6
iv7

In these examples, “iv0” to “iv7” identify the initial values of the logic stack, “nv” identifies a new value provided by the instruction, and
“S0” identifies the calculated value that is stored in the logic stack.

Figure 4-9 Logic Stack of the CPU 210

Basic Concepts for Programming the CPU 210

4-11
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

4.5 Understanding the Addresses of the Memory Areas

The CPU 210 provides 4 digital input points and 4 digital output points. In addition to the I/O,
the CPU provides memory areas for storing information. These memory locations have
unique addresses that can be accessed by your program. Figure 4-10 shows the memory
areas and the range of addresses for the CPU 210.

I0.0 Q0.0
I0.1 Q0.1
I0.2 Q0.2
I0.3 Q0.3

M0.0 to M0.7
M1.0 to M1.7
M2.0 to M2.7
M3.0 to M3.7
M4.0 to M4.7
M5.0 to M5.7

T0
T1
T2
T3

SM0.0 to SM0.7
SM1.0 to SM1.7

SMW2

Bit Memory Area Timers Special Memory

Analog Adjustment

Inputs and Outputs

C0
C1
C2
C3

Counters

Internal Memory

Figure 4-10 Memory Addresses for the CPU 210

Accessing the data in words (16-bit units) allows the following ranges of integer values:

� Unsigned Integer: 0 to 65,535 (decimal)
0 to FFFF (hexadecimal)

� Signed Integer: -32,768 to +32,767 (decimal)
8000 to 7FFF (hexadecimal)

Using the Memory Address to Access Data

To access a bit in a memory area, you specify the address, which includes the memory area
identifier, the byte address, and the bit number. Figure 4-11 shows an example of addressing
a bit (which is also called “byte.bit” addressing). In this example, the memory area and byte
address (M=bit memory area, and 3=byte 3) are followed by a period (“.”) to separate the bit
address (bit 4).

M 3 4
7 6 5 4 3 2 1 0

MSB LSB

M 0
M 1

M 2
M 3

M 4

M 5

MSB = most significant bit,and LSB = least significant bit

.

Area identifier (M = bit memory area)

Byte address: byte 3 (the fourth byte)

Period separates the byte address
from the bit number

Bit of byte, or bit number: bit 4 of 8 (0 to 7)

Figure 4-11 Accessing a Bit of Data in the CPU Memory (Byte.Bit Addressing)

Basic Concepts for Programming the CPU 210

4-12
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

You can access data in many CPU memory areas (T, C, M, and SM) as words. To access a
word of data in the CPU memory, you must specify the address in a similar way to the
address for a bit. This includes an area identifier, data size designation, and the starting byte
address of the value, as shown in Figure 4-12. Timer (T) and counter (C) data are accessed
by using an address format that includes an area identifier and a device number.

M W 2

Area identifier (M memory)

Access to a word size
Byte address

MW2 MB2 MB3
15 8

MSB
7 0

LSB

Most significant byte

Least significant byte

Figure 4-12 Accessing a Word of Data in the CPU Memory

Addressing the Input Image Register (I)

As described in Section 4.2, the CPU samples the physical input points at the beginning of
each scan cycle and writes the filtered values to the input image register.

Format: Bit I0 .[bit address] I0.1

Addressing the Outputs (Q)

When the control logic of the program turns an output coil on, the CPU immediately turns that
output on.

Format: Bit Q0.[bit address] Q0.0

Addressing the Bit Memory (M) Area

You can use the internal memory bits (M memory) as control relays to store the intermediate
status of an operation or other control information.

Format: Bit M[byte address].[bit address] M2.7
Word M[size][starting byte address] MW0

Addressing the Special Memory (SM) Bits

The SM bits provide a means for communicating information between the CPU and your
program. You can use these bits to select and control some of the special functions of the
CPU 210, such as a bit that turns on for the first scan, bits that toggle at fixed rates, or a word
that stores the value of the analog adjustment potentiometer.

For more information about the SM bits, see Appendix B. While the SM area is based on bits,
you can access the data in this area as bits or (for the analog adjustment) a word.

Format: Bit SM[byte address].[bit address] SM0.1
Word SM[size][starting byte address] SMW2

Basic Concepts for Programming the CPU 210

4-13
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Addressing the Timer (T) Memory Area

Timers are devices that count increments of time. The four timers (T0 to T3) have resolutions
(time-base increments) of 100 ms. The current value of each timer is stored as a 16-bit
(word) signed integer. You access the current value by using the timer address (T + timer
number).

Format: T[timer number] T0

Addressing the Counter (C) Memory Area

Counters are devices that count each low-to-high transition event on the counter input(s).
The four counters (C0 to C3) provided by the CPU 210 count both up and down. The current
value of each counter stores the accumulated count as a 16-bit (word) signed integer.

Format: C[counter number] C2

Using Constant Values

Many of the programming instructions for the CPU 210 allow you to use constant values.
These constants can only be word-length, signed integers. The CPU stores all constants as
binary numbers, which can then be represented in decimal, hexadecimal, or ASCII formats.

Decimal Format: [decimal value]
Hexadecimal Format: 16#[hexadecimal value]
ASCII Format: ’[ASCII text]’

The CPU 210 does not support “data typing” or data checking (such as specifying that the
constant is stored as an integer or a signed integer) and does not check for a certain data
type. For example, an LDW>= instruction can use the value in MW2 as a signed integer
value, while a MOVW instruction can use the same value in MW2 as an unsigned binary
value.

The following examples show constants for decimal, hexadecimal, and ASCII format:

� Decimal constant: 20047

� Hexadecimal constant: 16#4E4F

� ASCII constant: ’AD’ (ASCII text goes between the apostrophes—also known
as “single-quote marks.”)

Basic Concepts for Programming the CPU 210

4-14
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

4.6 Sample Program Using an Interrupt Routine

You can use the hardware interrupt of the CPU 210 to control tasks that require high-speed
counting functions. For example, you can use the CPU 210 to count a pulse train from an
RTD sensor instrument and control a resistance heater. Figure 4-13 shows a sample
application for the following tasks:

1. An instrument (such as a PT100 RTD sensor) measures the temperature, and an RTD
module generates an output pulse train that is proportional to the temperature.

2. Using the hardware interrupt event (the rising edge of I0.0), the CPU 210 counts the
pulses that it receives over a period of time (5 seconds). Based on the count (which
relates to the temperature), the CPU 210 turns a digital output on or off.

3. The power contactor turns the resistance heater on or off, based on the state of the
output of the CPU 210.

Figure 4-14 shows a sample program for this application example. This example counts up
to 3 kHz.

Pulse train waveform
(up to 3 kHz)

1.

Temperature measurement (using a PT100 RTD sensor)

The RTD module converts the temperature to a pulse train.

Counts per 5 seconds
(relates to temperature)

OFF

ON

0

15200

30000

Heater operation

2.

The program in the CPU 210 monitors
the temperature and controls the heat
source.

3.

The power contactor controls the
resistance heating element.

Figure 4-13 Sample Application Using the Hardware Interrupt

Basic Concepts for Programming the CPU 210

4-15
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Network 1
LD I0.1
A M0.0
TON T0, +0
EU
MOVW +0, MW2
ENI

Network 2
LD SM0.0
S M0.0, 1

Network 3
LDW>= T0, +50
DISI
R M0.0, 1

Network 4
LD M0.0
JMP 0

Network 5
LDN M0.0
A I0.1
AW<= MW2, +15200
= Q0.0

Network 6
LBL 0

Network 7
MEND

Network 8
INT 0

Network 9
INCW MW2

Network 10
RETI

Ladder STLMain Program

RETI

Network 1

Network 2

MOV_W
EN

IN OUT+0 MW2

ENI

Network 3

END

Network 5

I0.1

SM0.0

Network 9

INC_W
EN

IN OUTMW2 MW2

Network 10

M0.0

TONIN

PT

T0

P

+0

M0.0

S

1

Network 1: Turn on timer T0, enable the
interrupt routine, and initialize the counter
variable (MW2).

Network 2: Turn the timer on after it has
been turned off.

Network 3: After 5 seconds, turn off the
timer and disable the interrupt routine.

Network 4: While the timer is executing,
jump over the logic that tests the number
of counts.

Network 5: If timer has stopped, turn on
Q0.0 if the number of counts is less than
or equal to 15200.

T0

>=I

+50
DISI

Network 4

JMP
0M0.0

M0.0

R

1

/
M0.0 I0.1 MW2

<=I

+15200

Q0.0

Network 7

Network 8

INT
0

Network 6

LBL
0

Network 6: Destination for the jump
instruction (Network 4).

Network 7: End of the main program
segment.

Network 8: Identifies the high-speed
counter interrupt routine. This interrupt
routine can count up to 3 kHz.

Network 9: Increments the counter (MW2)
for each positive transition of I0.0.

Network 10: Returns to the main program
segment.

Interrupt Routine

Figure 4-14 Using an Interrupt Routine to Provide a High-Speed Counter

Basic Concepts for Programming the CPU 210

4-16
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

4.7 Using the Analog Adjustment Potentiometer

As shown in Figure 4-15, your CPU 210 provides one analog adjustment potentiometer
(located under the access cover of the module). You can adjust this potentiometer to
increase or decrease values which are stored in bytes of Special Memory (SMW2). Your
program can use this read-only value for a variety of functions, such as updating the current
value for a timer or a counter, entering or changing the preset values, or setting limits.

You use a small screwdriver to make the adjustments: turn the potentiometer clockwise (to
the right) to increase the value, and counter-clockwise (to the left) to decrease the value.

Analog Adjustment
potentiometer

M L+ 0.0 0.1 0.2 0.3
DC
OUTPUTS ↓ M L+ 24V DC

Figure 4-15 Analog Adjustment Potentiometer

SMW2 stores the digital value that represents the position of the analog adjustment
potentiometer.

The CPU 210 samples the analog adjustment potentiometer at least three times a second
and has a range from 0 to 255. The new value of the analog adjustment potentiometer is
written to SMW2 at the beginning of the next scan.

The analog adjustment potentiometer on the PDS 210 has a nominal range of 0 to 255, with
a guaranteed range of 10 to 200.

Figure 4-16 shows a sample program that uses the value entered with the analog adjustment
potentiometer.

STL

Network 1
LD I0.0
MOVW SMW2, MW0

Network 2
LDN M2.0
TON T0, 0

Network 3
LDW>= T0, MW0
= M2.0

Read the analog adjustment
value and store that value in
MW0.

Start timer T0.

LAD

Turn on M2.0 when T0
reaches the value entered
with the analog adjustment.

M2.0T0

>=I

MW0

M2.0

/

Network 1
MOV_W

EN

IN OUTSMW2 MW0

I0.0

TONIN

PT

T0

+0

Network 2

Network 3

Figure 4-16 Sample Program for Using the Analog Adjustment

Basic Concepts for Programming the CPU 210

5-1
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Instruction Set

The following conventions are used in this chapter to illustrate the equivalent ladder and
statement list instructions:

L
A
D

S
T
L

= n

n
Ladder (LAD)
representation

Statement list (STL)
representation

JMP

END

Conditional: executes
according to condition of
preceding logic

Unconditional: executes
without preceding logic

Chapter Overview

Section Description Page

5.1 Valid Ranges for the CPU 210 and PDS 210 5-2

5.2 Contact Instructions 5-3

5.3 Output Instructions 5-5

5.4 Timer Instructions 5-6

5.5 Counter Instructions 5-8

5.6 Increment and Decrement Instructions 5-9

5.7 Move Instruction 5-10

5.8 Program Control Instructions 5-11

5.9 Logic Stack Instructions 5-13

5.10 Interrupt Instructions 5-14

5

5-2
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

5.1 Valid Ranges for the CPU 210 and PDS 210

Valid Operand Ranges

Table 5-1 provides the valid ranges of the operands used to access data in the different
memory areas. These ranges vary according to the size of the data being accessed.

Table 5-1 Operand Ranges

Access Method CPU 210 and PDS 210

Bit Access

(Byte.bit)

I 0.0 to 0.3
Q 0.0 to 0.3
M 0.0 to 5.7
SM 0.0 to 1.7

Word Access T 0 to 3
C 0 to 3
MW 0 to 4
SMW 0 to 2
Constant

Instruction Set

5-3
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

5.2 Contact Instructions

Standard Contacts

The Normally Open contact is closed (on) when the bit value of
address n = 1.

In STL, the normally open contact is represented by the Load ,
And , and Or instructions. These instructions Load, AND, or OR
the bit value of address n to the top of the stack.

The Normally Closed contact is closed (on) when the bit value
of address n = 0.

In STL, the normally closed contact is represented by the Load
Not , And Not , and Or Not instructions. These instructions
Load, AND, or OR the logical Not of the bit value of address n to
the top of the stack.

Operands: n: I, M, SM

These instructions obtain the referenced value from the image
register, which is updated at the beginning of each CPU scan.

Not

The Not contact changes the state of power flow. When power
flow reaches the Not contact, it stops. When power flow does
not reach the Not contact, it sources power flow.

In STL, the Not instruction changes the value on the top of the
stack from 0 to 1, or from 1 to 0.

Operands: none

Positive, Negative Transition

The Positive Transition contact allows power to flow for one
scan for each off-to-on transition. In STL, the Positive Transition
contact is represented by the Edge Up instruction. Upon
detection of a 0-to-1 transition in the value on the top of the
stack, the top of the stack value is set to 1; otherwise, it is set to
0.

The Negative Transition contact allows power to flow for one
scan, for each on-to-off transition. In STL, the Negative
Transition contact is represented by the Edge Down instruction.
Upon detection of a 1-to-0 transition in the value on the top of
the stack, the top of the stack value is set to 1; otherwise, it is
set to 0.

Operands: none

You can have a total of 32 transition instructions in a program. These can be any
combination of Positive Transition (EU) and Negative Transition (ED) instructions.

Instruction Set

L
A
D

S
T
L

LD n
A n
O n

LDN n
AN n
ON n

n

n
/

L
A
D

S
T
L

NOT

NOT

L
A
D

S
T
L

P

N

EU

ED

5-4
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Compare Word Integer

The Compare Word Integer instruction is used to compare two
values: n1 = n2, n1 >= n2, or n1 <= n2.

Operands: n1: T, C, MW, SMW

n2: T, C, MW, SMW, Constant

In ladder, the contact is on when the comparison is true.

In STL, the instructions Load, AND, or OR a 1 with the top of
stack when the comparison is true.

Word comparisons are signed (16#7FFF > 16#8000).

You can create a <>, <, or > comparison by using the Not
instruction with the =, >=, or <= compare instruction. The
following sequence is equivalent to a <> comparison of MW0 to
50:

LDW= MW0, 50
NOT

Contact Examples

NETWORK 1
LD I0.0
A I0.1
= Q0.0
NETWORK 2
LD I0.0
NOT
= Q0.1
NETWORK 3
LD I0.1
ED
= Q0.2
NETWORK 4
LDW>= MW0, MW2
= Q0.3

Network 1
Q0.0

LAD STL

I0.0 I0.1

Network 2
Q0.1I0.0

NOT

Network 3
Q0.2I0.1

N

Network 4
Q0.3MW0

MW2

>=I

Timing Diagram

I0.0

I0.1

Q0.0

Q0.1

Q0.2

Q0.3
MW0 >= MW2 MW0 < MW2

On for one scan

Figure 5-1 Example of Boolean Contact Instructions

Instruction Set

L
A
D

S
T
L

LDW= n1, n2
AW= n1, n2
OW= n1, n2

LDW>= n1, n2
AW>= n1, n2
OW>= n1, n2

LDW<= n1, n2
AW<= n1, n2
OW<= n1, n2

n1

==I

n2

n1

>=I

n2

n1

<=I

n2

5-5
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

5.3 Output Instructions

Output

When the Output instruction is executed, the specified
parameter (n) is turned on.

In STL, the output instruction copies the top of the stack to the
specified parameter (n).

Operands: n: Q, M

Set, Reset

When the Set and Reset instructions are executed, the point
specified by S_BIT is set (turned on) or reset (turned off).

Operands: S_BIT: Q, M

Output Example

NETWORK
LD I0.0
= Q0.0
S Q0.1, 1
R Q0.2, 1

Network 1

Q0.0

LAD STL

I0.0

S
Q0.1

R
Q0.2

Timing Diagram

I0.0

Q0.0

Q0.1

Q0.2

1

1

Figure 5-2 Example of Output Instructions

Instruction Set

L
A
D

S
T
L

= n

n

L
A
D

S
T
L

S S_BIT, 1

S_BIT

S

1

S_BIT

R
1

R S_BIT, 1

5-6
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

5.4 Timer Instructions

You can use the timer to implement time-based counting functions. The timer times up while
the enabling input is on. When the enabling input is off, the timer automatically resets. The
timer is best used when you are timing a single interval.

On-Delay Timer

The On-Delay Timer instruction times up to the maximum value
when enabled. The timer resets when disabled, and stops
timing when it reaches the maximum value (3276.7 seconds).

Operands: Tx: T0 to T3

PT: 0 (preset value is not used)

Timers in the CPU 210 do not use the preset value. The timer
counts time for as long as it is enabled. Use a Compare Word
instruction to detect the timer value.

Each timer has a 100-ms resolution, with a maximum value of 3276.7 seconds. Once
enabled, the timer counts up to the maximum value and stops, unless it is disabled prior to
reaching the maximum value. Disabling the timer resets the timer value to zero (0).

Understanding How the CPU 210 Updates the Timers

The timers in the CPU 210 have a 100-ms resolution: each timer counts the number of
100-ms intervals that have elapsed since the timer was last updated. The timer is updated by
adding the accumulated number of 100-ms intervals (since the beginning of the previous
scan) to the current value (for that timer) when the timer instruction is executed.

The update of the timers is not automatic, since the current value of a timer is updated only if
the timer instruction is executed. Consequently, if a timer is enabled but the timer instruction
is not executed each scan, the current value for that timer will not be updated, and it will lose
time. Likewise, if the same 100-ms timer instruction is executed multiple times in a single
scan, the number of 100-ms intervals will be added to the timer’s current value multiple
times, and it will gain time. For this reason, you should use timers only where the timer
instruction will be executed exactly once per scan.

Note
The process of accumulating 100-ms intervals is performed independently of the enabling
and disabling of timers, so a given 100-ms timer will be enabled at a point somewhere
within the current 100-ms interval. This means that a timed interval for a given 100-ms
timer can be up to 100 ms short. Set the parameter for the Compare Word instruction for a
value of one greater than the minimum desired timed interval. For example, to guarantee
a timed interval of at least 2100 ms, set the value of the Compare Word instruction to 22
(2100 ms equals 21 100-ms units, plus 1 100-ms unit equals 22 100-ms units).

Instruction Set

L
A
D

S
T
L

TON Tx, 0

TONIN

PT

Tx

5-7
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Timer Example

LAD STL

Network
LD I0.2
TON T1, 0

Network
LDW >= T1, 3
= Q0.2

I0.2

Timing Diagram

T1 (current)

T1 >= 3

Q0.2

TONIN

PT

T1

Q0.2T1

>=I

+3

0

I0.2

T1 >= 3

Figure 5-3 Example of the Timer Instruction

TONIN

PT

T0

M0.0T0

>=I

+30

0

M0.0

/

LAD STL

Network
LDN M0.0 //Enable/disable the timer
TON T0, 0 //Select timer T0

Network
LDW>= T0, 30 //Every 3 seconds,
= M0.0 //Turn on M0.0 (which then

//disables the timer)

Figure 5-4 Example of an Automatically Retriggered One-Shot Timer

Instruction Set

5-8
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

5.5 Counter Instructions

The Up/Down Counter counts up each time the count-up input transitions from off to on, and
counts down each time the count-down input transitions from off to on. The counter resets
when the reset input turns on. Upon reaching maximum value (32,767), the next rising edge
at the count-up input will cause the current count to wrap around to the minimum value
(-32,768). Likewise on reaching the minimum value (-32,768), the next rising edge at the
count-down input will cause the current count to wrap around to the maximum value
(32,767).

The Up/Down counter has a current value that maintains the current count. Use the counter
number to reference the current value. Since there is one current value for each counter, do
not assign the same number to more than one counter.

Up/Down Counter

The Up/Down Counter instruction counts up on rising edges of
the Count Up (CU) input. It counts down on the rising edges of
the Count Down (CD) input. The counter resets when the Reset
(R) input turns on

In STL, the Reset input is the top of the stack value, the Count
Down input is the value loaded in the second stack location,
and the Count Up input is the value loaded in the third stack
location.

Operands: Cx: C0 to C3

PV: 0 (preset value is not used)

Counter Example

I0.3 Up

Network
LD I0.3 //Count Up Clock
LD I0.2 //Count Down Clock
LD I0.1 //Reset
CTUD C1, 0

Network
LDW>= C1, 4
= Q0.2

Timing Diagram

LAD STL

I0.2 Down

I0.3

I0.2

0

I0.1

I0.1 Reset

0
1

2
3

4
5

4
3

4
5

C1 Current

Q0.2

Q0.2C1

>=I

+4

C1

CTUDCU

R

PV

CD

Figure 5-5 Example of the Counter Instruction

Instruction Set

L
A
D

S
T
L

CTUD Cx, PV

Cx

CTUDCU

R

PV

CD

5-9
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

5.6 Increment and Decrement Instructions

Increment Word, Decrement Word

The Increment Word and Decrement Word instructions add or
subtract 1 to or from the input word.

Operands: IN: T, C, MW

OUT: T, C, MW

In ladder: IN + 1 = OUT
IN - 1 = OUT

In STL: OUT + 1 = OUT
OUT - 1 = OUT

Increment and decrement word operations are signed
(16#7FFF > 16#8000).

When programming in ladder, if you specify the address for IN
to be the same address as OUT, you can reduce the amount of
memory required.

These instructions affect the following Special Memory bits:

SM1.0 (zero); SM1.1 (overflow); SM1.2 (negative)

Increment, Decrement Example

LAD STL

Network
LD I0.0
INCW MW0
DECW MW2

INC_W
EN

INMW0 OUT MW0

DEC_W
EN

INMW2 OUT MW2

125

increment

MW0

MW0

5000

4999

Application

decrement

MW2

MW2

I0.0

Increment Word Decrement Word

126

Figure 5-6 Example of Increment/Decrement Instructions

Instruction Set

L
A
D

S
T
L

INCW OUT

DECW OUT

INC_W
EN

IN OUT

DEC_W
EN

IN OUT

5-10
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

5.7 Move Instruction

Move Word

The Move Word instruction moves the input word (IN) to the
output word (OUT). The input word is not altered by the move.

Operands: IN: T, C, MW, SMW, Constant

OUT: T, C, MW

Move Examples

LAD STL

Network
LD I0.1
MOVW SMW2, MW2

I0.1 MOV_W

EN

OUT MW2SMW2 IN

 Application

127SMW2

MW2

move

127

Move

Figure 5-7 Example of Move Instruction

Instruction Set

L
A
D

S
T
L

MOVW IN, OUT

MOV_W
EN

IN OUT

5-11
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

5.8 Program Control Instructions

END

The Unconditional END coil is the last instruction in (or,
terminates) the main user program. In STL, the unconditional
END operation is represented by the MEND instruction.

Operands: None

You must terminate the main program with an unconditional
END (MEND) instruction.

Watchdog Reset

The Watchdog Reset instruction allows the CPU system
watchdog timer to be retriggered. This extends the time the
scan is allowed to take without getting a watchdog error.

Operands: None

Considerations for Using the WDR Instruction to Reset the Watchdog Timer

You should use the Watchdog Reset instruction carefully. If you use looping instructions to
either prevent scan completion, or to excessively delay the completion of the scan, the
following processes are inhibited until the scan cycle is terminated:

� Inputs will not update

� Special memory (SM) will not update (SM0, SMW2)

� Timers will not properly accumulate time for scans exceeding 25 seconds

Note
If you expect your scan time to exceed 300 ms, or if you expect a burst of interrupt activity
that may prevent completion of the main scan for more than 300 ms, you should use the
WDR instruction to re-trigger the watchdog timer.

Instruction Set

L
A
D

S
T
L

END

MEND

L
A
D

S
T
L

WDR

WDR

5-12
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

END and WDR Example

M0.1

.

.

.

When M0.1 is on, retrigger the
Watchdog Reset (WDR) to allow
the scan time to be extended.

Terminate the main program.

Network
LD M0.1
WDR
.
.
.
Network
MEND

Network 15

Network 78

WDR

END

LAD STL

Figure 5-8 Example of END and WDR Instructions

Jump to Label, Label

The Jump to Label instruction performs a branch to the
specified label (n) within the program. When a jump is taken, the
top of stack value is always a logical 1.

The Label instruction marks the location of the jump destination
(n).

Operands: n: 0 to 63

Both the Jump and corresponding Label must be in the main
program or in the interrupt routine. You cannot jump from the
main program to a label in the interrupt routine. Likewise, you
cannot jump from the interrupt routine to a label outside the
interrupt routine.

Jump to Label Example

LAD

SM0.1

.

.

.

/
If this is not the first scan, jump to
LBL 4.

Network
LDN SM0.1
JMP 4
.
.
.

Network
LBL 4

You can use the JMP to LBL instruction in the
main program or in the interrupt routine. The
JMP and its corresponding LBL must always be
located within the same segment of code (either
the main program, or the interrupt routine).

Network 14

Network 33

LBL

JMP
4

STL

4

Figure 5-9 Example of Jump to Label and Label Instructions

Instruction Set

L
A
D

S
T
L

JMP n

JMP

LBL

LBL n

n

n

5-13
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

5.9 Logic Stack Instructions

And Load

The And Load instruction combines the values in the first and
second levels of the stack using a logical And operation. The
result is loaded in the top of stack. After the ALD executes, the
stack depth is one less.

Operands: none

Or Load

The Or Load instruction combines the values in the first and
second levels of the stack, using a logical Or operation. The
result is loaded in the top of stack. After the OLD executes, the
stack depth is one less.

Operands: none

Figure 5-10 illustrates the operation of the And Load and Or Load instructions.

S0
iv2
iv3
iv4
iv5
iv6
iv7
x

ALD: AND the top two stack values

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

Before After

S0 = iv0 * iv1

OLD: OR the top two stack values

S0 = iv0 + iv1S0
iv2
iv3
iv4
iv5
iv6
iv7
x

iv0

iv1

iv2

iv3

iv4

iv5

iv6

iv7

Before After

Note: x means the value is unknown (it may be either a 0 or a 1).

Figure 5-10 And Load and Or Load Instructions

Logic Stack Example

LAD STL

NETWORK
LD I0.0
LD I0.1
LD I0.2
A I0.3
OLD
ALD
= Q0.0

I0.0 I0.1

I0.2 I0.3

Network 1

Q0.0

Figure 5-11 Example of Logic Stack Instructions

Instruction Set

S
T
L

ALD

S
T
L

OLD

5-14
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

5.10 Interrupt Instructions

The CPU 210 has one interrupt event (rising edge of I0.0). To access this event, you must
program an interrupt routine (INT 0), and enable the interrupt. The ENI (enable interrupt)
instruction must be executed. An interrupt will occur on the next rising edge of I0.0 (after
the ENI instruction is executed). It is only necessary to execute the ENI instruction once
each time the CPU 210 is powered up unless the DISI (disable interrupt) instruction is
executed.

Interrupt Routine, Return from Interrupt Routine

The Interrupt Routine instruction marks the beginning of the
interrupt routine.

The Unconditional Return from Interrupt coil must be used to
terminate the interrupt routine.

Operands: n: 0

You can identify the interrupt routine by the interrupt routine label that marks the entry point
into the routine. The routine consists of all your instructions between the interrupt label and
the unconditional return from interrupt instruction. The interrupt routine executes in response
to the rising edge of I0.0 . You must end the routine (thereby returning control to the main
program) by executing the Return from Interrupt instruction (RETI).

Enable Interrupt, Disable Interrupt

The Enable Interrupt instruction enables processing of the
interrupt events.

The Disable Interrupt instruction globally disables processing
of the interrupt events. While interrupts are disabled, interrupt
events are ignored.

Operands: None

Instruction Set

L
A
D

S
T
L

INT 0

RETI

INT
0

RETI

L
A
D

S
T
L

ENI

ENI

DISI

DISI

5-15
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Guidelines and Restrictions for Using the Interrupt Routine

Interrupt processing provides quick reaction to an I/O event. You should optimize the
interrupt routine to perform a specific task, and then return control to the main routine. By
keeping the interrupt routine short, execution is quick, and other processes are not deferred
for long periods of time. If this is not done, unexpected conditions can cause abnormal
operation of equipment controlled by the main program.

The following restrictions apply to the use of the interrupt routine:

� You must put the interrupt routine after the end of the main program.

� You cannot use the Disable Interrupt (DISI), Enable Interrupt (ENI), or the End (MEND)
instructions in the interrupt routine.

� You must terminate the interrupt routine by a Return from Interrupt instruction (RETI).

Contact and coil logic may be affected by interrupts. To avoid the disruption of the main
program segment (caused by branching to and from the interrupt routine), the operating
system of the CPU saves and reloads the logic stack and the special memory (SM) bits that
indicate the status of instruction operations.

Sharing Data Between the Main Program and the Interrupt Routine

You can share data between the main program and the interrupt routine. For example, a part
of your main program may provide data to be used by an interrupt routine, or vice versa. If
your program is sharing data, you must also consider the effect of the asynchronous nature
of interrupt events, which can occur at any point during the execution of your main program.
Problems with the consistency of shared data can result due to the actions of the interrupt
routine when the execution of instructions in your main program is interrupted by an interrupt
event.

There are a number of programming techniques you can use to ensure that data is correctly
shared between your main program and interrupt routine. These techniques either restrict
the way access is made to shared memory locations, or make instruction sequences using
shared memory locations unable to be interrupted.

� For a ladder program that is sharing a single variable: Use the Move (MOV_W)
instruction to access a shared variable. While many ladder instructions are composed of
interruptible sequences of STL instructions, the Move instruction in ladder is composed of
a single STL instruction whose execution cannot be affected by interrupt events.

� For an STL or a ladder program that is sharing multiple variables: If the shared data is
composed of a number of related words, you can use the interrupt disable/enable
instructions (DISI and ENI) to control the execution of the interrupt routine. At the point in
your main program where operations on shared memory locations are to begin, disable
the interrupt. Once all actions affecting the shared locations are complete, re-enable the
interrupt. During the time that interrupts are disabled, the interrupt routine cannot execute
and therefore cannot access the shared memory locations; however, this approach can
cause interrupt events to be missed.

� If the interrupt routine and the main program are sharing a bit in a byte, then the
remaining seven bits cannot be used for any purpose. For example: if M1.0 is being used
for coordination between the interrupt routine and the main program, then M1.1 through
M1.7 cannot be used for any purpose.

Instruction Set

5-16
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Interrupt Example

Network 1
LD I0.1
A M0.0
TON T0, +0
EU
MOVW +0, MW2
ENI

Network 2
LD SM0.0
S M0.0, 1

Network 3
LDW>= T0, +50
DISI
R M0.0, 1

Network 4
LD M0.0
JMP 0

Network 5
LDN M0.0
A I0.1
AW>= MW2, +14550
AW<= MW2, +15200
= Q0.0

Network 6
LBL 0

Network 7
MEND

Network 8
INT 0

Network 9
INCW MW2

Network 10
RETI

Ladder STLMain Program

RETI

Network 1

Network 2

MOV_W
EN

IN OUT+0 MW2

ENI

Network 3

END

Network 5

I0.1

SM0.0

Network 9

INC_W
EN

IN OUTMW2 MW2

Network 10

M0.0

TONIN

PT

T0

P

+0

M0.0

S

1

Network 1: Turn on timer T0, enable the
interrupt routine, and initialize the counter
variable (MW2).

Network 2: Turn the timer on after it has
been turned off.

Network 3: After 5 seconds, turn off the
timer and disable the interrupt routine.

Network 4: While the timer is executing,
jump over the logic that tests the number
of counts.

Network 5: If timer has stopped, turn on
Q0.0 if the number of counts is between
14550 and 15200.

T0

>=I

+50
DISI

Network 4

JMP
0M0.0

M0.0

R

1

/
M0.0 MW2

>=I

+14550

I0.1 MW2

<=I

+15200

Q0.0

Network 7

Network 8

INT
0

Network 6

LBL
0

Network 6: Destination for the jump
instruction (Network 4).

Network 7: End of the main program
segment.

Network 8: Identifies the high-speed
counter interrupt routine. This interrupt
routine can count up to 3 kHz.

Network 9: Increments the counter (MW2)
for each positive transition of I0.0.

Network 10: Returns to the main program
segment.

Interrupt Routine

Figure 5-12 Using an Interrupt Routine to Provide a High-Speed Counter

Instruction Set

A-1
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

CPU 210 Data Sheets

Chapter Overview

Section Description Page

A.1 General Technical Specifications A-2

A.2 CPU 210 DC Power Supply, 24 VDC Inputs, 24 VDC Outputs A-4

A.3 CPU 210 AC Power Supply, 24 VDC Inputs, Relay Outputs A-6

A.4 CPU 210 AC Power Supply, AC Inputs, Relay Outputs A-8

A.5 PDS 210 AC Power Supply, DC Inputs, Relay Outputs A-10

A.6 Memory Cartridge 8K x 8 A-12

A.7 Memory Cartridge 16K x 8 A-13

A.8 PC/PPI Cable A-14

A.9 DC Input Simulator A-15

A

A-2
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

A.1 General Technical Specifications

National and International Standards

The national and international standards listed below were used to determine appropriate
performance specifications and testing for the S7-200 family of products. Table A-1 defines
the specific adherence to these standards.

� Underwriters Laboratories, Inc.: UL 508 Listed (Industrial Control Equipment)

� Canadian Standards Association: CSA C22.2 Number 142 Certified (Process Control
Equipment)

� Factory Mutual Research: FM Class I, Division 2, Groups A, B, C, & D Hazardous
Locations, T4A

� VDE 0160: Electronic equipment for use in electrical power installations

� European Community (CE) Low Voltage Directive 73/23/EEC
EN 61131-2: Programmable controllers - Equipment requirements

� European Community (CE) EMC Directive 89/336/EEC

Electromagnetic emission standards:
EN 50081-1: residential, commercial, and light industry
EN 50081-2: industrial environment

Electromagnetic immunity standards:
EN 50082-2: industrial environment

Technical Specifications

The S7-200 CPUs and all S7-200 expansion modules conform to the technical specifications
listed in Table A-1.

Table A-1 Technical Specifications for the S7-200 Family

Environmental Conditions — Transport and Storage

IEC 68-2-2, Test Bb, Dry heat &
IEC 68-2-1, Test Ab, Cold

-40° C to +70° C

IEC 68-2-30, Test Db, Damp heat 25° C to 55° C, 95% humidity

IEC 68-2-31, Toppling 100 mm, 4 drops, unpacked

IEC 68-2-32, Free fall 1 m, 5 times, packed for shipment

Environmental Conditions — Operating

Functional range1 0° C to 55° C, 95% maximum non-condensing humidity

IEC 68-2-14, Test Nb 5° C to 55° C, 3° C/minute

IEC 68-2-27 Mechanical shock 15 G, 11 ms pulse, 6 shocks in each of 3 axis

IEC 68-2-6 Sinusoidal vibration 0.35 mm peak-to-peak 10 to 57 Hz; 2 G panel mount, 1G din rail mount,
57 to 150 Hz; 10 sweeps each axis, 1 octave/minute

EN 60529, IP20 Mechanical protection Protects against finger contact with high voltage as tested by standard
probes. External protection is required for dust, dirt, water, and foreign
objects of less than 12.5 mm in diameter.

CPU 210 Data Sheets

A-3
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Table A-1 Technical Specifications for the S7-200 Family, continued

Electromagnetic Compatibility — Immunity 2

IEC 801-2 Electrostatic Discharge 8 kV air discharge to all surfaces and communication port

IEC 801-3 Radiated electromagnetic field26 MHz to 1 GHz 10 V/m, 80% modulation with 1 kHz signal
900 MHz ± 5 MHz, 10 V/m, 50% duty cycle, 200 Hz repetition
frequency

IEC 801-4 Fast transient bursts 2 kV, 5 kHz with coupling network to AC and DC system power
2 kV, 5 kHz with coupling clamp to digital I/O and communications

IEC 801-5 Surge immunity 2 kV asymmetrical, 1 kV symmetrical
5 positive / 5 negative pulses 0°, +90°, -90° phase angle
(24 VDC circuits require external surge protection)

VDE 0160 Non-periodic overvoltage at 85 VAC line, 90° phase angle, apply 390 V peak, 1.3 ms pulse
at 180 VAC line, 90° phase angle, apply 750 V peak, 1.3 ms pulse

Electromagnetic Compatibility — Conducted and Radiated Emissions3

EN 55011, Class A, Group 1, conducted2

0.15 to 0.5 MHz
0.5 to 5 MHz
5 to 30 MHz

< 79 dB (µV) Quasi-peak; < 66 dB (µV) Average
< 73 dB (µV) Quasi-peak; < 60 dB (µV) Average
< 73 dB (µV) Quasi-peak; < 60 dB (µV) Average

EN 55011, Class A, Group 1, radiated2

30 MHz to 230 kHz
230 MHz to 1 GHz

30 dB (µV/m) Quasi-peak; measured at 30 meters
37 dB (µV/m) Quasi-peak; measured at 30 meters

EN 55011, Class B, Group 1, conducted4

0.15 to 0.5 MHz

0.5 to 5 MHz
5 to 30 MHz

< 66 dB (µV) Quasi-peak decreasing with log frequency to 56 dB (µV)
< 56 dB (µV) Average decreasing with log frequency to 46 dB (µV)

< 56 dB (µV) Quasi-peak; < 46 dB (µV) Average
< 60 dB (µV) Quasi-peak; < 50 dB (µV) Average

EN 55011, Class B, Group 1, radiated4

30 MHz to 230 kHz
230 MHz to 1 GHz

30 dB (µV/m) Quasi-peak; measured at 10 meters
37 dB (µV/m) Quasi-peak; measured at 10 meters

High Potential Isolation Test

24 V / 5 V nominal circuits
115/230 V circuits to ground
115/230 V circuits to 115/230 V circuits
230 V circuits to 24 V / 5 V circuits
115 V circuits to 24 V / 5 V circuits

500 VAC (optical isolation boundaries)
1500 VAC
1500 VAC
1500 VAC
1500 VAC

1 Operating temperatures are based on the immediate surrounding air at the device.
2 Unit must be mounted on a grounded metallic frame with the S7-200 ground connection made directly to the mounting

metal. Cables are routed along metallic supports.
3 Applicable for all devices bearing the CE (European Community) mark.
4 Unit must be mounted in a grounded metal enclosure. AC input power line must be equipped with a Schaffner FN

680-2.5/06 filter or equivalent, 25. cm maximum wire length from filters to the S7-200. The 24 VDC supply and sensor
supply wiring must be shielded.

CPU 210 Data Sheets

A-4
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

A.2 CPU 210 DC Power Supply, 24 VDC Inputs, 24 VDC Outputs

Model Number: 6ES7 210-0AA00-0XB0

General Features

Physical Size (L x W x D) 90 x 80 x 62 mm
(3.54 x 3.15 x 2.44 in.)

Weight 0.18 kg (0.4 lbs.)

Power Dissipation 10 W maximum, with
maximum output loading

User Program Size 256 words (EEPROM)

I/O 4 Inputs / 4 Outputs

Boolean Execution Speed 95 µs per instruction

Internal Memory Bits 48 bits

Timers 4

Counters 4 (retentive)

Analog Adjustments 1

Standards Compliance UL 508 CSA C22.2 142
FM Class I, Division 2
VDE 0160 compliant
CE compliant

Output Points

Output Type Sourcing Transistor

Voltage Range 20.4 to 28.8 VDC

Maximum Load Current*
per single point
all points total

Linear derate 40° to 55° C

0° to 40° C 55° C
0.75 A 0.50 A
2.25 A 1.75 A

Inductive Load Clamping
single pulse

repetitive

(per common)
2A L/R = 10 ms
1A L/R = 100 ms
1 W energy dissipation
(1/2 Li2 x switch rate � 1 W)

Leakage Current 100 µA

Switching Delay 25 µs on, 120 µs off

Surge Current 4 A, 100 ms

Voltage Drop 1.8 V maximum at maximum
current

Optical Isolation 500 VAC, 1 minute

Short Circuit Protection None

Input Points

Input Type (IEC 1131-2) Sink/Source
IEC 1131 Type 1 in Sink
mode

ON State Range 15-30 VDC, 4 mA minimum
35 VDC, 500 ms surge

ON State Nominal 24 VDC, 7 mA

OFF State Maximum 5 VDC, 1 mA

Response Time
I0.0 to I0.3
Interrupt I0.0

15 ms maximum
20 �s on, 40 �s off

Optical Isolation 500 VAC, 1 minute

Power Supply

Voltage Range 20.4 to 28.8 VDC

Input Current 25 mA at 24 V typical
150 mA at 24 V maximum
load

UL / CSA Rating 5 VA

Hold Up Time 20 ms minimum from loss of
24 VDC power

Inrush Current 10 A peak at 28.8 VDC

5 VDC Current 100 mA

Isolated No

DC Sensor Supply

Voltage Range 16.4 to 28.8 VDC

Ripple/Noise (<10Mhz) Same as supplied voltage

24 VDC Available Current 100 mA

Short Circuit Current Limit < 120 mA

Isolated No

CPU 210 Data Sheets

A-5
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

M L+ 24V DC

Inputs (15 to 35 VDC)

Outputs (20.4 to 28.8 VDC)

+

3.3K ohms

470 ohms

Power Supply

Note: Actual component values may vary.

DC
OUTPUTS

36V

36V

+ +

M L+ 0.0 0.1 0.2 0.3

1M 0.0 0.1 0.2 0.3 M L+

D
C

 I
N

P
U

T
S

24
 V

 D
C

 O
U

T

24 VDC Power for
Input Sensors

Analog Adjustment
Potentiometer

Location for the
Memory Cartridge

Figure A-1 Connector Terminal Identification for CPU 210 DC/DC/DC

CPU 210 Data Sheets

A-6
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

A.3 CPU 210 AC Power Supply, 24 VDC Inputs, Relay Outputs

Model Number: 6ES7 210-0BA00-0XB0

General Features

Physical Size (L x W x D) 90 x 80 x 62 mm
(3.54 x 3.15 x 2.44 in.)

Weight 0.23 kg (0.51 lbs.)

Power Dissipation 5.0 W maximum, with
maximum output loading

User Program Size 256 words (EEPROM)

I/O 4 Inputs / 4 Outputs

Boolean Execution Speed 95 µs per instruction

Internal Memory Bits 48 bits

Timers 4

Counters 4 (retentive)

Analog Adjustments 1

Standards Compliance UL 508 CSA C22.2 142
FM Class I, Division 2
VDE 0160 compliant
CE compliant

Output Points

Output Type Relay, dry contact

Voltage Range 5 to 30 VDC / 250 VAC

Maximum Load Current
per point
per common

2 A
4 A

Overcurrent Surge 7 A with contacts closed

Isolation Resistance 100 M� minimum (new)

Switching Delay 10 ms maximum

Lifetime 10,000,000 Mechanical
100,000 with Rated Load

Contact Resistance 200 m�� maximum (new)

Isolation
coil to contact
contact to contact

1500 VAC, 1 minute
1000 VAC, 1 minute

Short Circuit Protection None

Input Points

Input Type (IEC 1131-2) Sink/Source
IEC 1131 Type 1 in Sink
mode

ON State Range 15-35 VDC, 4 mA minimum
35 VDC, 500 ms surge

ON State Nominal 24 VDC, 7 mA

OFF State Maximum 5 VDC, 1 mA

Response Time
I0.0 to I0.3
Interrupt I0.0

15 ms maximum
20 �s on, 40 �s off

Optical Isolation 500 VAC, 1 minute

Power Supply

Voltage / Frequency Range 85 to 264 VAC at 47 to 63 Hz

Input Current 1.75 VA typical, no load
4.75 VA typical, maximum
load

Hold Up Time 20 ms minimum from loss of
AC power

Inrush Current 20 A peak at 264 VAC

Fusing (non-replaceable) 2 A, 250 V, Slow Blow

Isolated Yes. Transformer, 1500 VAC,
1 minute

DC Sensor Supply

Voltage Range 20.4 to 30.0 VDC

Ripple/Noise (<10Mhz) 1 V peak-to-peak maximum

24 VDC Available Current 50 mA

Short Circuit Protection Yes

Isolation
to logic
to AC power

No
Yes

CPU 210 Data Sheets

A-7
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Inputs (15 to 35 VDC)

Outputs 30 VDC / 250 VAC

3.3K ohms

470 ohms

Power Supply

Note: Actual component values may vary.

OUTPUTS 1L 0.0 0.1 2L 0.2 0.3
RELAY

N L1 85–264 VAC

+

1M 0.0 0.1 0.2 0.3

D
C

 I
N

P
U

T
S

24 VDC Power for
Input Sensors

24
 V

 D
C

 O
U

TM L+

N (-)

L (+)

N (-)

L (+)

Analog Adjustment
Potentiometer

Location for the
Memory Cartridge

Figure A-2 Connector Terminal Identification for CPU 210 AC/DC/Relay

CPU 210 Data Sheets

A-8
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

A.4 CPU 210 AC Power Supply, AC Inputs, Relay Outputs

Model Number: 6ES7 210-0CA00-0XB0

General Features

Physical Size (L x W x D) 90 x 80 x 62 mm
(3.54 x 3.15 x 2.44 in.)

Weight 0.23 kg (0.51 lbs.)

Power Dissipation 5.0 W maximum, with
maximum output loading

User Program Size 256 words (EEPROM)

I/O 4 Inputs / 4 Outputs

Boolean Execution Speed 95 µs per instruction

Internal Memory Bits 48 bits

Timers 4

Counters 4 (retentive)

Analog Adjustments 1

Standards Compliance UL 508 CSA C22.2 142
FM Class I, Division 2
CE compliant

Output Points

Output Type Relay, dry contact

Voltage Range 5 to 30 VDC / 250 VAC

Maximum Load Current
per point
per common

2 A
4 A

Overcurrent Surge 7 A with contacts closed

Isolation Resistance 100 M� minimum (new)

Switching Delay 10 ms maximum

Lifetime 10,000,000 Mechanical
100,000 with Rated Load

Contact Resistance 200 m��maximum (new)

Isolation
coil to contact
contact to contact

1500 VAC, 1 minute
1000 VAC, 1 minute

Short Circuit Protection None

Input Points

Input Type (IEC 1131-2) Type 1 Sinking

ON State Range 164 to 265 VAC, 47 to 63 Hz,
4 mA minimum

ON State Nominal 230 VAC, 50 Hz, 7 mA

OFF State Maximum 40 VAC, 1 mA

Response Time 40 ms typical
55 ms maximum

Optical Isolation 1500 VAC, 1 minute

Power Supply

Voltage / Frequency Range 85 to 264 VAC at 47 to 63 Hz

Input Current 1.74 VA typical, no load
4.75 VA typical, maximum
load

Hold Up Time 20 ms minimum from loss of
AC power

Inrush Current 10 A peak at 265 VAC

Fusing (non-replaceable) 2 A, 250 V, Slow Blow

Isolated Yes. Transformer, 1500 VAC,
1 minute

DC Sensor Supply

Not applicable

CPU 210 Data Sheets

A-9
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

3.3K ohms
390 ohms

Note: Actual component values may vary.

Inputs (164 to 265 VAC)

N 0.0 0.1 0.2 0.3

Outputs 30 VDC / 250 VAC Power Supply

1L 0.0 0.1 2L 0.2 0.3
RELAY
OUTPUTS N L1 85–264 VAC

A
C

 I
N

P
U

T
S

0.1 �F

N (-)

L (+)

N (-)

L (+)

Analog Adjustment
Potentiometer

Location for the
Memory Cartridge

Figure A-3 Connector Terminal Identification for CPU 210 AC/AC/Relay

CPU 210 Data Sheets

A-10
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

A.5 PDS 210 AC Power Supply, DC Inputs, Relay Outputs

Model Number: 6ES7 210-8XX00-6AA0

General Features

Physical Size (L x W x D) 197 x 80 x 62 mm
(7.76 x 3.15 x 2.44 in.)

Weight 0.5 kg (1.1 lbs.)

Power Dissipation 9 W maximum, with
maximum output loading

User Program Size / Storage 256 words (RAM)

I/O 4 Inputs / 4 Outputs

Boolean Execution Speed 95 µs

Internal Memory Bits 48 bits

Timers 4

Counters 4 (retentive)

Analog Adjustments 1

Standards Compliance UL 508 CSA C22.2 142
FM Class I, Division 2
VDE 0160 compliant
CE compliant

Output Points

Output Type Relay, dry contact

Voltage Range 5 to 30 VDC / 250 VAC

Maximum Load Current
per point
per common

2 A
4 A

Overcurrent Surge 7 A with contacts closed

Isolation Resistance 100 M� minimum (new)

Switching Delay 10 ms maximum

Lifetime 10,000,000 Mechanical
100,000 with Rated Load

Contact Resistance 200 m�� maximum (new)

Isolation
coil to contact
contact to contact

1500 VAC, 1 minute
1000 VAC, 1 minute

Short Circuit Protection None

Input Points

Input Type (IEC 1131-2) Type 1 Sinking

ON State Range 15-30 VDC, 4 mA minimum
35 VDC, 500 ms surge

ON State Nominal 24 VDC, 7 mA

OFF State Maximum 5 VDC, 1 mA

Response Time
I0.0 to I0.3
Interrupt I0.0

15 ms maximum
210 �s on, 70 �s off

Optical Isolation 1500 VAC, 1 minute

Power Supply

Voltage / Frequency Range 85 to 264 VAC at 47 to 63 Hz

Input Current 4.5 VA typical, CPU only
50 VA max. load

Hold Up Time 20 ms min. from 110VAC

Inrush Current 20 A peak at 264 VAC

Fusing (non-replaceable) 2 A, 250 V, Slow Blow

Isolated Yes. Transformer, 1500 VAC,
1 minute

DC Sensor Supply

Voltage Range 20.4 to 28.8 VDC

Ripple/Noise (<10Mhz) 1 V peak-to-peak maximum

24 VDC Available Current 280 mA

Short Circuit Current Limit < 600 mA

Isolated No

CPU 210 Data Sheets

A-11
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

3.3K ohms

470 ohms

Note:

1. Actual component values may vary.

2. For AC outputs, connect AC line to the L terminal.

N L1 85–264
VAC

Outputs (30 VDC / 250 VAC)

N (-)

L (+)

Power Supply

1L 0.0 0.1 0.2 0.3
RELAY
OUTPUTS

M L+ DC
SENSOR
SUPPLY

Inputs (15 to 30 VDC)

24 VDC Power for Input Sensors

+

1M 0.0 0.1 0.2 0.3DC 24V
INPUTS

Location of the Analog
Adjustment Potentiometer
and the Memory Cartridge

Figure A-4 Connector Terminal Identification for PDS 210 AC/DC/Relay

CPU 210 Data Sheets

A-12
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

A.6 Memory Cartridge 8K x 8

Model Number: 6ES7 291-8GC00-0XA0

General Features

Physical Size (L x W x D) 28 x 10 x 16 mm (1.1 x 0.4 x 0.6 in.)

Weight 3.6 g (0.01 lbs.)

Power Dissipation 0.5 mW

Memory Type EEPROM

User Storage 8,192 bytes

Standards Compliance UL 508 CSA C22.2 142
FM Class I, Division 2
VDE 0160 compliant
CE compliant

Memory Cartridge Dimensions

28.5 mm
(1.12 in.)

16.5 mm
(0.65 in.)

11 mm
(0.42 in.)

Figure A-5 Memory Cartridge Dimensions - 8K x 8

CPU 210 Data Sheets

A-13
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

A.7 Memory Cartridge 16K x 8

Model Number: 6ES7 291-8GD00-0XA0

General Features

Physical Size (L x W x D) 28 x 10 x 16 mm (1.1 x 0.4 x 0.6 in.)

Weight 3.6 g (0.01 lbs.)

Power Dissipation 0.5 mW

Memory Type EEPROM

User Storage 16,384 Bytes

Standards Compliance UL 508 CSA C22.2 142
FM Class I, Division 2
VDE 0160 compliant
CE compliant

Memory Cartridge Dimensions

28.5 mm
(1.12 in.)

16.5 mm
(0.65 in.)

11 mm
(0.42 in.)

Figure A-6 Memory Cartridge Dimensions - 16K x 8

CPU 210 Data Sheets

A-14
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

A.8 PC/PPI Cable

Model Number: 6ES7 901-3BF00-0XA0

General Features

Cable Length 5 meters (197 in.)

Weight 0.3 kg (0.7 lbs.)

Power Dissipation 0.5 W

Connector Type PC
 PLC

9 pin Sub D (socket)
9 pin Sub D (pins)

Cable Type RS-232 to RS-485 non-isolated

Cable Receive/Transmit Turn-around Time 2 character times

Baud Rate Supported
(selected by dip switch)

Switch
38.4 k 0000
19.2 k 0010
9.6 k 0100
2.4 k 1000
1.2 k 1010
600 1100

Standards Compliance UL 508 CSA C22.2 142
FM Class I, Division 2
VDE 0160 compliant; CE compliant

Table A-2 PC/PPI Cable Pin-Out

RS-232 Pin Function Computer End RS-485 Pin Function PDS 210 End

2 Received Data (PC listens) 8 Signal A

3 Transmitted Data (PC sends) 3 Signal B

5 Signal Common 7 +24 V

2 +24 V Return (PLC logic common)

1 Shield (PLC logic common)

PC/PPI Cable Dimensions

0.1 m
(4 in.)

0.3 m
(12 in.)

RS-232 COMM RS-485 COMM

4.6 m
(181 in.)

40 mm
(1.6 in.)

Figure A-7 PC/PPI Cable Dimensions

CPU 210 Data Sheets

A-15
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

A.9 DC Input Simulator

Model Number: 6ES7 274-1XH00-0XA0

General Features

Physical Size (L x W x D) 91 x 36 x 22 mm (3.6 x 1.4 x 0.85 in.)

Weight 0.03 kg (0.06 lb.)

Points 14

Note
The PDS 210 supports only 4 of the 14 simulator points.

23 mm
(0.9 in.)

1

0

0.0 0.1 0.2 0.3 M L+ DC
SENSOR
SUPPLY

1M
DC 24V
INPUTS

Figure A-8 Installation of the DC Input Simulator

CPU 210 Data Sheets

A-16
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

CPU 210 Data Sheets

B-1
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Special Memory (SM)

The bits of the SM memory not only provide a variety of status and control functions, but also
serve as a means of communicating information between the CPU 210 and your program.
You can read the special memory as bits or words. The program development station
(PDS 210) provides additional words of special memory for diagnostic capabilities.

SMW0: Status Bits

As described in Table B-1, the bits of SMW0 contain status bits that are updated by the
CPU 210 at the end of each scan cycle.

Table B-1 Special Memory Bits SM0.0 to SM1.7

SM Bits Description

SM0.0 This bit is always on.

SM0.1 This bit is on for the first scan.

SM0.2 Reserved

SM0.3 Reserved

SM0.4 This bit provides a clock pulse that is off for 30 seconds and on for 30 seconds, for a
cycle time of 1 minute. It provides an easy-to-use delay, or a 1-minute clock pulse.

SM0.5 This bit provides a clock pulse that is off for 0.5 seconds and then on for 0.5 seconds
for a cycle time of 1 second. It provides either an easy-to-use delay or a 1-second clock
pulse.

SM0.6 This bit is a scan clock which is off for one scan and then on for the next scan. This bit
can be used as a scan counter input.

SM0.7 Reserved

SM1.0 This bit is turned on by the execution of the Increment Word or the Decrement Word
instructions when the result of the operation is zero.

SM1.1 This bit is turned on by the execution of the Increment Word or the Decrement Word
instructions when an overflow results.

SM1.2 This bit is turned on by the execution of the Increment Word or the Decrement Word
instructions when the operation performed produces a negative result.

SM1.3 Reserved

SM1.4 Reserved

SM1.5 Reserved

SM1.6 Reserved

SM1.7 Reserved

B

B-2
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

SMW2: Analog Adjustment

SMW2 stores the digital value that represents the position of the analog adjustment
potentiometer. You access this value as a word.

The CPU 210 samples the analog adjustment potentiometer at least three times a second
and has a range of integers from 0 to 255. The new value of the analog adjustment
potentiometer is written to SMW2 at the beginning of the next scan.

The analog adjustment potentiometer on the PDS 210 has a nominal range of integers from
0 to 255, with a guaranteed range of 10 to 200.

Table B-2 Special Memory Word SMW2

SM Word Description

SMW2 This word stores the value entered with the analog adjustment potentiometer. This
value is updated once per scan.

SMW4 through SMW20: Reserved

SMW4 through SMW20 are reserved for future use.

SMW22 to SMW26: Scan Times (only for the PDS 210)

SMW22 to SMW26 are available only through communications with the PDS 210. As
described in Table B-3, SMW22, SMW24, and SMW26 provide scan time information:
minimum scan time, maximum scan time, and last scan time in milliseconds.

Table B-3 Special Memory Words SMW22 to SMW26

SM Word Description

SMW22 This word provides the scan time of the last scan.

SMW24 This word provides the minimum scan time recorded since entering the RUN mode.

SMW26 This word provides the maximum scan time recorded since entering the RUN mode.

Special Memory (SM)

C-1
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Error Handling and Error Codes

Non-Fatal Errors (Compile Rule Violations)

When you download a program, the PDS 210 compiles the program. If the PDS 210 detects
that the program violates a compile rule (such as an illegal instruction), the PDS 210 aborts
the download and generates a non-fatal, compile-rule error code. Table C-1 describes the
error codes that are generated by violations of the compile rules.

Table C-1 Compile Rule Violations

Error Code Non-Fatal Errors (Compile Rule Violations)

0080 Program too big to compile; you must reduce the program size.

0081 Stack underflow; too many And Load (ALD) or Or Load (OLD) instructions in one
network.

0082 Illegal instruction; check instruction mnemonics.

0083 Missing MEND or instruction not allowed in main program: add a MEND
instruction, or remove incorrect instruction.

0087 Missing Label (LBL or INT); add the appropriate label.

0089 Missing RETI or instruction not allowed in an interrupt routine: add RETI to the end
of the interrupt routine or remove incorrect instruction.

008C Duplicate Label (LBL or INT); rename one of the labels.

008D Illegal Label (LBL or INT); ensure the number of labels allowed was not exceeded.

0090 Illegal parameter; verify the allowed parameters for the instruction.

0091 Range error (with address information); check the operand ranges.

0092 Error in the count field of an instruction (with count information); verify the
maximum count size.

Fatal Error Codes and Messages for the PDS 210

You cannot access the error codes for the CPU 210. The information about error codes is
provided to help you identify problems with your PDS 210 program development station.

Fatal errors cause the PDS 210 to stop the execution of your program. Depending on the
severity of the error, a fatal error can render the PDS 210 incapable of performing any or all
functions. The PDS 210 attempts to perform the following tasks when a fatal error is
detected:

� Changes the mode of operation to the STOP mode

� Turns on the System Fault LED

� Turns off the outputs

C

C-2
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

The PDS 210 remains in this condition until the fatal error is corrected. Table C-2 provides a
list with descriptions for the fatal error codes that can be read from the PDS 210.

Table C-2 Fatal Error Codes and Messages Read from the PDS 210

Error Code Description

0000 No fatal errors present

0001 User program checksum error

0002 Compiled ladder program checksum error

0003 Scan watchdog time-out error

000A Memory cartridge failed

000B Memory cartridge checksum error on user program

0010 Internal software error

0013 Memory cartridge is blank or the program is not understood by the PDS 210 (or the
CPU 210)

Handling of Fatal Errors for the CPU 210

Any error detected by the CPU 210 is treated as a fatal error. Depending on the severity of
the error, a fatal error can render the CPU 210 incapable of performing any or all functions.

When the CPU 210 detects a fatal error, it turns on the fault indicator and clears the outputs.
It remains in this condition until the error has been corrected and the power has been cycled.
The CPU 210 can detect the following error conditions:

� Error during the power-up diagnostics: these errors can indicate faulty hardware, but
more often are caused by turning power on with an invalid memory cartridge installed.

For a memory cartridge that does not contain a program or that contains a program for a
different S7-200 CPU (not a CPU 210), remove the memory cartridge (and install a
memory cartridge with a valid CPU 210 program) and then cycle the power to the
CPU 210.

� Watchdog time-out errors: these indicate that the user program is using Jump instructions
without resetting the watchdog timer. Refer to Section 5.8 for information about the
Watchdog Reset (WDR) instruction.

Error Handling and Error Codes

D-1
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Converting STEP 7-Micro/DOS Files to
STEP 7-Micro/WIN Files

STEP 7-Micro/WIN allows you to import programs created in the STEP 7-Micro/DOS
programming software into Micro/WIN projects.

Importing a STEP 7-Micro/DOS Program

To import a STEP 7-Micro/DOS program into a STEP 7-Micro/WIN project, follow these
steps:

1. Select the menu command Project � Open .

2. In the List Files of Type box, select Micro/DOS Project (*.vpu) files.

3. Use the directory browser to select the STEP 7-Micro/DOS directory that contains the
program you want to import. Double-click to display the contents in the list box on the left,
as shown in Figure D-1.

4. Select the program in the list box, or type the program name in the File Name field.

5. Click the “OK” button. The Micro/DOS program and associated files open as an untitled
project.

Project

New... Ctrl+N

Open... Ctrl+O

Close

Save All Ctrl+S

Save As...

Import

Export

Upload... Ctrl+U

Download... Ctrl+D

Print... Ctrl+P

Print Setup...

Exit

Open Project

Cancel

OKFile name:

Help

Network...

Project (*.prj)

List files of type:

c:

Drives:

*.vpu

sample1.vpu
sample2.vpu
sample3.vpu

c:\
s7md

Folders:

c:\s7md\programs

Press arrow to select
Micro/DOS .VPU files.

Use the directory
browser to select
Micro/DOS programs.

programs

Project (*.prj)
Micro/DOS Project (*.vpu)

Figure D-1 Converting STEP 7-Micro/DOS Programs to STEP 7-Micro/WIN

D

D-2
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Import Guidelines and Limitations

When you import a Micro/DOS .VPU program file, a copy of the following Micro/DOS files are
converted to the Micro/WIN format after you save them:

� Program files

� V memory and data (not applicable for the CPU 210 and PDS 210)

� Synonyms and descriptors

� Status chart that has the same name as the project

The following actions occur when you import a Micro/DOS program into a Micro/WIN project:

� Constants that were defined in V memory are maintained. (not applicable for the
CPU 210 and PDS 210)

� Micro/DOS synonyms are converted to Micro/WIN symbols, but truncated, if necessary,
to fit the 23-character limit. The synonym descriptors, which can be up to 144 characters,
are truncated to the 79-character limit for symbol comments in Micro/WIN.

� Micro/DOS network comments (up to 16 lines of 60 characters) are preserved in the STL
and LAD editors.

� A Micro/DOS status chart that has the same name as the Micro/DOS program is
converted to a Micro/WIN status chart. For example, if you have a program named
TEST.VPU that has status charts TEST.CH2 and TEST2.CH2, the status chart named
TEST is imported, but not the status chart named TEST2.

� The network address, password, privilege level, output table, and retentive ranges are
set based upon the Micro/DOS files. You can find these parameters with the menu
command CPU � Configure... (not applicable for the CPU 210 and PDS 210)

Saving the Converted Program

To add the imported program to the same directory as your other current STEP 7-Micro/WIN
projects, follow these steps:

1. Select the menu command Project � Save As... and use the directory browser to select
your current STEP 7-Micro/WIN directory.

2. In the File Name box, type the name you want to assign to the imported program files,
using the .PRJ extension.

3. Click the “OK” button.

Note
Once saved or modified, the program imported into STEP 7-Micro/WIN cannot be exported
back into the STEP 7-Micro/DOS format. The original Micro/DOS files, however, are not
changed. You can still use the original files within STEP 7-Micro/DOS.

Converting STEP 7-Micro/DOS Files to STEP 7-Micro/WIN Files

E-1
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Execution Times for STL Instructions

Table E-1 lists the basic execution times of the STL instructions for the CPU 210. The
calculation of the basic execution time for an STL instruction shows the time required for
executing the logic, or function, of the instruction when power flow is present (where the
top-of-stack value is ON or 1).

For some instructions, the execution of that function is conditional upon the presence of
power flow: the CPU performs the function only when power flow is present to the instruction
(when the top-of-stack value is ON or 1).

The overhead for the CPU 210 is 140 �s per scan. There is also an additional overhead that
is associated with the system clock: add 60 �s for every 1 ms counted by the system clock.

Table E-1 Execution Times for the STL Instructions (in µs)

Instruction Description On (µs) Off (µs)

= Output valid for Q, M 120 120

A And valid for I, M, SM 110 110

ALD And Load 60 60

AN And Not valid for I, M, SM 80 80

AW < = And Word if less than or equal 300 300

AW= And Word if equal 300 300

AW > = And Word if greater than or equal 300 300

CTUD Up/Down Counter 110 100

DECW Decrement Word 140 70

DISI Disable Interrupts 60 60

ED Edge Down (Negative Transition) 120 120

ENI Enable Interrupts 60 60

EU Edge Up (Positive Transition) 110 110

INCW Increment Word 140 70

INT Interrupt Routine

Add 110 µs if the interrupt routine uses any of the
following instructions:

� MOVW

� LDW<=, LDW>=, LDW=

� OW<=, ,OW>=, OW=

� AW<=, AW>=, AW=

30

Not applicable

JMP Jump to Label 70 70

LBL Label 0 0

E

E-2
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Table E-1 Execution Times for the STL Instructions (in µs), continued

Instruction Off (µs)On (µs)Description

LD Load valid for I, M, SM 70 70

LDN Load Not valid for I, M, SM 110 110

LDW <= Load Word if less than or equal 230 230

LDW = Load Word if equal 230 230

LDW >= Load Word if greater than or equal 230 230

MEND Main Program End 50 Not applicable

MOVW Move Word 210 170

NOT Not 60 60

O Or valid for I, M, SM 110 110

OLD Or Load 60 60

ON Or Not valid for I, M, SM 110 110

OW < = Or Word is less than or equal 300 300

OW = Or Word if equal 300 300

OW > = Or Word if greater than or equal 300 300

R Reset 120 70

RETI Return from Interrupt

Add 100 µs if the interrupt routine uses any of the
following instructions:

� MOVW

� LDW<=, LDW>=, LDW=

� OW<=, ,OW>=, OW=

� AW<=, AW>=, AW=

70

Not applicable

S Set 120 70

TON Non-retentive Timer 110 90

WDR Watchdog Reset 60 60

Execution Times for STL Instructions

F-1
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

CPU 210 Order Numbers

CPU and Program Development Station Order Number

CPU 210 DC Power Supply, 24 VDC Inputs, 24 VDC Outputs 6ES7 210-0AA00-0XB0

CPU 210 AC Power Supply, 24 VDC Inputs, Relay Outputs 6ES7 210-0BA00-0XB0

CPU 210 AC Power Supply, AC Inputs, Relay Outputs 6ES7 210-0CA00-0XB0

PDS 210 AC Power Supply, 24 VDC Inputs, Relay Outputs 6ES7 210-8XX00-6AA0

General Order Number

Memory Cartridge 8K x 8 6ES7 291-8GC00-0XA0

Memory Cartridge 16K x 8 6ES7 291-8GD00-0XA0

PC/PPI Cable 6ES7 901-3BF00-0XA0

DC Input Simulator 6ES7 274-1XH00-0XA0

10-Position Fan-Out Connector (package of 10 connectors) 6ES7 290-2AA00-0XA0

Programming Software Order Number

STEP 7-Micro/WIN Individual License 6ES7 810-2AA00-0YX0

STEP 7-Micro/WIN Copy License 6ES7 810-2AA00-0YX1

STEP 7-Micro/WIN Update 6ES7 810-2AA00-0YX3

Manuals Order Number

S7-200 Programmable Controller CPU 210 System Manual German

English

French

Spanish

Italian

6ES7 298-8EA00-8AH0

6ES7 298-8EA00-8BH0

6ES7 298-8EA00-8CH0

6ES7 298-8EA00-8DH0

6ES7 298-8EA00-8EH0

F

F-2
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

CPU 210 Order Numbers

Index-1
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Index

A
Absolute addressing, 4-4
AC installation, guidelines, 1-10
Access cover

location of the analog adjustment
potentiometer, 4-16

removing, 1-7
Accessing data

analog adjustment value in special memory
(SM), B-2

memory areas, 4-4
operand ranges, 4-11, 5-2

Accessing the Symbol Table, 2-13
Addressing

analog adjustment value in special memory
(SM), B-2

bit memory (M) area, 4-12
counter memory area, 4-13
input image register, 4-12
memory areas, 4-11
outputs, 4-12
special memory (SM), 4-12
timer, 4-13
using symbolic names, 2-13, 3-14

Agency approvals, A-2
Analog adjustment

addressing special memory (SM), 4-12
changing the value, 4-16
current value stored in SMW2, B-2
location of the potentiometer, 4-16
nominal range, 4-16
sample program, 4-16

And (A) instruction, 5-3
effect on the logic stack, 4-10, 5-3

And Load (ALD) instruction, 5-13
effect on the logic stack, 5-13

And Not (AN) instruction, 5-3
Area identifier with device number, accessing

timers and counters, 4-12

B
Baud rate, 2-3
bit memory. See special memory (SM) bits
Bit memory (M), 4-11

addressing, 4-12
Bit.byte addressing, 4-11
Boxes, represented in ladder, 4-9

C
Cables

baud rate, 2-3
order number, F-1
pin assignment, A-14
specifications (PC/PPI), A-14

Case-sensitive symbols, 2-13, 3-15
CE certification, A-3
Changing elements in the program

ladder, 2-7, 3-16–3-20
STL, 2-8, 3-15

Changing view between ladder and STL
creating networks in STL, 2-8
menu command, 2-9

Clearance requirements, 1-4
Clock, effect on scan time, E-1
Clock pulse bits, B-1
Coils, represented in ladder, 4-9, 5-5
Comments, in statement list, 4-10
Communications

baud rate, 2-3
connecting to the PDS 210, 2-3
pin assignment, A-14
point-to-point (PPI) interface, 2-3
setting up parameters, 2-4

Compare Word instructions, 5-4
Compiling

errors, rule violations, C-1
sample program, 3-21
STEP 7-Micro/WIN program, 2-8

Computer requirements, 2-1
Connector (optional), 1-10

order number, F-1

Index-2
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Connector terminal
CPU 210 AC/AC/Relay, A-9
CPU 210 AC/DC/Relay, A-7
CPU 210 DC/DC/DC, A-5
PDS 210, A-11

Considerations
AC installation, 1-10
converting files to STEP 7-Micro/WIN, D-2
creating the functional specifications, 4-2
DC installation, 1-10
designing safety circuits, 4-3
field wiring, 1-8
grounding and isolated circuits, 1-9
guidelines for designing a PLC system,

4-2–4-3
installation

clearance requirements, 1-4
using DIN rail stops, 1-6

suppression circuits, 1-12
using the interrupt routine, 5-15
using the Watchdog Reset (WDR) instruction,

5-11
Constants, 4-13
Contact instructions, 5-3–5-4

Compare Word Integer, 5-4
example, 5-4
Negative Transition (ED), 5-3
NOT, 5-3
Positive Transition (EU), 5-3
standard contacts, 5-3

Contacts, represented in ladder, 4-9, 5-3
Continuous read (Status Chart option), 2-15

See also Single read; Status Chart; Write
Control logic, sample application, 3-4–3-8
Converting files, STEP7-Micro/DOS to STEP

7-Micro/WIN, D-1
Converting files from STEP 7-Micro/DOS

guidelines and limitations, D-2
saving a program, D-2

Cooling, clearance requirements, 1-4
Copy, cut, and paste

in a Status Chart, 2-15
in a Symbol Table, 2-14

Copying a program from the PDS 210, 2-11
Counter instructions, 5-8

accessing the current value, 4-13
addressing, 4-13
current value, 4-13, 5-8
current values saved in the CPU 210, 2-12
device number, 4-12
example, 5-8
up/down counter, 5-8

CPU 210
agency approvals, A-2
analog adjustment

location of the potentiometer, 4-16
value stored in special memory (SM), B-2

basic operation, 4-4
compile rule violations, C-1
current values for counters saved on power

down, 2-12
data block not used, 2-10
dimensions, 1-5
electromagnetic specifications, A-3
environmental specifications, A-2
equipment requirements, 1-2
error handling, C-2
execution times, E-1
fatal errors, C-1
general technical specifications, A-2
high potential isolation test, A-3
installation

in a panel box, 1-7
on a DIN rail, 1-6
on a panel, 1-6
screw size, 1-6

interrupt routine, 4-14–4-16, 5-14–5-16
guidelines and restrictions, 5-15

memory areas, 4-11–4-13
memory cartridge location

CPU 210 AC/AC/Relay, A-9
CPU 210 AC/DC/Relay, A-7
CPU 210 DC/DC/DC, A-5

order numbers, F-1
organizing the program, 4-5
product overview, 1-1–1-4
program loading, 2-11
programming, 1-2
restoring program after power down, 2-12
scan cycle, 4-6–4-8

effect of Watchdog Reset (WDR)
instruction, 5-11

special memory (SM), B-1
summary of features, 1-2
transporting a program to, 1-2, 2-11

CPU 210 AC/AC/Relay
order number, F-1
specifications, A-8

CPU 210 AC/DC/Relay
order number, F-1
specifications, A-6

CPU 210 DC/DC/DC
order number, F-1
specifications, A-4

Index

Index-3
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Creating a program, 2-7–2-9, 3-1–3-25
creating a project, 2-6
interrupt routine, 4-14

high-speed counter example, 4-14–4-16,
5-16

Creating networks, 2-7, 2-8
Current value

counters, 5-8
current value saved at power down, 2-12

timers, 5-6
Cut, copy, and paste

in a Status Chart, 2-15
in a Symbol Table, 2-14

D
Data checking, not supported, 4-13
Data sheets

CPU 210 AC/AC/Relay, A-8
CPU 210 AC/DC/Relay, A-6
CPU 210 DC/DC/DC, A-4
DC input simulator, A-15
memory cartridge, A-12, A-13
PC/PPI cable, A-14
PDS 210, A-10

Data typing, not supported, 4-13
DC input simulator

order number, F-1
specifications, A-15

DC installation, guidelines, 1-10
DC relay, 1-12
DC transistor, protecting, 1-12
Debugging the program, 2-16

scan cycle, 4-8
Decrement Word (DECW) instructions, 5-9

example, 5-9
Deleting and inserting rows

in a Status Chart, 2-15
in a Symbol Table, 2-14

Designing control logic, example with a sample
application, 3-4–3-8

Device number, timers and counters, 4-12
Digital inputs

addressing, 4-11–4-13
reading, 4-6–4-9

Digital outputs
addressing, 4-11–4-13
writing to, 4-6–4-9

Dimensions
CPU 210, 1-5
DIN rail, 1-5
PDS 210, 1-5

DIN rail
dimensions, 1-5
installing on a, 1-6
using DIN rail stops, 1-6

Disable Interrupt (DISI) instruction, 5-14–5-17
disabling and enabling interrupts, 5-14

Displaying status in ladder, 2-16
Downloading a program

CPU 210, 2-11
PDS 210, 2-10–2-12
sample program, 3-23

Duplicate symbol names, 2-13

E
ED (Negative Transition) instruction, 5-3
Editing a cell in a Status Chart, 2-15
Editing a cell in the Symbol Table, 2-14
Editing a program, 3-15–3-20
Editing functions, using right mouse button

Status Chart, 2-15
Symbol Table, 2-14

Editing tools
Status Chart, 2-15
Symbol Table, 2-14

Electromagnetic specifications, A-3
Elements of an address, 4-11
Elements of an STL instruction, 4-10
Enable Interrupt (ENI) instruction, 5-14–5-17

enabling and disabling interrupts, 5-14
Enclosure

See also Panel box
clearance requirements, 1-4
installing in a panel box, 1-7

End instruction, 5-11
Ending the main program segment, 4-5, 5-11
Entering a program

in ladder, 3-15–3-20
in STL, 3-15

Entering a symbolic name in STL, 2-8
Entering comments, in STL, 2-8, 3-15
Entering symbols, 2-13–2-15
Entries

duplicate symbol names, 2-13
number of characters per symbol, 2-13
number of symbols allowed in a Symbol

Table, 2-13
Environmental specifications, A-2
Equipment requirements, 1-2

STEP 7-Micro/WIN, 2-1
Error codes

compile rule violations, C-1
error handling for the CPU 210, C-2
fatal errors, C-1

Index

Index-4
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Error handling
fatal errors, 2-17–2-19, C-1
non-fatal errors, C-1
non-fatal errors, 2-17–2-19
responding to errors, 2-17–2-19, C-1
restarting the CPU after a fatal error,

2-17–2-19
EU (Positive Transition) instruction, 5-3
European Community (CE) certification, A-3
Examples

contact instructions, 5-4
counter, 5-8
End (MEND), 5-12–5-14
high-speed counter, 4-14–4-16, 5-16
increment/decrement word, 5-9
interrupt routine, 4-14–4-16
Interrupt Routine instructions, 5-16
jump to label, 5-12–5-14
ladder elements, 4-9
logic stack, 5-13–5-15
move word, 5-10–5-12
output instructions, 5-5
Status Chart, 2-15
Symbol Table, 2-13
timer, 5-7
using the analog adjustment, 4-16
watchdog reset, 5-12–5-14

Execution times, E-1
affected by power flow, E-1
statement list instructions, E-1

F
Fan-out connector, order number, F-1
Fatal errors, 2-17–2-19, C-1
Features, 1-2
Field wiring

installation procedure, 1-8
optional connector, 1-10

order number, F-1
wire sizes, 1-8

First scan bit, B-1

G
Grounding and isolation, wiring guidelines, 1-9

Guidelines
AC installation, 1-10
case-sensitive symbols, 2-13
creating a program with STL, 2-8
DC installation, 1-10
designing a PLC system, 4-2–4-3
entering symbolic addresses, 2-13
grounding and isolation, 1-9
number of characters per symbol, 2-13
number of symbols allowed, 2-13
overlapping memory addresses in symbol

names, 2-13
suppression circuits, 1-12

DC relay, 1-12
wiring, 1-8

Guidelines for converting files, D-2

H
Hardware interrupt, 4-5

affecting the scan cycle, 4-6–4-9
effect on the Watchdog Reset (WDR)

instruction, 5-11
enabling and disabling, 5-14
example, 4-14–4-16, 5-16
guidelines and restrictions, 5-15
high-speed counter example, 4-14–4-16, 5-16
interrupt instructions, 5-14–5-16
returning from the interrupt routine, 5-14
sample interrupt routine, 4-14–4-16, 5-16
sharing data between main program and

interrupt, 5-15
Help. See Online help
High potential isolation test, A-3
High-speed counter, using the hardware interrupt,

4-14–4-16, 5-16

I
Importing files from STEP 7-Micro/DOS, D-1

guidelines and limitations, D-2
saving a program, D-2

Increment Word (INCW) instructions, 5-9
example, 5-9

Input image register, addressing, 4-12

Index

Index-5
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Input simulator
order number, F-1
specifications, A-15

Inputs, basic operation, 4-4
Inserting an instruction, 3-16–3-20
Inserting and deleting rows

in a Status Chart, 2-15
in a Symbol Table, 2-14

Installation
agency certifications and specifications, A-3
clearance requirements, 1-4
considerations for installing a CPU 210

clearance requirements, 1-4
using DIN rail stops, 1-6

dimensions
CPU 210, 1-5
DIN rail, 1-5
PDS 210, 1-5

in a panel box, 1-7
on a DIN rail, 1-6
on a panel, 1-6
screw size, 1-6
setting the baud rate (PDS 210), 2-3
STEP 7-Micro/WIN

Windows 3.1, 2-2
Windows 95, 2-2

Instructions
And (A) / And Not (AN), 5-3

effect on the logic stack, 4-10, 5-3
And Load (ALD), 5-13

effect on logic stack, 5-13
Compare Word, 5-4
Contacts, 5-3–5-4
Counter (CTUD), 5-8
Decrement Word (DECW), 5-9
Disable Interrupt (DISI), 5-14–5-17
Enable Interrupt (ENI), 5-14–5-17
End, 5-11
End (MEND), 4-5, 5-11
execution times, E-1
Increment Word (INCW), 5-9
Interrupt, 5-14–5-16
Interrupt Routine (INT), 5-14–5-17
Jump to Label, 5-12
Load (LD) / Load Not (LDN), 5-3

effect on the logic stack, 4-10, 5-3
Logic Stack, 5-13
Move Word (MOVW), 5-10
Negative Transition (ED), 5-3
Normally Open / Normally Closed contact, 5-3
NOT, 5-3
On-Delay Timer, 5-6
Or (O) / Or Not (ON), 5-3

effect on the logic stack, 4-10, 5-3
Or Load (OLD), 5-13

effect on logic stack, 5-13

Outputs, 5-5
Positive Transition (EU), 5-3
Program Control, 5-11–5-12
Reset (R), 5-5
Return from Interrupt (RETI), 4-5, 5-14–5-17
Set (S), 5-5
standard contacts, 5-3
Timer, 5-6–5-7
Unconditional End (MEND), 4-5
Up/Down Counter (CTUD), 5-8
Watchdog Reset (WDR), 5-11–5-13

Interrupt instructions, 5-14–5-16
Disable Interrupt (DISI), 5-14–5-17
Enable Interrupt (ENI), 5-14–5-17
example, 5-16
Interrupt Routine (INT), 5-14–5-17
Return from Interrupt (RETI), 5-14–5-17

Interrupt Routine (INT) instruction, 5-14–5-17
Interrupts

effect on the Watchdog Reset (WDR)
instruction, 5-11

enabling and disabling, 5-14
example, 4-14–4-16, 5-16
guidelines and restrictions, 5-15
hardware interrupt, 4-5

affecting the scan cycle, 4-6–4-9
high-speed counter, 4-14–4-16, 5-16
instructions, 5-14
Interrupt instructions, 5-14–5-16
response time, 1-3

CPU 210 AC/AC/Relay, A-8
CPU 210 AC/DC/Relay, A-6
CPU 210 DC/DC/DC, A-4
PDS 210, A-10

sample interrupt routine, 4-14–4-16, 5-16
sharing data between main program and

interrupt, 5-15
system support, 5-15

Isolated DC wiring guidelines, 1-10

J
Jump to Label instruction, 5-12

K
Keyword, “network”, 2-8

Index

Index-6
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

L
LAD. See Ladder or Program
Ladder

basic elements, 4-9
boxes, 4-9
changing to STL, 2-9
changing elements in a program, 2-7,

3-16–3-20
coils, 4-9
contacts, 4-9
displaying status, 2-16
editor, 2-7
entering a program, 2-7, 3-15–3-20
inserting an instruction, 3-16–3-20
networks, 2-7, 4-9
program examples

contact instructions, 5-4
counter, 5-8
End (MEND), 5-12
high-speed counter, 4-14–4-16, 5-16
increment/decrement word, 5-9
interrupt, 4-14–4-16, 5-16
jump to label, 5-12
logic stack (ALD and OLD), 5-13
move word, 5-10
output instructions, 5-5
timer, 5-7
watchdog reset, 5-12

sample program, 3-1–3-25
sharing data between main program and

interrupt, 5-15
tools of the Ladder Editor, 3-15
using the Ladder Editor, 2-7, 3-15–3-20
viewing a program, 2-9

Last scan time, stored in special memory (SM),
B-2

Load (LD) / Load Not (LDN), effect on the logic
stack, 5-3

Load (LD) instruction, 5-3
effect on the logic stack, 4-10

Load Not (LDN) instruction, 5-3
Loading a program

CPU 210, 2-11
PDS 210, 2-10–2-12

Location of the analog adjustment potentiometer,
4-16

Logic stack, 4-10
affected by the interrupt routine, 5-15
effect of Or (O) / And (A) / Load (LD), 4-10
effect of Or Load (OLD) / And Load (ALD),

5-13

Logic Stack instructions, 5-13
And Load (ALD), 5-13

effect on logic stack, 5-13
example, 5-13–5-15
operation, 5-13
Or Load (OLD), 5-13

effect on logic stack, 5-13

M
Main Program End (MEND) instruction, 4-5, 5-11
Main program segment, 4-5
Manuals, order number, F-1
Maximum scan time, stored in special memory

(SM), B-2
Memory areas, 4-4

accessing data, 4-11
addressing bit memory (M), 4-12
addressing special memory (SM), 4-12
addressing the inputs, 4-12
addressing the outputs, 4-12
bit memory (M), 4-11
CPU 210, 4-11–4-13
PDS 210, 4-11–4-13
saved in the CPU 210, 2-12

Memory cartridge
copying a program from the PDS 210, 2-11
location

CPU 210 AC/AC/Relay, A-9
CPU 210 AC/DC/Relay, A-7
CPU 210 DC/DC/DC, A-5
PDS 210, A-11

order number, F-1
power up with an empty memory cartridge,

2-12
scan cycle, 4-6–4-8
specifications, A-12, A-13
transporting the program to the CPU 210,

2-10–2-12
MEND instruction, 5-11
Menu of editing functions, right mouse button

Status Chart, 2-15
Symbol Table, 2-14

Minimum scan time, stored in special memory
(SM), B-2

Monitoring
program, 2-16
sample program, 3-23

Index

Index-7
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Mounting
agency certifications and specifications, A-3
clearance requirements, 1-4
dimensions

CPU 210, 1-5
DIN rail, 1-5
PDS 210, 1-5

in a panel box, 1-7
on a DIN rail, 1-6
on a panel, 1-6
screw size, 1-6

Move instruction, Move Word (MOVW), 5-10
Move Word (MOVW) instruction, 5-10
Move Word (MOVW) instructions, example,

5-10–5-12

N
Negative Transition (ED) instruction, 5-3
Networks

in ladder, 2-7
in STL, 2-8
keyword “network”, 2-8
represented in ladder, 4-9

Non-fatal errors, responding to, 2-18
Normally Closed Contact instruction, 5-3
Normally Open Contact instruction, 5-3
NOT instruction, 5-3
Number of characters per symbol, 2-13
Number of symbols allowed, 2-13
Numbers, representation of, 4-11

O
OB1. See Program
On-Delay Timer instruction, 5-6
Online help, STEP 7-Micro/WIN, 2-1
Operand, 4-10
Or (O) / Or Not (ON), effect on the logic stack, 5-3
Or (O) instruction, 5-3

effect on the logic stack, 4-10
Or Load (OLD) instruction, 5-13

effect on the logic stack, 5-13
Or Not (ON) instruction, 5-3
Order numbers, F-1
Output (coil) instruction, 5-5

represented in ladder, 4-9
Output instructions, 5-5

coil, 5-5
example, 5-5
represented in ladder, 4-9
Reset (R), 5-5
Set (S), 5-5

Outputs
addressing, 4-12
basic operation, 4-4
represented in ladder, 4-9
writing to, 4-6–4-9

Overview
CPU 210, 1-1–1-4
PDS 210, 1-1–1-4

P
Panel box

See also Enclosure
installing in a, 1-7

Paste, copy, and cut
in a Status Chart, 2-15
in a Symbol Table, 2-14

PC/PPI cable
baud rate, 2-3
order number, F-1
pin assignments, A-14
specifications, A-14

PDS 210
agency approvals, A-2
analog adjustment

location of the potentiometer, 4-16
value stored in special memory (SM), B-2

basic operation, 4-4
baud rate, 2-3
compile rule violations, C-1
debug option, scan cycle, 4-8
dimensions, 1-5
downloading a program, 2-10–2-12
electromagnetic specifications, A-3
environmental specifications, A-2
equipment requirements, 1-2
execution times, E-1
fatal errors, C-1
general technical specifications, A-2
high potential isolation test, A-3
input simulator, order number, F-1
interrupt routine, guidelines and restrictions,

5-15
logic stack, 4-10
memory areas, 4-11–4-13
memory cartridge location, A-11
order numbers, F-1
organizing the program, 4-5
product overview, 1-1–1-4
scan cycle, 4-6–4-9

debug option, 4-8
effect of Watchdog Reset (WDR)

instruction, 5-11

Index

Index-8
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

scan times in special memory (SM), B-2
special memory (SM), B-1
specifications, A-10

DC input simulator, A-15
summary of features, 1-2
transporting a program to CPU 210,

2-10–2-12
Pin assignments, PC/PPI cable, A-14
Positive Transition (EU) instruction, 5-3
Potentiometer

analog adjustment
accessing the analog value, 4-12
changing the value, 4-16
nominal range, 4-16
sample program, 4-16
value stored in special memory (SM), B-2

location, 4-16
value of analog adjustment, B-2

Power flow, effect on execution times, E-1
Powering up with an empty memory cartridge,

2-12
PPI (point-to-point interface), communications,

2-3
Preferences, setting in STEP 7-Micro/WIN, 2-5
Product overview

CPU 210, 1-1–1-4
PDS 210, 1-1–1-4

Program
addressing bit memory (M), 4-12
addressing special memory (SM), 4-12
addressing the inputs, 4-12
addressing the outputs, 4-12
boxes, 4-9
coils, 4-9
compiling, 2-8
concepts, 4-4
contacts, 4-9
creating, 2-7–2-11
creating a high-speed counter, 4-14–4-16,

5-16
debugging, 2-16
downloading, 2-10
ending the interrupt routine, 4-5
ending the main program segment, 4-5
examples

analog adjustment, 4-16
contact instructions, 5-4
counter, 5-8
high-speed counter, 4-14–4-16, 5-16
increment/decrement word, 5-9
interrupt routine, 4-14–4-16, 5-16
jump to label, 5-12
logic stack instructions, 5-13
main program end, 5-12
move word, 5-10
output instructions, 5-5
timer, 5-7
watchdog reset, 5-12

executing, 4-6–4-9
guidelines and limitations for converting files,

D-2
high-speed counter example, 4-14–4-16, 5-16
importing files from STEP 7-Micro/DOS, D-1
languages, 4-9–4-11
monitoring, 2-16
networks, 4-9
sample program, 3-1–3-25

system requirements, 3-1
scan cycle, 4-6–4-9

PDS 210, 4-7–4-9
setting preferences, 2-5
structure, 4-5
viewing, 2-9

Program Control instructions, 5-11–5-12
End (MEND), 5-11
example

End (MEND), 5-12–5-14
jump to label, 5-12–5-14
watchdog reset, 5-12–5-14

Jump to Label, 5-12
Watchdog Reset (WDR), 5-11–5-13

Program development station. See PDS 210
Programming concepts, 4-4
Programming languages, 4-9–4-11
Programming software, order number, F-1
Project

creating, 2-6
sample program, 3-13
saving, 2-6

R
Ranges

analog adjustment value, 4-16, B-2
integer values, 4-11

Reading the inputs, 4-6–4-9
Status chart, 2-15

Reading values in a Status Chart
continuous read, 2-15
single read, 2-15
stop read option, 2-15

Removing the access cover, 1-7
Replacing elements in a program

ladder, 2-7, 3-16–3-20
STL, 2-8, 3-15

Reset (R) instruction, 5-5
Resetting the counter, 5-8
Resetting the timer, 5-6
Resolution of the timers, 5-6
Restarting the CPU, after a fatal error, 2-17–2-19
Restoring memory in the CPU 210, 2-12
Return from Interrupt (RETI) instruction, 4-5,

5-14–5-17

Index

Index-9
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

Right mouse button
Status Chart editor, 2-15
Symbol Table, 2-14

Rungs of logic. See Networks

S
S7-200, technical specifications, A-2
Sample program

compiling, 3-21
control logic, 3-4–3-8
creating a project, 3-13
creating a Status Chart, 3-22
creating symbol table, 3-14
designing the control logic, 3-4–3-8
download, 3-23
entering program in ladder, 3-15–3-21
inputs and outputs, 3-2
ladder, 3-1–3-25
ladder program, 3-9
monitoring, 3-23
program examples

contact instructions, 5-4
counter, 5-8
End (MEND), 5-12
high-speed counter, 4-14–4-16, 5-16
increment/decrement word, 5-9
interrupt, 4-14–4-16, 5-16
jump to label, 5-12
logic stack (ALD and OLD), 5-13
move word, 5-10
output instructions, 5-5
timer, 5-7
watchdog reset, 5-12

saving, 3-21
statement list, 3-1–3-25
STL program, 3-11
symbolic names, 3-2
system requirements, 3-1

Saving the logic stack during interrupt routine,
5-15

Saving your program, 2-6, 3-21
after converting files to STEP 7-Micro/WIN,

D-2
saving a project, 2-6

Scan cycle, 4-6–4-9
debug option, 4-8
effect of system clock, E-1
effect of Watchdog Reset (WDR) instruction,

5-11
execution times, E-1
interrupting, 4-5, 4-6–4-9
PDS 210, 4-7–4-9
scan times stored in special memory (SM),

B-2

Screw size for installation, 1-6
Set (S) instruction, 5-5
Setting the baud rate, 2-3
Setting up

communication parameters, 2-4
selecting preferences in STEP 7-Micro/WIN,

2-5
Single read (Status Chart option), 2-15

See also Continuous read; Status Chart; Write
Single-phase wiring guidelines, 1-10
SMW0 status bits, B-1
SMW2 analog adjustment, current value, B-2
SMW22 to SMW26 scan times, B-2
Special memory (SM)

addressing, 4-12
analog adjustment, accessing the analog

value, 4-12
clock pulse bits, B-1
first scan bit, B-1
saved during interrupt routine, 5-15
SMW2 analog adjustment, B-2
SMW22 to SMW26 scan times, B-2
status bits, B-1
storing the analog adjustment value, 4-16
supporting the interrupt routine, 5-15

Specifications
CPU 210 AC/AC/Relay, A-8
CPU 210 AC/DC/Relay, A-6
CPU 210 DC/DC/DC, A-4
DC input simulator, A-15
electromagnetic, A-3
environmental, A-2
general, 1-3, A-2
high potential isolation test, A-3
memory cartridge, A-12, A-13
PC/PPI cable, A-14
PDS 210, A-10
S7-200 family, A-2

Standard contact instructions, 5-3
Standards, national and international, A-2
Statement list, 4-9–4-11

basic elements, 4-10
changing elements in a program, 2-8, 3-15
changing to ladder, 2-9
creating networks, 2-8
editor, 2-8
entering a symbolic name, 2-8, 3-14
entering an instruction, 2-8
entering comments, 2-8
execution times for instructions, E-1
guidelines for creating a program, 2-8,

4-2–4-3
program, entering in STEP 7-Micro/WIN, 2-8

Index

Index-10
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

program examples
contact instructions, 5-4
counter, 5-8
End (MEND), 5-12
high-speed counter, 4-14–4-16, 5-16
increment/decrement word, 5-9
interrupt, 4-14–4-16, 5-16
jump to label, 5-12
logic stack (ALD and OLD), 5-13
move word, 5-10
output instructions, 5-5
timer, 5-7
watchdog reset, 5-12

sample program, 3-1–3-25
sharing data between main program and

interrupt, 5-15
viewing a program, 2-9

Status, displaying in ladder, 2-16
Status Chart

building for sample program, 3-22
continuous read option, 2-15
editing addresses, 2-15
reading and writing variables, 2-15
sample program, 3-22
single read option, 2-15
STEP 7-Micro/WIN, 2-15
stop read option, 2-15
write option, 2-15

STEP 7-Micro/DOS, converting files to STEP
7-Micro/WIN, D-1

STEP 7-Micro/WIN
changing elements in a program, 2-8–2-13,

3-15–3-20
compiling a program, 2-8, 3-21
converting files from STEP 7-Micro/DOS, D-1
creating a program, 2-7–2-11, 3-15–3-21
creating a project, 2-6, 3-13
debug option, scan cycle, 4-8
debugging and monitoring the program, 2-16,

3-23–3-25
displaying status in ladder, 2-16, 3-23
downloading a program, 2-10, 3-23
editing a program, 2-8–2-13, 3-15–3-20
entering a sample program, 3-1–3-25
entering instructions in the program,

3-15–3-20
equipment requirements, 2-1
installing, 2-2
Ladder Editor, 2-7
Ladder editor, 2-16
online help, 2-1

program examples
contact instructions, 5-4
counter, 5-8
End (MEND), 5-12
high-speed counter, 4-14–4-16, 5-16
increment/decrement word, 5-9
interrupt, 4-14–4-16, 5-16
jump to label, 5-12
logic stack (ALD and OLD), 5-13
move word, 5-10
output instructions, 5-5
timer, 5-7
watchdog reset, 5-12

programming preferences, 2-5
replacing elements in a program, 2-8–2-13,

3-15–3-20
sample program (and entering), 3-1–3-25
saving a project, 2-6, 3-21
Status Chart, 2-15, 3-22
STL editor, 2-8
Symbol Table, 2-13, 3-14
troubleshooting installation, 2-2
viewing a program, 2-9

STL. See Statement list or Program
Stop read (Status Chart option), 2-15

See also Continuous read; Single read; Status
Chart; Write

Storing a program
CPU 210, 2-11
PDS 210, 2-10–2-12

Storing the value of the analog adjustment, B-2
Summary of features, 1-2
Suppression circuits, guidelines

DC relay, 1-12
DC transistor, 1-12

Symbol Table
duplicate symbol names, 2-13
number of characters per symbol, 2-13
number of entries allowed, 2-13
sample program, 3-14
STEP 7-Micro/WIN, 2-13–2-15

Symbolic addressing, 2-13–2-15, 3-14, 3-15
duplicate symbol names, 2-13
entering a symbolic name in STL, 2-8
number of characters per symbol, 2-13
number of symbols allowed, 2-13

System clock, effect on scan time, E-1

Index

Index-11
S7-200 Programmable Controller, CPU 210
C79000-G7076-C235-01

T
Terminating the main program segment, 5-11
Time of last scan, stored in special memory (SM),

B-2
Timer instructions, 5-6–5-7

accessing the current value, 4-13
addressing, 4-13
current value, 4-13, 5-6
device number, 4-12
example, 5-7
On-Delay Timer, 5-6
resetting, 5-6
resolution, 5-6
updating the time value, 5-6

Transporting a program to the CPU 210,
2-10–2-12

Troubleshooting
compile errors, C-1
error handling, 2-17–2-19, C-2
error handling for the CPU 210, C-2
fatal errors, 2-17–2-19, C-1
non-fatal errors, 2-18, C-1
powering up with an empty memory cartridge,

2-12
STEP 7-Micro/WIN installation, 2-2

U
Unconditional End (MEND) instruction, 4-5, 5-11
Up/Down Counter (CTUD) instruction, 5-8

User manual, order number, F-1
Using the Ladder Editor, 3-15–3-20

V
Valid ranges for CPU 210, 1-3, 4-11–4-13, 5-2

W
Watchdog Reset (WDR) instruction, 5-11–5-13

considerations, 5-11
Windows 3.1, installing STEP 7-Micro/WIN, 2-2
Windows 95, installing STEP 7-Micro/WIN, 2-2
Wiring

guidelines, 1-8–1-13
AC installation, 1-10
DC installation, 1-10

optional field wiring connector, 1-10
order number, F-1

suppression circuits, 1-12–1-13
Wiring diagram

CPU 210 AC/AC/Relay, A-9
CPU 210 AC/DC/Relay, A-7
CPU 210 DC/DC/DC, A-5
PDS 210, A-11

Write (Status Chart option), 2-15
See also Continuous read; Single read; Status

Chart
Writing to the outputs, 4-6–4-9
Writing values in a Status Chart, 2-15

Index

Index-12
S7-200 Programmable Controller, CPU 210

C79000-G7076-C235-01

Index

S7-200 Programmable Controller, CPU 210
6ES7 298-8EA00-8BH0-01 1✄

Siemens AG

AUT E 146

Östliche Rheinbrückenstr. 50

D-76181 Karlsruhe

Federal Republic of Germany

Please check any industry that applies to you:

❒ Automotive

❒ Chemical

❒ Electrical Machinery

❒ Food

❒ Instrument and Control

❒ Nonelectrical Machinery

❒ Petrochemical

❒ Pharmaceutical

❒ Plastic

❒ Pulp and Paper

❒ Textiles

❒ Transportation

❒ Other _ _ _ _ _ _ _ _ _ _ _

From:

Your Name:_ _

Your Title: _

Company Name: _

Street: _

City, Zip Code_ _

Country: _

Phone: _

2
S7-200 Programmable Controller, CPU 210

6ES7 298-8EA00-8BH0-01

Additional comments:

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness
of our publications. Please take the first available opportunity to fill out this questionnaire
and return it to Siemens.

Please give each of the following questions your own personal mark within the range
from 1 (very good) to 5 (poor).

1. Do the contents meet your requirements?

2. Is the information you need easy to find?

3. Is the text easy to understand?

4. Does the level of technical detail meet your requirements?

5. Please rate the quality of the graphics/tables:

	Titel
	Preface
	Contents
	1 Installing the S7-200 CPU 210
	1.1 Product Overview
	1.2 Pre-installation Considerations
	1.3 Installing a CPU 210
	1.4 Installing the Field Wiring
	1.5 Using Suppression Circuits

	2 Installing and Using the STEP 7-Micro/WIN Version 2.0 Software
	2.1 Installing the STEP 7-Micro/WIN Version 2.0 Software
	2.2 Establishing Communication with the PDS 210
	2.3 Configuring the Preferences for STEP 7-Micro/WIN
	2.4 Creating and Saving a Project
	2.5 Creating a Program
	2.6 Downloading A Program
	2.7 Using Symbolic Addressing
	2.8 Using the Status Chart
	2.9 Debugging and Monitoring Your Program
	2.10 Error Handling for the PDS 210

	3 Getting Started with a Sample Program
	3.1 Defining the Requirements for the Application Example
	3.2 Designing the Control Logic
	3.3 Putting the Control Logic into a Program
	3.4 Creating a Project with STEP 7-Micro/WIN
	3.5 Creating a Symbol Table
	3.6 Entering the Program
	3.7 Creating a Status Chart
	3.8 Downloading and Monitoring the Sample Program
	3.9 Modifying the Sample Program

	4 Basic Concepts for Programming the CPU 210
	4.1 Guidelines for Designing a Micro PLC System
	4.2 Concepts for Creating a Program
	4.3 Understanding the Scan Cycle of the CPU 210
	4.4 Understanding the Programming Languages
	4.5 Understanding the Addresses of the Memory Areas
	4.6 Sample Program Using an Interrupt Routine
	4.7 Using the Analog Adjustment Potentiometer

	5 Instruction Set
	5.1 Valid Ranges for the CPU 210 and PDS 210
	5.2 Contact Instructions
	5.3 Output Instructions
	5.4 Timer Instructions
	5.5 Counter Instructions
	5.6 Increment and Decrement Instructions
	5.7 Move Instruction
	5.8 Program Control Instructions
	5.9 Logic Stack Instructions
	5.10 Interrupt Instructions

	A CPU 210 Data Sheets
	A.1 General Technical Specifications
	A.2 CPU 210 DC Power Supply, 24 VDC Inputs, 24 VDC Outputs
	A.3 CPU 210 AC Power Supply, 24 VDC Inputs, Relay Outputs
	A.4 CPU 210 AC Power Supply, AC Inputs, Relay Outputs
	A.5 PDS 210 AC Power Supply, DC Inputs, Relay Outputs
	A.6 Memory Cartridge 8K x 8
	A.7 Memory Cartridge 16K x 8
	A.8 PC/PPI Cable
	A.9 DC Input Simulator

	B Special Memory (SM)
	C Error Handling and Error Codes
	D Converting STEP 7-Micro/DOS Files to STEP 7-Micro/WIN Files
	E Execution Times for STL Instructions
	F CPU 210 Order Numbers
	Index
	A B
	C
	E
	D
	H
	F
	I
	G
	J
	K
	L
	M
	P
	N
	O
	R
	S
	T
	V
	W
	U

